Dynamic Programming: Example 2

 Longest Common SubsequenceProblem: Let $x_{1} x_{2} \ldots x_{m}$ and $y_{1} y_{2} \ldots y_{n}$ be two sequences over some alphabet. (We assume they are strings of characters.) Find a longest common subsequence (LCS) of $x_{1} x_{2} \ldots x_{m}$ and $y_{1} y_{2} \ldots y_{n}$.

```
Example: }\quad\mp@subsup{x}{1}{}\mp@subsup{x}{2}{}\mp@subsup{x}{3}{}\mp@subsup{x}{4}{}\mp@subsup{x}{5}{}\mp@subsup{x}{6}{}\mp@subsup{x}{7}{}\mp@subsup{x}{8}{}=\underline{\mathbf{b}}\underline{\mathbf{c}}\underline{\mathbf{b}}\underline{\mathbf{f}}\mathbf{f}\underline{\mathbf{c}
    \mp@subsup{y}{1}{}}\mp@subsup{y}{2}{}\mp@subsup{y}{3}{}\mp@subsup{y}{4}{}\mp@subsup{y}{5}{\prime}\mp@subsup{y}{6}{\prime}\mp@subsup{y}{7}{}\mp@subsup{y}{8}{\prime}\mp@subsup{y}{9}{}=\mathbf{dab}\mathbf{e}\underline{\mathbf{a}}\underline{\mathbf{b}}\underline{\mathbf{f}}\underline{\mathbf{c}
    z z}\mp@subsup{z}{2}{}\mp@subsup{z}{3}{}\mp@subsup{z}{4}{}\mp@subsup{z}{5}{}\quad=\quad\mathbf{babfces is an LCS (shown below).
```

Subproblems: Find an LCS of $x_{1} x_{2} \ldots x_{i}$ and $y_{1} y_{2} \ldots y_{j}(0 \leq i \leq m, 0 \leq j \leq m)$.

Optimal substructure: If $z=z_{1} z_{2} \ldots z_{p}$ is a LCS of $x_{1} x_{2} \ldots x_{m}$ and $y_{1} y_{2} \ldots y_{n}$, then at least one of these most hold.
i) $x_{m}=y_{n}$, and $z_{1} z_{2} \ldots z_{p-1}$ is an LCS of $x_{1} x_{2} \ldots x_{m-1}$ and $y_{1} y_{2} \ldots y_{n-1}$,
ii) $x_{m} \neq y_{n}$, and $z_{1} z_{2} \ldots z_{p}$ is an LCS of $x_{1} x_{2} \ldots x_{m-1}$ and $y_{1} y_{2} \ldots y_{n}$,
iii) $x_{m} \neq y_{n}$, and $z_{1} z_{2} \ldots z_{p}$ is an LCS of $x_{1} x_{2} \ldots x_{m}$ and $y_{1} y_{2} \ldots y_{n-1}$.

Let $c_{i j}=$ length of LCS of $x_{1} x_{2} \ldots x_{i}$ and $y=y_{1} y_{2} \ldots y_{j}$.

$$
\begin{aligned}
& c[i, j]= \begin{cases}0 & \text { if } i=0 \text { or } j=0, \\
1+c[i-1, j-1] & \text { if } x_{i}=y_{j}, \\
\max (c[i-1, j], c[i, j-1]) & \text { if } x_{i} \neq y_{j} .\end{cases} \\
& b[i, j]= \begin{cases}" \uparrow-" & \text { if } x_{i}=y_{j}, \\
" \uparrow " & \text { if } x_{i} \neq y_{j} \text { and } c[i-1, j] \geq c[i, j-1], \\
" \leftarrow " & \text { if } x_{i} \neq y_{j} \text { and } c[i-1, j]<c[i, j-1] .\end{cases}
\end{aligned}
$$

We compute the $c[i, j]$ and $b[i, j]$ in order of increasing $i+j$, or alternatively in order of increasing i, and for a fixed i, in order of increasing j.

$$
\text { Example: } \begin{array}{ll}
x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{8}=\mathbf{b a c b f} \mathbf{f} \mathbf{b} \\
& y_{1} y_{2} y_{3} y_{4} y_{5} y_{6} y_{7} y_{8} y_{9}=\mathbf{d a b e a b f b c}
\end{array}
$$

Row i, column j of the table below contains the value of $c[i, j]$ followed (except when $i=0$ or $j=0$) by that of $b[i, j]$

	0	$\begin{aligned} & \mathbf{1} \\ & \mathbf{d} \end{aligned}$	$\begin{aligned} & \mathbf{2} \\ & \mathbf{a} \end{aligned}$	$\begin{aligned} & \mathbf{3} \\ & \mathbf{b} \end{aligned}$	$\begin{aligned} & 4 \\ & \mathrm{e} \end{aligned}$	$\begin{aligned} & \mathbf{5} \\ & \mathbf{a} \end{aligned}$	$\begin{aligned} & \mathbf{6} \\ & b \end{aligned}$	$\begin{aligned} & 7 \\ & f \end{aligned}$	$\begin{aligned} & \mathbf{8} \\ & \mathbf{b} \end{aligned}$	9 c
0	0	0	0	0	0	0	0	0	0	0
1 b	0	-	$\begin{aligned} & 0 \\ & \uparrow \end{aligned}$	1	$\begin{aligned} & 1 \\ & \leftarrow \end{aligned}$	$\begin{aligned} & 1 \\ & \uparrow \end{aligned}$	1	$\begin{aligned} & 1 \\ & \leftarrow \end{aligned}$	\uparrow	$\begin{aligned} & 1 \\ & \leftarrow \end{aligned}$
2 a	0	¢	1	\uparrow	1	${ }_{\uparrow}^{2}$	$\begin{aligned} & 2 \\ & \leftarrow \end{aligned}$			
3 c	0	$\begin{aligned} & 0 \\ & \uparrow \end{aligned}$	$\begin{aligned} & 1 \\ & \uparrow \end{aligned}$	$\begin{aligned} & 1 \\ & \uparrow \end{aligned}$	$\begin{aligned} & 1 \\ & \uparrow \end{aligned}$	$\begin{aligned} & 2 \\ & \uparrow \end{aligned}$	$\begin{aligned} & 2 \\ & \uparrow \end{aligned}$	$\begin{aligned} & 2 \\ & \uparrow \end{aligned}$	$\stackrel{2}{\uparrow}$	$\stackrel{3}{4}$
4 b	0	¢	$\begin{aligned} & 1 \\ & \uparrow \end{aligned}$	${ }^{2}$	$\stackrel{2}{\leftarrow}$	2	${ }^{3}$	3 \leftarrow	${ }^{3}$	3 \uparrow
5 f	0	$\begin{aligned} & 0 \\ & \uparrow \end{aligned}$	$\begin{aligned} & 1 \\ & \uparrow \end{aligned}$	$\begin{aligned} & 2 \\ & \uparrow \end{aligned}$	$\begin{aligned} & 2 \\ & \uparrow \end{aligned}$	$\begin{aligned} & 2 \\ & \uparrow \end{aligned}$	$\begin{aligned} & 3 \\ & \uparrow \end{aligned}$	$\begin{aligned} & 4 \\ & \uparrow \end{aligned}$	$\begin{aligned} & 4 \\ & \leftarrow \end{aligned}$	$\stackrel{4}{\leftarrow}$
6 f	0	$\begin{aligned} & 0 \\ & \uparrow \end{aligned}$	$\begin{aligned} & 1 \\ & \uparrow \end{aligned}$	$\begin{aligned} & 2 \\ & \uparrow \end{aligned}$	$\begin{aligned} & 2 \\ & \uparrow \end{aligned}$	$\begin{aligned} & 2 \\ & \uparrow \end{aligned}$	$\begin{aligned} & 3 \\ & \uparrow \end{aligned}$	$\begin{gathered} 4 \\ \uparrow \end{gathered}$	$\begin{aligned} & 4 \\ & \uparrow \end{aligned}$	\uparrow
7 c	0	$\begin{aligned} & 0 \\ & \uparrow \end{aligned}$	$\begin{aligned} & 1 \\ & \uparrow \end{aligned}$	$\begin{aligned} & 2 \\ & \uparrow \end{aligned}$	$\begin{aligned} & 2 \\ & \uparrow \end{aligned}$	$\begin{aligned} & 2 \\ & \uparrow \end{aligned}$	$\begin{aligned} & 3 \\ & \uparrow \end{aligned}$	$\begin{aligned} & 4 \\ & \uparrow \end{aligned}$	$\begin{aligned} & 4 \\ & \uparrow \end{aligned}$	${ }_{\uparrow}^{5}$
8 b	0	$\begin{aligned} & 0 \\ & \uparrow \end{aligned}$	$\begin{aligned} & 1 \\ & \uparrow \end{aligned}$	${ }_{2}^{2}$	2	$\begin{aligned} & 2 \\ & \uparrow \end{aligned}$	$\begin{aligned} & 3 \\ & \uparrow \end{aligned}$	$\begin{aligned} & 4 \\ & \uparrow \end{aligned}$	${ }_{\sim}^{5}$	5 \uparrow

We can compute each table element in constant time, so the entire table takes $\Theta(m n)$ time.

We can write down an LCS by starting in the lower right corner and following the arrows backward.

Whenever we reach a square containing a " \uparrow ", say in row i and column j, we insert the character $x_{i}=y_{j}$ at the beginning of the subsequence.

	0	$\begin{aligned} & \mathbf{1} \\ & \mathbf{d} \end{aligned}$	\mathbf{a}	$\begin{aligned} & \hline \mathbf{3} \\ & \mathbf{b} \end{aligned}$	$\begin{aligned} & 4 \\ & \mathrm{e} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{5} \\ & \mathbf{a} \end{aligned}$	b	$\begin{aligned} & 7 \\ & \mathrm{f} \end{aligned}$	$\begin{aligned} & 8 \\ & \mathbf{b} \end{aligned}$	$\begin{aligned} & 9 \\ & \mathbf{c} \end{aligned}$
0	0	0	0	0	0	0	0	0	0	0
1 b	0	$\begin{aligned} & 0 \\ & \uparrow \end{aligned}$	$\begin{aligned} & 0 \\ & \uparrow \end{aligned}$	$\begin{aligned} & \mathbf{1} \\ & \uparrow \end{aligned}$	$\begin{aligned} & \mathbf{1} \\ & \leftarrow \end{aligned}$	$\begin{aligned} & 1 \\ & \uparrow \end{aligned}$	$\hat{\imath}^{1}$	$\begin{aligned} & 1 \\ & \leftarrow \end{aligned}$	$\hat{\Lambda}^{1}$	$\begin{aligned} & 1 \\ & \leftarrow \end{aligned}$
2 a	0	$\begin{aligned} & 0 \\ & \uparrow \end{aligned}$	1	$\begin{aligned} & 1 \\ & \uparrow \end{aligned}$	$\begin{aligned} & 1 \\ & \uparrow \end{aligned}$	${ }_{\uparrow}^{2}$	$\begin{aligned} & 2 \\ & \leftarrow \end{aligned}$			
3 c	0	$\begin{aligned} & 0 \\ & \uparrow \end{aligned}$	$\stackrel{1}{\uparrow}$	$\stackrel{1}{\uparrow}$	$\stackrel{1}{\uparrow}$	$\begin{aligned} & \mathbf{2} \\ & \uparrow \end{aligned}$	$\underset{\uparrow}{2}$	$\begin{aligned} & 2 \\ & \uparrow \end{aligned}$	$\stackrel{2}{\uparrow}$	${ }_{4}^{3}$
4 b	0	$\begin{aligned} & 0 \\ & \uparrow \end{aligned}$	$\stackrel{1}{\uparrow}$	${ }_{\uparrow}^{2}$	$\begin{aligned} & 2 \\ & \leftarrow \end{aligned}$	$\begin{aligned} & 2 \\ & \uparrow \end{aligned}$	3	$\begin{aligned} & 3 \\ & \leftarrow \end{aligned}$	${ }_{4}^{3}$	$\begin{aligned} & 3 \\ & \uparrow \end{aligned}$
5 f	0	$\begin{aligned} & 0 \\ & \uparrow \end{aligned}$	$\begin{aligned} & 1 \\ & \uparrow \end{aligned}$	$\begin{aligned} & 2 \\ & \uparrow \end{aligned}$	$\stackrel{2}{\uparrow}$	$\underset{\uparrow}{2}$	$\begin{aligned} & 3 \\ & \uparrow \end{aligned}$	${ }_{\uparrow}^{4}$	$\stackrel{4}{\leftarrow}$	$\stackrel{4}{\leftarrow}$
6 f	0	$\begin{aligned} & 0 \\ & \uparrow \end{aligned}$	$\stackrel{1}{\uparrow}$	$\begin{aligned} & 2 \\ & \uparrow \end{aligned}$	$\begin{aligned} & 2 \\ & \uparrow \end{aligned}$	$\stackrel{2}{\uparrow}$	3 \uparrow	$\stackrel{4}{\wedge}$	$\stackrel{4}{4}$	$\stackrel{4}{\uparrow}$
7 c	0	$\begin{aligned} & 0 \\ & \uparrow \end{aligned}$	$\stackrel{1}{\uparrow}$	$\begin{aligned} & 2 \\ & \uparrow \end{aligned}$	$\stackrel{2}{\uparrow}$	$\stackrel{2}{\uparrow}$	$\begin{aligned} & 3 \\ & \uparrow \end{aligned}$	$\begin{aligned} & 4 \\ & \uparrow \end{aligned}$	$\stackrel{4}{4}$	5
8 b	0	$\begin{aligned} & 0 \\ & \uparrow \end{aligned}$	$\stackrel{1}{\uparrow}$	${ }_{\uparrow}^{2}$	$\underset{\uparrow}{2}$	$\underset{\uparrow}{2}$	$\begin{aligned} & 3 \\ & \uparrow \end{aligned}$	$\begin{aligned} & 4 \\ & \uparrow \end{aligned}$	5	5 \uparrow

An LCS is $x_{1} x_{2} x_{4} x_{5} x_{7}=y_{3} y_{5} y_{6} y_{7} y_{9}=$ babfc.

This computation takes $\Theta(m+n)$ time.

