
Dynamic Programming: Example 2 
Longest Common Subsequence 

Problem: Let x1x2...xm and y1y2...yn be two sequences over some alphabet.  (We 
assume they are strings of characters.)  Find a longest common 
subsequence (LCS) of x1x2...xm and y1y2...yn. 

Example:   x1x2x3x4x5x6x7x8   =  b a c b f f  c b 

y1y2y3y4y5y6y7y8y9  =  d a b e a b f b c  

z1z2z3z4z5    = b a b f c              is an LCS (shown below). 

Subproblems:  Find an LCS of x1x2...xi and y1y2...yj  (0 ≤ i ≤ m, 0 ≤ j ≤ m). 

Optimal substructure: If z = z1z2...zp is a LCS of x1x2...xm and y1y2...yn, then at 
least one of these most hold. 

i)  xm = yn, and z1z2...zp–1 is an LCS of x1x2...xm–1 and y1y2...yn–1, 

ii)  xm ≠ yn, and z1z2...zp is an LCS of x1x2...xm–1 and y1y2...yn, 

iii) xm ≠ yn, and z1z2...zp is an LCS of x1x2...xm and y1y2...yn–1. 

Let cij = length of LCS of x1x2...xi and y = y1y2...yj. 

          0         if i = 0 or j = 0, 
  c[i,j] =   1 + c[i–1, j–1]    if xi = yj, 
      max( c[i–1, j], c[i, j–1] ) if xi ≠ yj. 

    "↑"       if xi = yj, 

b[i,j] =   "↑"       if xi ≠ yj and c[i–1, j] ≥ c[i , j–1], 

    "←"        if xi ≠ yj and c[i–1, j] < c[i, j–1]. 

We compute the c[i,j] and b[i,j] in order of increasing i+j, or alternatively in 
order of increasing i, and for a fixed i, in order of increasing j. 

Example:   x1x2x3x4x5x6x7x8   =  b a c b f f  c b 

y1y2y3y4y5y6y7y8y9  =  d a b e a b f b c  

Row i, column j of the table below contains the value of c[i, j] followed 
(except when i = 0 or j = 0) by that of b[i, j] 
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We can compute each table element in constant time, so the entire table 
takes Θ(mn) time. 



We can write down an LCS by starting in the lower right corner and 
following the arrows backward. 

Whenever we reach a square containing a "↑", say in row i and 
column j, we insert the character xi = yj at the beginning of the 
subsequence. 
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An LCS is x1x2x4x5x7 = y3y5y6y7y9 = babfc . 

This computation takes Θ(m+n) time. 


