Examples of Iterative and Recursive Algorithms

Fast Exponentiation

Recursive	(1,	if n = 0,
Definition:	$a^n = \begin{cases} (a^{\lfloor n/2 \rfloor})^2 \end{cases}$	if $n > 0$ and n is even,
	$\left(\left(a^{\lfloor n/2 \rfloor}\right)^2 a\right)$	if <i>n</i> is odd.

- **Problem:** Given integers a, n, and m with $n \ge 0$ and $0 \le a < m$, compute $a^n \pmod{m}$.
- *Input:* Integers *a*, *n*, and *m*, with $0 \le n$ and $0 \le a < m$.
- **Output**: $a^n \pmod{m}$

Algorithm (recursive):

```
Integer fastExp( Integer a, Integer n, Integer m)

if (n == 0)

return 1;

if (n == 1)

return a;

x = fastExp(a, \lfloor n/2 \rfloor, m);

if (even(n))

return x^2 \pmod{m};

else

return x^{2}a \pmod{m};
```

Greatest Common Divisor (Euclid's Algorithm)

Recursive Definition:	For $a, b \ge 0$, $gcd(a, b) = \begin{cases} a & \text{if } b = 0, \\ gcd(b, a \mod b) & \text{otherwise.} \end{cases}$		
Problem:	Given nonnegative integers a and b , not both 0, compute $gcd(a,b)$.		
Input:	Nonnegative integers <i>a</i> and <i>b</i> , not both zero.		
Output:	The greatest common divisor of <i>a</i> and <i>b</i> .		
Algorithm (recursive)			

Integer <i>gcd</i> (Integer <i>a</i> , Integer <i>b</i>)	
$\mathbf{if}(b == 0)$	
return <i>a</i> ;	
else	
return $gcd(b, a \mod b);$	

- *Notes:* 1) If b > a, the first recursive call effectively exchanges a and b.
 - 2) In many applications, we need an extended version of Euclid's algorithm, one that also produces integers *u* and *v* such that ua+vb = gcd(a,b). The algorithm below outputs a triple (d, u, v) such that d = gcd(a,b) and ua+vb = d

```
TripleOfIntegers ext\_gcd( Integer a, Integer b)

if (b == 0)

return (a, 1, 0);

else

(d,u,v) = ext\_gcd(b, a \mod b);

return (d, v, u-v\lfloor a/b \rfloor);
```

Fibonacci Numbers

Recursive

definition: $F_0 = 0$, $F_1 = 1$, $F_i = F_{i-1} + F_{i-2}$ for $i \ge 2$.

Problem: Given a nonnegative integer n, compute F_n .

Input: A nonnegative integer *n*.

Output: The Fibonacci number F_n .

Algorithm (recursive):

Integer fibon(Integer n) **if** $(n \le 1)$ **return** n; **else return** fibon(n-1) + fibon(n-2);

Caution: A C/C++ function or Java method based on this description will be <u>hopelessly inefficient</u>, unless n is very small. If we attempt to compute F_{200} (a 41-digit number) using such a function, the program will not finish in the lifetime of the earth, even with a computer millions of times faster than present ones. By contrast, with the iterative algorithm below, we can compute F_{200} easily in a tiny fraction of a second.

Algorithm (alternate iterative description)

Integer fibon(Integer n) if $(n \le 1)$ return n; b = 0; c = 1;for (i = 2, 3, ..., n) // $c = F_{i-1}, b = F_{i-2}, a = F_{i-3}$ (except when i=2). a = b; b = c; c = b + a; // Now $c = F_i, b = F_{i-1}, a = F_{i-2}$. return c;

Rank Search

Problem:	Find the k^{th} smallest element of a set S
Input:	A non-empty set <i>S</i> (distinct elements), a total ordering $<$ on <i>S</i> , and an integer <i>k</i> with $1 \le k \le S $.
Output:	The k^{th} smallest element of <i>S</i> . (Numbering starts at 1; $k = 1$ gives smallest.)
Algorithm	(recursive)
Element rankSearch(Set S, Integer k) Choose an element p of S; // A good strategy: $p = random \ elt \ of S$. $S_1 = \emptyset; \ S_2 = \emptyset;$ for (each element x of $S - \{p\}$) if $(x < p)$ $S_1 = S_1 \cup \{x\};$ else if $(x > p)$ $S_2 = S_2 \cup \{x\};$ // Now $S = S_1 \cup \{p\} \cup S_2$, each elt of S_1 is $< p$, and each elt of S_2 is $>p$. if $(k \le S_1)$ return rankSearch(S_1, k); else if $(k \ge S_1 +2)$ return rankSearch($S_2, k-1- S_1 $); else return p;	
10	, , , , , , , , , , , , , , , , , , ,

Notes: 1) This algorithm may be used to find the median of S.

- 2) The for-loop partitions S into S_1 , $\{p\}$, and S_2 . Partitioning takes n-1 comparisons, where n = |S|. If the elements of S are stored in an array of size n, there is a particularly efficient algorithm that performs the partitioning in place. This same partitioning algorithm is used in quicksort.
- *3)* This is probably the most efficient algorithm known for finding the kth smallest in the <u>expected case</u>, but it is rather slow in the <u>worst case</u> (to be discussed in class.)

Height of a Binary Tree

Recursive

definition: For a binary tree *t*,

if *t* is empty,

 $height(t) = \begin{cases} 1 + \max(height(leftSubtree(t)), \\ height(rightSubtree(t))) & \text{otherwise.} \end{cases}$

Problem: Given a binary tree *t*, find its height.

−1

Input: A binary tree *t*.

Output: An integer, the height of t. (The empty tree has height -1; the tree whose left and right subtrees are empty has height 0.)

Algorithm (recursive)

Integer height(BinaryTree t) if (empty(t)) return -1; else return 1 + max(height(leftSubtree(t)), height(rightSubtree(t)));