
Quicksort — An Example

We sort the array
A = (38 81 22 48 13 69 93 14 45 58 79 72)

with quicksort, always choosing the pivot element to be the element
in position (left+right) /2.

The partitioning during the top-level call to quicksort() is illustrated
on the next page. During the partitioning process,

i) Elements strictly to the left of position lo are less than or
equivalent to the pivot element (69).

ii) Elements strictly to the right of position hi are greater than
the pivot element.

When lo and hi cross, we are done. The final value of hi is the
position in which the partitioning element ends up.

An asterisk indicates an element compared to the pivot element at
that step.

left left+1 right
38 81 22 48 13 69 93 14 45 58 79 72

lo hi hi hi
69 81* 22 48 13 38 93 14 45 58* 79* 72*

lo lo lo lo lo hi

69 58 22* 48* 13* 38* 93* 14 45* 81 79 72

hi
lo lo

69 58 22 48 13 38 45 14** 93* 81 79 72

 hi
14 58 22 48 13 38 45 69 93 81 79 72

Swap pivot element
with leftmost element.
lo=left+1; hi=right ;

Move hi left and lo
right as far as we can;
then swap A[lo] and
A[hi], and move hi and
lo one more position.

Repeat above

Repeat above until hi
and lo cross; then hi is
the final position of the
pivot element, so swap
A[hi] and A[left].

Partitioning complete;
return value of hi.

Number of comparisons performed by partition():
a) No comparison for leftmost column.
b) One comparison for each remaining column, except two for the

columns where hi and lo end up. (lo = hi+1 at the end.)

C(n) = n + 1, where n is the size of the array (right – left + 1).

Expected number of exchanges performed by partition(), for a randomly
ordered array, and a pivot element chosen from a designated position (and
hence a random element of the array).

 Say the pivot element turns out to be the kth largest element of the n
elements, so it ends up in the kth position.

 Each exchange of A[lo] and A[hi] moves one element initially to the
right of kth position, but less than (or equivalent but not equal to) the
pivot element, to a position not right of the kth position.

Of the k–1 elements in the array less than the pivot element, we would
expect ((n–k)/(n–1)) (k–1) of these to lie initially right of the kth
position. Thus we expect (k–1)(n–k)/(n–1) ≈ k(n–k)/n exchanges.

Since all values of k, 1 ≤ k ≤ n, are equally likely, the expected number
of exchanges would be approximately

 Eave(n) ≈ (1/n) ∑
n
k=1 k(n–k)/n

 ≈ (1/n2) (∑n
k=1 kn – ∑

n
k=1 k

2)

 ≈ (1/n2) (n3/2 – n3/3)
 Eave(n) ≈ n/6

In other words, partition() performs only about 1 exchange for every 6
comparisons. An alternate version, designed specifically to work with
moves, performs about one move for each 3 comparisons.

partition() does an extremely good job of minimizing the movement of
elements. This is probably why quicksort tends to be faster than merge-
sort in the expected case, even though it performs move comparisons

Here is the tree of recursive calls to quicksort. Calls to sort
subarrays of size 0 or 1 are not shown. (They could be omitted.)

quicksort(A, 1, 12)
38 81 22 48 13 69 93 14 45 58 79 72
14 58 22 48 13 38 45 69 93 81 79 72

quicksort(A, 9, 12)
93 81 79 72
79 72 81 93

quicksort(A, 1, 7)
14 58 22 48 13 38 45
38 45 22 14 13 48 58

quicksort(A, 1, 5)
14 45 22 38 13
14 13 22 38 45

quicksort(A, 1, 2)
14 13
13 14

quicksort(A, 4, 5)
38 45
38 45

quicksort(A, 9, 10)
79 72
72 79

The Quicksort Algorithm
(each interval partitioned using its middle element)

partition(A, left, right) rarranges A[left ..right] and finds and returns an
integer q, such that

A[left], ..., A[q–1] <∼ pivot, A[q] = pivot, A[q+1], ..., A[right] > pivot,
where pivot is the middle element of a[left..right], before partitioning. (To
choose the pivot element differently, simply modify the assignment to m.)

Integer partition(T[] A, Integer left, Integer right)
 m = left + right / 2;
 swap(A[left], A[m]);
 pivot = A[left];
 lo = left+1; hi = right;
 while (lo ≤ hi)
 while (A[hi] > pivot)
 hi = hi – 1;
 while (lo ≤ hi and A[lo] <∼ pivot)
 lo = lo + 1;
 if (lo ≤ hi)
 swap(A[lo], A[hi]);
 lo = lo + 1; hi = hi – 1;
 swap(A[left], A[hi]);
 return hi

quicksort(A, left, right) sorts A[left ..right] by using partition() to partition
A[left ..right], and then calling itself recursively twice to sort the two subarrays.

void quicksort(T[] A, Integer left, Integer right)
if (left < right)

 q = partition(A, left, right);
 quicksort (A, left, q–1);
 quicksort (A, q+1, right);

