Graphs and Digraphs - Examples

An (undirected) graph $G=(V, E)$

\quad| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| A | B | C | D | E | F |
| B | | | | | |
| C | | | | | |
| D | | | | | |
| E | | | | | |
| F | | | | | |\(\left(\begin{array}{llllll}0 \& 1 \& 0 \& 1 \& 0 \& 1

1 \& 0 \& 0 \& 0 \& 1 \& 0

0 \& 0 \& 0 \& 1 \& 0 \& 0

1 \& 0 \& 1 \& 0 \& 1 \& 1

0 \& 1 \& 0 \& 1 \& 0 \& 0

1 \& 0 \& 0 \& 1 \& 0 \& 0\end{array}\right)\)
adjacency
list for G

n vertices, e edges $\left(0 \leq e \leq n(n-1) / 2 \approx n^{2} / 2\right)$.
Adjacency matrix: $\Theta\left(n^{2}\right)$ space. An algorithm that examines the entire graph structure will require $\Omega\left(n^{2}\right)$ time.
Adjacency list: $\quad \Theta(n+e)$ space. An algorithm that examines the entire graph structure will require $\Omega(n+e)$ time.
Often, $e \ll n^{2}$. In this case, the adjacency list may be preferable.

A digraph $G=(V, E)$

adjacency matrix for G

\quad| A | B | C | D | E | F |
| :--- | :--- | :--- | :--- | :--- | :--- |
| A | | | | | |
| C | | | | | |
| D | | | | | |
| E | | | | | |
| F | | | | | |\(\left(\begin{array}{llllll}0 \& 1 \& 0 \& 0 \& 0 \& 1

0 \& 0 \& 0 \& 0 \& 1 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 0

1 \& 0 \& 1 \& 0 \& 0 \& 0

0 \& 1 \& 0 \& 1 \& 0 \& 0

0 \& 0 \& 0 \& 1 \& 0 \& 0\end{array}\right)\)
adjacency list for G

In a digraph, e may be as high as $n(n-1) \approx n^{2}$, but otherwise the remarks on the previous page hold.

A weighted digraph $G=(V, E, W)$

adjacency matrix for G

A	$(\infty 3 \infty \infty \times 12$
B	$\infty \infty \infty \times 11 \times$
C	$\infty \infty \infty$
D	$9 \infty 8 \infty \infty$
E	∞
	$\infty \infty \times 21 \times \infty$

adjacency
list for G

In the adjacency matrix, a non-existent edge might be denoted by 0 or ∞. For example, a non-existent edge could represent
i) a capacity of 0 , or
ii) a cost of ∞.

Directed Acyclic Graphs (DAGs)

In any digraph, we define a vertex v to be
a source, if there are no edges leading into v, and
a sink if there are no edges leading out of v.

A directed acyclic graph (or DAG) is a digraph that has no cycles.

Example of a DAG:

Theorem Every finite $D A G$ has at least one source, and at least one sink.

In fact, given any vertex v, there is a path from some source to v, and a path from v to some sink.

Note: This theorem need not hold in an infinite DAG. For example, this DAG has neither a source nor a sink.

Note: In any digraph, the vertices could represent tasks, and the edges could represent constraints on the order in which the tasks be performed.

For example, A must be performed before B, F, or G.
B must be performed before C or E .
C must be performed before G .
D must be performed before C .
E must be performed before D.
F must be performed before D.
We will see that the constraints are consistent if any only if the digraph has no cycles, i.e., is a DAG.

A topological sort of a digraph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is labeling of the vertices by $1,2, \ldots,|\mathrm{~V}|$ (or by elements of some other ordered set) such that (u, v) is a edge $\Rightarrow \operatorname{label}(u)<\operatorname{label}(v)$.

We will see that a digraph has a topological sort if and only if it is a DAG.

For a tasks / constraints graph, a topological sort provides an order in which the tasks can be performed serially, and conversely any valid order for performing the tasks serially gives a topological sort.

Strongly Connected Components of a Digraph

If G is a digraph, define a relation \sim on the vertices by:
$a \sim b$ is there is both a path from a to b, and a path from b to a. This is an equivalence relation. The equivalence classes are called the strong components of G.
G is strongly connected if it has just one strong component.

This digraph has five strong components.

Given a strongly connected digraph G, we may form the component digraph $\mathrm{G}^{\mathrm{SCC}}$ as follows:
i) The vertices of $G^{S C C}$ are the strongly connect components of G.
ii) There is an edge from v to w in $\mathrm{G}^{\mathrm{SCC}}$ if there is an edge from some vertex of component v to some vertex of component w in G.

Theorem: The component graph of a digraph is a DAG.

Here is the component digraph for the digraph on the preceding page.

