Summation by Parts

An important technique of calculus is integration by parts:

$$
\int_{a}^{b} u(x) v^{\prime}(x) d x=u(b) v(b)-u(a) v(a)-\int_{a}^{b} u^{\prime}(x) v(x) d x
$$

This is useful, obviously, when $u^{\prime}(x) v(x)$ is easier to integrate than $u(x) v^{\prime}(x)$, e.g., if $u(x)=x$ and $v(x)=e^{x}$.

An analogous technique, called summation by parts, works for sums. One version of the summation by parts formula is:

$$
\sum_{i=a+1}^{b} u_{i}\left(v_{i}-v_{i-1}\right)=u_{b} v_{b}-u_{a} v_{a}-\sum_{i=a+1}^{b}\left(u_{i}-u_{i-1}\right) v_{i-1}
$$

Example: Find $\sum_{i=1}^{n} i 2^{i}$.
Set $a=0, b=n, u_{i}=i$, and $v_{i}=2^{i+1}$.
Then $u_{i}-u_{i-1}=1, v_{i}-v_{i-1}=2^{i+1}-2^{i}=2^{i}$, and

$$
\begin{aligned}
\sum_{i=1}^{n} i 2^{i} & =\sum_{i=a+1}^{b} u_{i}\left(v_{i}-v_{i-1}\right) \\
& =u_{b} v_{b}-u_{a} v_{a}-\sum_{i=a+1}^{b}\left(u_{i}-u_{i-1}\right) v_{i-1} \\
& =n 2^{n+1}-0 \cdot 2^{1}-\sum_{i=1}^{n} 1 \cdot 2^{i} \\
& =n 2^{n+1}-\left(2^{n+1}-2\right) \\
& =(\mathbf{n}-\mathbf{1}) \mathbf{2}^{n+1}+\mathbf{2}
\end{aligned}
$$

