Depth-first Search in Digraphs - examples

\Longrightarrow denotes a tree edge.
$d(v), f(v)$ appears above or below each node v :
$d(v)=$ discovery time of node v. The time at which node v is first reached. The time of preorder processing.
$f(v)=$ finish time of node v. The time at which node v is exited for the last time. The time of postorder processing.

For a node v, active $(v)=$ time interval $d(v)$ to $f(v)$ (inclusive).
Example 1: In this particular depth-first search, the alphabeti-cally-first node is chosen, whenever an arbitrary choice is made.

Example 2: Depth-first search of the same digraph. The alpha-betically-last node is chosen, whenever an arbitrary choice is made.

Example 3: Depth-first search of the same digraph. In choosing among adjacent vertices not yet discovered, the alphabeticallyfirst vertex is chosen. However, we choose H as the starting vertex, and when the stack becomes empty (which didn't occur in Example 1 or 2), we choose E , then P , and then D as the next vertex to discover.

Depth-first Search in Digraphs — edges classified

Edge (u, v) is
a tree edge if $\operatorname{active}(u) \supset \operatorname{active}(v)$, and there is no vertex x with $\operatorname{active}(u) \supset \operatorname{active}(x) \supset \operatorname{active}(v)$,
a forward edge if $\operatorname{active}(u) \supset \operatorname{active}(v)$, but (u, v) is not a tree edge,
a back edge \quad if $\operatorname{active}(u) \subset \operatorname{active}(v)$,
a cross edge if active $(u) \cap \operatorname{active}(v)=\varnothing$ (in which case $\operatorname{active}(v)$ entirely precedes $\operatorname{active}(u)$.
\longrightarrow denotes a tree edge.
$--\rightarrow$ denotes a back edge.
-.... denotes a forward edge.

$\rightarrow \quad$ denotes a cross edge.

Here depth-first search of Example 1, with edges classified.

