Examples of Iterative and Recursive Algorithms

Fast Exponentiation

$\begin{aligned} & \text { Recursive } \\ & \text { Definition: }\end{aligned} \quad a^{n}= \begin{cases}1, & \text { if } n=0, \\ \left(a^{\lfloor n / 2\rfloor}\right)^{2} & \text { if } n>0 \text { and } n \text { is even, } \\ \left(a^{\lfloor n / 2\rfloor}\right)^{2} a & \text { if } n \text { is odd. }\end{cases}$
Problem: Given integers a, n, and m with $n \geq 0$ and $0 \leq a<m$, compute $a^{n}(\bmod m)$.

Input: \quad Integers a, n, and m, with $0 \leq n$ and $0 \leq a<m$.
Output: $\quad a^{n}(\bmod m)$
Algorithm (recursive):
Integer $\operatorname{fast} \operatorname{Exp}($ Integer a, Integer n, Integer m)
if $(n==0)$
return 1;
if $(n==1)$
return a;
$x=\operatorname{fastExp}(a,\lfloor n / 2\rfloor, m) ;$
if $($ even $(n))$
return $x^{2}(\bmod m)$;
else return $x^{2} a(\bmod m)$;

Greatest Common Divisor (Euclid's Algorithm)

Recursive

Definition: For $a, b \geq 0, \operatorname{gcd}(a, b)= \begin{cases}a & \text { if } b=0, \\ \operatorname{gcd}(b, a \bmod b) & \text { otherwise. }\end{cases}$
Problem: Given nonnegative integers a and b, not both 0 , compute $\operatorname{gcd}(a, b)$.
Input: \quad Nonnegative integers a and b, not both zero.
Output:
The greatest common divisor of a and b.

Algorithm (recursive)

```
Integer gcd( Integer }a,\mathrm{ Integer b)
    if (b== 0)
            return a;
        else
            return gcd( b, a mod b);
```

Notes: 1) If $b>a$, the first recursive call effectively exchanges a and b.
2) In many applications, we need an extended version of Euclid's algorithm, one that also produces integers u and v such that $u a+v b=\operatorname{gcd}(a, b)$. The algorithm below outputs a triple (d, u, v) such that $d=\operatorname{gcd}(a, b)$ and $u a+v b=d$

```
TripleOfIntegers ext \(\operatorname{gcd}(\) Integer \(a\), Integer \(b)\)
    if \((b==0)\)
    return \((a, 1,0)\);
    else
    \((d, u, v)=\operatorname{ext} g c d(b, a \bmod b) ;\)
    return \((d, v, u-v\lfloor a / b\rfloor)\);
```


Fibonacci Numbers

Recursive

definition: $F_{0}=0, F_{1}=1, F_{i}=F_{i-1}+F_{i-2}$ for $\mathrm{i} \geq 2$.
Problem: Given a nonnegative integer n, compute F_{n}.
Input: A nonnegative integer n.
Output: \quad The Fibonacci number F_{n}.

Algorithm (recursive):

Integer fibon (Integer n)
if $(n \leq 1)$
return n;
else return fibon $(n-1)+$ fibon $(n-2)$;

Caution: A C/C++ function or Java method based on this description will be hopelessly inefficient, unless n is very small. If we attempt to compute F_{200} (a 41-digit number) using such a function, the program will not finish in the lifetime of the earth, even with a computer millions of times faster than present ones. By contrast, with the iterative algorithm below, we can compute F_{200} easily in a tiny fraction of a second.

Algorithm (alternate iterative description)

```
Integer fibon( Integer \(n\) )
    if \((n \leq 1)\)
        return \(n\);
    \(b=0\);
    \(c=1\);
    for \((i=2,3, \ldots, n) \quad / / c=F_{i-1}, b=F_{i-2}, a=F_{i-3}\) (except when \(i=2\) ).
        \(a=b\);
        \(b=c\);
        \(c=b+a ; \quad / /\) Now \(c=F_{i}, b=F_{i-1}, a=F_{i-2}\).
    return \(c\);
```


Rank Search

Problem: Find the $k^{\text {th }}$ smallest element of a set S.
Input: A non-empty set S (distinct elements), a total ordering $<$ on S, and an integer k with $1 \leq k \leq|S|$.
Output: \quad The $k^{\text {th }}$ smallest element of S. (Numbering starts at $1 ; k=1$ gives smallest.)

Algorithm (recursive)

```
Element rankSearch ( Set \(S\), Integer \(k\) )
    Choose an element \(p\) of \(S ; \quad / /\) A good strategy: \(p=\) random elt of \(S\).
    \(S_{1}=\varnothing ; S_{2}=\varnothing\);
    for ( each element \(x\) of \(S-\{p\}\) )
        if \((x<p)\)
            \(\mathrm{S}_{1}=\mathrm{S}_{1} \cup\{x\} ;\)
        else if \((x>p)\)
            \(\mathrm{S}_{2}=\mathrm{S}_{2} \cup\{x\} ;\)
    // Now \(S=S_{1} \cup\{p\} \cup S_{2}\), each elt of \(S_{1}\) is \(<p\), and each elt of \(S_{2}\) is \(>p\).
    if \(\left(k \leq\left|S_{1}\right|\right)\)
        return rankSearch \(\left(S_{1}, k\right)\);
    else if \(\left(k \geq\left|S_{1}\right|+2\right)\)
        return rankSearch \(\left(S_{2}, k-1-\left|S_{1}\right|\right)\);
    else
        return \(p\);
```

Notes: 1) This algorithm may be used to find the median of S.
2) The for-loop partitions S into $S_{1},\{p\}$, and S_{2}. Partitioning takes $n-1$ comparisons, where $n=|S|$. If the elements of S are stored in an array of size n, there is a particularly efficient algorithm that performs the partitioning in place. This same partitioning algorithm is used in quicksort.
3) This is probably the most efficient algorithm known for finding the $k^{\text {th }}$ smallest in the expected case, but it is rather slow in the worst case (to be discussed in class.)

Height of a Binary Tree

Recursive

definition: For a binary tree t,

$$
\operatorname{height}(t)= \begin{cases}-1 & \text { if } t \text { is empty, } \\ 1+\max (\operatorname{height}(\text { leftSubtree }(t)), & \\ \operatorname{height}(\text { rightSubtree }(t))) & \text { otherwise. }\end{cases}
$$

Problem: Given a binary tree t, find its height.
Input: A binary tree t.
Output: An integer, the height of t. (The empty tree has height -1 ; the tree whose left and right subtrees are empty has height 0 .)

Algorithm (recursive)
Integer height (BinaryTree t)
if (empty (t))
return -1 ;
else return $1+\max ($ height $(\operatorname{leftSubtree}(t))$, height $(\operatorname{rightSubtree}(t)))$;

