
Fast Exponentiation 

Problem: Given integers a, n, and m with n ≥ 0 and 0 ≤ a < m, compute 
an (mod m). 

A simple algorithm is:  

This simple algorithm uses n–1 modular multiplications. 

 It is completely impractical if n has, say, several hundred digits. 

Much of public-key cryptography depends our ability to compute an 
(mod m) fairly quickly for integers n of this size. 

   

If n is a power of 2, say n = 2k, there is a much faster way: simply 
square a, k times.  For example, we can compute a128 = a27 (mod m) 
using only 7 modular multiplications, like this: 
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Say n is not a power of 2, e.g., n = 205 = (11001101)2 = 27+26+23+22+20. 
Given the computations above, only 4 more modular multiplications 
produce a205 (mod m):  

          a205 = a27
⋅ a26

⋅ a23
⋅ a22

⋅ a  (mod m).    

y = a; 
for ( i = 2, 3, ..., n ) 
 y = ya (mod m); 
return y; 

(We actually reduce mod m after each multiplication.) 

   

In general, if n = (βkβk–1...  β0)2, where βk ≠ 0 unless k = 0, then 
2k ≤ n < 2k+1, and k = lg(n).   

We can compute an (mod m) using k modular multiplications to 
compute a2i

 (i ≤ k) followed by 0 to k additional modular 
multiplications to compute  ∏

k
i=0,βi=1

 a2i
.     

The total number of modular multiplications is k to 2k, or lg(n) to 
2lg(n). 

We don’t really need an array to store all the a2i
 (i ≤ k). 

      

Here is our first algorithm: 

Input:  Integers a, n, and m, with n ≥ 0 and 0 ≤ a < m. 

Output:   an (mod m) 

Algorithm: Let n = (βkβk–1...  β0)2, where βk ≠ 0 unless k = 0.  Then k = 
lg(n) and n = ∑i

k
=0     β i 2

i.  Note β i  = (n >> i) &1 in C notation.  
For notational purposes, let ni = (β iβ i–1...  β0)2 for i = 0,1, ..., k. 

  

Integer fastExp( Integer a,  Integer n,  Integer m )  
  x  = a;            // x = a20

  
  y = (β0==1) ? a : 1;        // y = a

n0 

  for (  i = 1, 2, ..., k )  
   x  = x2 (mod m);        // x = a2i–1

  →   x = a2i
 

   if ( βi == 1 ) 

    y = (y==1) ?  x :  yx (mod m);  // y = a
ni–1  →   y = a

ni 
  return y; 



Here is a slight reworking of the algorithm that eliminates explicit 
reference to the bits β i.  It uses a function odd(n) that returns true exactly 
when n is odd. 

Integer fastExp( Integer a,  Integer n,  Integer m )  
  x  = a;            // x = a20

  
  y = (odd(n) ) ? a : 1;        // y = a

n0 

  n' = n /2; 
  while (  n' > 0 )  
   x  = x2 (mod m);        // x = a2i–1

  →   x = a2i
 

   if (odd(n') ) 
    y = (y==1) ?  x :  yx (mod m);  // y = a

ni–1  →   y = a
ni 

   n' = n' /2; 
  return y; 

    

Instead of computing a
n0, a

n1, ..., a
nk, where ni = (β iβk–1...β0)2, the variation 

below computes a
mk, a

mk–1, ..., a
m0, where mi = (βkβk–1...β i)2.  It uses one 

less variable.  Note mk = 1,  mi = 2mi+1+β i  for i = k−1,...,1,0,  and m0 = n.   

Integer fastExp2( Integer a,  Integer n,  Integer m )  
  if ( n  ==  0 ) 
   return 1;           
  y  = a;            // y = a

m0 
  for (  i = k–1, k–2, ..., 0 )   
   if (β i == 0 ) 
    y  =  y2 (mod m);        
   else            // y = a

mi+1 →  y = a
mi 

    y  = y2a  (mod m); 
  return y; 

 

    

Each algorithm performs between  lg(n) and 2lg(n) modular 
multiplications.  The exact number is lg(n) + |{βi : 0 ≤ i < k, βi = 1}|.  
For a random n in [2k,2k+1), we would expect half the βi to be 1, so the 
expected number of modular multiplications would be 3/2lg(n).  

If n has several hundred digits, lg(n) is somewhere around 1000.  We can 
compute an (mod m) using about 1500 modular multiplications (expected 
case) and 2000 modular multiplications (worst case). 

What is the running time of fast exponentiation?  

1) Using the “standard” method of multiplying integers, we can 
multiply two q-bit integers in Θ(q2) time.  (The same applies to 
modular multiplication.) 

 The integers multiplied in fast exponentiation are less than m, so 
they have at most lg(m) +1 bits — essentially at most lg(m) bits. 

 This gives a running time for fast exponentiation of 
O(lg(n) (lg(m))2), or O(lg(m)3) if we assume n ≤ m. 

2) Later in this course, we will derive a practical faster algorithm for 
multiplying two integers.  This algorithm multiplies two q-bit 
integers in Θ(qlg(3)) time, or approximately Θ(q1.59) time.   

 If we employ this algorithm, the running time of fast exponentiation 
becomes O(lg(n) (lg(m))1.59), or O(lg(m)2.59)  if we assume n ≤ m. 

3) Still faster algorithms for multiplying two integers are known, but 
(as far as I am aware) they are not practical.  In principle, at least, 
the running time of fast exponentiation can be reduced still further.  


