
Dynamic Programming: Example 2
Longest Common Subsequence

Problem: Let x1x2...xm and y1y2...yn be two sequences over some alphabet. (We
assume they are strings of characters.) Find a longest common
subsequence (LCS) of x1x2...xm and y1y2...yn.

Example: x1x2x3x4x5x6x7x8 = b a c b f f c b

y1y2y3y4y5y6y7y8y9 = d a b e a b f b c

z1z2z3z4z5 = b a b f c is an LCS (shown below).

Subproblems: Find an LCS of x1x2...xi and y1y2...yj (0 ≤ i ≤ m, 0 ≤ j ≤ m).

Optimal substructure: If z = z1z2...zp is a LCS of x1x2...xm and y1y2...yn, then at
least one of these most hold.

i) xm = yn, and z1z2...zp–1 is an LCS of x1x2...xm–1 and y1y2...yn–1,

ii) xm ≠ yn, and z1z2...zp is an LCS of x1x2...xm–1 and y1y2...yn,

iii) xm ≠ yn, and z1z2...zp is an LCS of x1x2...xm and y1y2...yn–1.

Let cij = length of LCS of x1x2...xi and y = y1y2...yj.

 0 if i = 0 or j = 0,
 c[i,j] = 1 + c[i–1, j–1] if xi = yj,
 max(c[i–1, j], c[i, j–1]) if xi ≠ yj.

 "↑" if xi = yj,

b[i,j] = "↑" if xi ≠ yj and c[i–1, j] ≥ c[i , j–1],

 "←" if xi ≠ yj and c[i–1, j] < c[i, j–1].

We compute the c[i,j] and b[i,j] in order of increasing i+j, or alternatively in
order of increasing i, and for a fixed i, in order of increasing j.

Example: x1x2x3x4x5x6x7x8 = b a c b f f c b

y1y2y3y4y5y6y7y8y9 = d a b e a b f b c

Row i, column j of the table below contains the value of c[i, j] followed
(except when i = 0 or j = 0) by that of b[i, j]

 0

1
d

2
a

3
b

4
e

5
a

6
b

7
f

8
b

9
c

0 0 0 0 0 0 0 0 0 0 0

1 b 0 0
↑

0
↑

1
↑

1
←

1
↑

1
↑

1
←

1
↑

1
←

2 a 0 0
↑

1
↑

1
↑

1
↑

2
↑

2
←

2
←

2
←

2
←

3 c 0 0
↑

1
↑

1
↑

1
↑

2
↑

2
↑

2
↑

2
↑

3
↑

4 b 0 0
↑

1
↑

2
↑

2
←

2
↑

3
↑

3
←

3
↑

3
↑

5 f 0 0
↑

1
↑

2
↑

2
↑

2
↑

3
↑

4
↑

4
←

4
←

6 f 0 0
↑

1
↑

2
↑

2
↑

2
↑

3
↑

4
↑

4
↑

4
↑

7 c 0 0
↑

1
↑

2
↑

2
↑

2
↑

3
↑

4
↑

4
↑

5
↑

8 b 0 0
↑

1
↑

2
↑

2
↑

2
↑

3
↑

4
↑

5
↑

5
↑

We can compute each table element in constant time, so the entire table
takes Θ(mn) time.

We can write down an LCS by starting in the lower right corner and
following the arrows backward.

Whenever we reach a square containing a "↑", say in row i and
column j, we insert the character xi = yj at the beginning of the
subsequence.

 0

1
d

2
a

3
b

4
e

5
a

6
b

7
f

8
b

9
c

0 0 0 0 0 0 0 0 0 0 0

1 b 0 0
↑

0
↑

1
↑

1
←

1
↑

1
↑

1
←

1
↑

1
←

2 a 0 0
↑

1
↑

1
↑

1
↑

2
↑

2
←

2
←

2
←

2
←

3 c 0 0
↑

1
↑

1
↑

1
↑

2
↑

2
↑

2
↑

2
↑

3
↑

4 b 0 0
↑

1
↑

2
↑

2
←

2
↑

3
↑

3
←

3
↑

3
↑

5 f 0 0
↑

1
↑

2
↑

2
↑

2
↑

3
↑

4
↑

4
←

4
←

6 f 0 0
↑

1
↑

2
↑

2
↑

2
↑

3
↑

4
↑

4
↑

4
↑

7 c 0 0
↑

1
↑

2
↑

2
↑

2
↑

3
↑

4
↑

4
↑

5
↑

8 b 0 0
↑

1
↑

2
↑

2
↑

2
↑

3
↑

4
↑

5
↑

5
↑

An LCS is x1x2x4x5x7 = y3y5y6y7y9 = babfc .

This computation takes Θ(m+n) time.

