All-Pairs Shortest Paths

Problem: $\quad G$ is a weighted graph or digraph with n vertices, which for simplicity we label simply $1,2, \ldots, n$.

We are given the adjacency matrix $W=\left(w_{i j}\right)$, $w_{i j}=$ weight of edge from i to j (∞ if no such edge, 0 if $i=j$). All weights are positive.
Find the distance matrix $D=\left(d_{i j}\right)$, $d_{i j}=$ distance from i to j.

Idea: For $k=0,1, \ldots, n$, let

$$
\begin{aligned}
\operatorname{short}_{k}(i, j)= & \text { shortest path from } i \text { to } j \text { all of whose } \\
& \text { intermediate vertices lie in the set } \\
& \{1,2, \ldots, k\} .
\end{aligned}
$$

$d_{i j}{ }^{k}=$ length of $\operatorname{short}_{k}(i, j)$.

$d_{17}{ }^{0}=\infty$
$d_{17}{ }^{1}=\infty$
$d_{17}{ }^{2}=48$
$d_{17}{ }^{3}=45$
$d_{17}{ }^{4}=44$
$d_{17}{ }^{5}=44$
$d_{17}{ }^{6}=35$
$d_{17}{ }^{7}=35$
$k=0: \quad \operatorname{short}_{0}(i, j)=$ edge from i to j.

$$
d_{i j}{ }^{0}=w_{i j}
$$

$k=n: \quad \operatorname{short}_{n}(i, j)=$ shortest path from i to j.
$d_{i j}{ }^{n}=d_{i j}$.
Initially, we know all the $d_{i j}{ }^{0}$.
Our goal is to find all the $d_{i j}{ }^{n}$.
How can we find all of the $d_{i j}{ }^{k}$, assuming we already know the $d_{i j}{ }^{k-1}$?

Case 1: k is not an intermediate vertex on $\operatorname{short}_{k}(i, j)$.

$$
\left.\begin{array}{l}
\operatorname{short}_{k}(i, j)=\operatorname{short}_{k-1}(i, j) \\
d_{i j}{ }^{k}=d_{i j}^{k-1} .
\end{array}\right\} \begin{aligned}
& \text { Vertex } k \text { doesn't } \\
& \text { help. (Always } \\
& \text { the case if } k=i \\
& \text { or } k=j .)
\end{aligned}
$$

Case 2: k is an intermediate vertex on $\operatorname{short}_{k}(i, j)$.
$\operatorname{short}_{k}(i, j)=\operatorname{short}_{k-1}(i, k)+\operatorname{short}_{k-1}(k, j)$.
$d_{i j}{ }^{k}=d_{i k}^{k-1}+d_{k j}^{k-1}$.
shortest path from i to k shortest path from k to j

shortest path from i to j (assuming it passes through k)

Which case applies, case 1 or case 2?
Answer: Whichever minimizes $d_{i j}{ }^{k}$.

$$
d_{i j}^{k}=\min \left(d_{i j}^{k-1}, d_{i k}^{k-1}+d_{k j}^{k-1}\right)
$$

If we let

$$
p_{i j}^{k}=\left\{\begin{array}{l}
\text { true if } d_{i k}^{k-1}+d_{k j}^{k-1} \text { produces the minimum above } \\
\text { false otherwise }
\end{array}\right.
$$

then
$p_{i j}{ }^{k}$ is true if and only if k is an intermediate point of $\operatorname{short}_{k}(i, j)$.

Rather than compute all the $p_{i j}{ }^{k}$, the algorithm below computes $p_{i j}=$ largest k for which $p_{i j}{ }^{k}$ is true, or 0 if $p_{i j}{ }^{k}$ is false for all k. Note
$p_{i j}=$ the highest-numbered intermediate point on the shortest path from i to j, or 0 if there are no intermediate points.

We can compute all the $d_{i j}{ }^{k}$ and $p_{i j}$ in $\Theta\left(n^{3}\right)$ time by:

```
for \((i=1,2, \ldots, n)\)
    for \((j=1,2, \ldots, n)\)
        \(d_{i j}{ }^{0}=w_{i j} ;\)
        \(p_{i j}=0\);
for \((k=1,2, \ldots, n)\)
    for \((i=1,2, \ldots, n)\)
        for \((j=1,2, \ldots, n)\)
            if \(\left(d_{i k}{ }^{k-1}+d_{k j}^{k-1}<d_{i j}{ }^{k-1}\right)\)
                \(p_{i j}=k ;\)
            else
                \(d_{i j}{ }^{k}=d_{i j}{ }^{k-1} ;\)
```

The matrix $D=\left(d_{i j}{ }^{n}\right)$ is the distance matrix, and the matrix $P=$ ($p_{i j}$) has the information needed to find the shortest path between any pair of points.

Using the matrix P, we may print the shortest path from i to j :

```
print(i);
print_intermediate _points(i,j);
print(j);
void print_intermediate _points( int i, int j)
    k= pij;
    if (k>0)
        print_intermediate _points(i,k);
        print(k);
    print_intermediate_points( }k,j)
    return;
```

Our algorithm for computing D and P uses $\Theta\left(n^{3}\right)$ space. We can reduce space (but not time) to $\Theta\left(n^{2}\right)$ by updating the $d_{i j}{ }^{k}$ in place.

Consider a single pass through the outer loop (fixed k). $d_{i j}$ doesn't change if $i=k$ or $j=k$, so there is no problem of using the new value of $d_{i k}$ or $d_{k j}$ when we need the old.

```
for \((i=1,2, \ldots, n)\)
    for \((j=1,2, \ldots, n)\)
        \(d_{i j}=w_{i j} ;\)
        \(p_{i j}=0\);
for \((k=1,2, \ldots, n)\)
    for \((i=1,2, \ldots, n)\)
        for \((j=1,2, \ldots, n)\)
            if \(\left(d_{i k}+d_{k j}<d_{i j}\right)\)
            \(d_{i j}=d_{i k}+d_{k j} ;\)
            \(p_{i j}=k\);
```

