All-Pairs Shortest Paths

Problem: G is a weighted graph or digraph with n vertices, which for simplicity we label simply 1,2,...,n.

We are given the adjacency matrix $W = (w_{ij})$, w_{ij} = weight of edge from *i* to *j* (∞ if no such edge, 0 if *i* = *j*). All weights are positive.

Find the distance matrix $D = (d_{ij})$, d_{ij} = distance from *i* to *j*.

Idea: For k = 0, 1, ..., n, let

 $short_k(i,j) =$ shortest path from *i* to *j* all of whose intermediate vertices lie in the set $\{1,2,...,k\}.$

 $d_{ij}^{k} = length \ of \ short_{k}(i,j).$

$$k = 0$$
: short₀(*i*,*j*) = edge from *i* to *j*.
 $d_{ij}^{0} = w_{ij}$.

$$k = n$$
: short_n(*i*,*j*) = shortest path from *i* to *j*.
 $d_{ij}^{n} = d_{ij}$.

Initially, we know all the d_{ij}^{0} .

Our goal is to find all the d_{ij}^{n} .

How can we find all of the d_{ij}^{k} , assuming we already know the d_{ij}^{k-1} ?

Case 1: k is <u>not</u> an intermediate vertex on *short*_k(i,j).

$$short_{k}(i,j) = short_{k-1}(i,j)$$

$$d_{ij}^{k} = d_{ij}^{k-1}.$$

$$Vertex \ k \ doesn't$$

$$help. \ (Always)$$

$$the \ case \ if \ k = i$$

$$or \ k = j.)$$

Case 2: k is an intermediate vertex on $short_k(i,j)$.

$$short_k(i,j) = short_{k-1}(i,k) + short_{k-1}(k,j).$$

 $d_{ij}^{\ k} = d_{ik}^{\ k-1} + d_{kj}^{\ k-1}.$

Which case applies, case 1 or case 2?

Answer: Whichever minimizes d_{ij}^{k} .

$$d_{ij}^{k} = min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})$$

If we let

 $p_{ij}^{\ k} = \begin{cases} true & \text{if } d_{ik}^{\ k-1} + d_{kj}^{\ k-1} \text{ produces the minimum above,} \\ false & \text{otherwise,} \end{cases}$

then

$$p_{ij}^{k}$$
 is true if and only if k is an intermediate point of *short*_k(*i*,*j*).

Rather than compute all the p_{ij}^{k} , the algorithm below computes $p_{ij} = \text{largest } k \text{ for which } p_{ij}^{k} \text{ is true, or 0 if } p_{ij}^{k} \text{ is false for all } k.$ Note

 p_{ij} = the highest-numbered intermediate point on the shortest path from *i* to *j*, or 0 if there are no intermediate points.

We can compute all the d_{ij}^{k} and p_{ij} in $\Theta(n^{3})$ time by:

for
$$(i = 1, 2, ..., n)$$

for $(j = 1, 2, ..., n)$
 $d_{ij}^{\ 0} = w_{ij};$
 $p_{ij} = 0;$
for $(k = 1, 2, ..., n)$
for $(j = 1, 2, ..., n)$
if $(d_{ik}^{\ k-1} + d_{kj}^{\ k-1} < d_{ij}^{\ k-1})$
 $d_{ij}^{\ k} = d_{ik}^{\ k-1} + d_{kj}^{\ k-1};$
 $p_{ij} = k;$
else
 $d_{ij}^{\ k} = d_{ij}^{\ k-1};$

The matrix $D = (d_{ij}^{n})$ is the distance matrix, and the matrix $P = (p_{ij})$ has the information needed to find the shortest path between any pair of points.

Using the matrix *P*, we may print the shortest path from *i* to *j*:

```
print(i);
print_intermediate_points(i, j);
print(j);
void print_intermediate_points( int i, int j)
        k = p<sub>ij</sub>;
        if ( k > 0 )
            print_intermediate_points( i, k);
            print( k);
            print_intermediate_points( k, j);
        return;
```

Our algorithm for computing *D* and *P* uses $\Theta(n^3)$ space. We can reduce space (but not time) to $\Theta(n^2)$ by updating the $d_{ij}^{\ k}$ in place.

Consider a single pass through the outer loop (fixed *k*).

 d_{ij} doesn't change if i=k or j=k, so there is no problem of using the new value of d_{ik} or d_{kj} when we need the old.