CS I MCS 401 Week \#2 Exercises
 (Spring, 2008)

Exercise 3.1-4 (page 50).
Exercise 3.2-6 (page 57).
Exercise 3-2 (page 58).
You make use of the facts proven in class about the relative rates of growth of logarithms, polynomials, and exponentials, i.e., Theorems 1, 2, and 3 on the Rate of Growth: Exponentials, Polynomials, and Logarithms handout.

Exercise 3-3, part (a) (page 58).
You may omit the functions involving $\lg ^{*}(n)$. Again, you make use of the facts proven in class about the relative rates of growth of logarithms, polynomials, and exponentials.

C1. Let $f(n)$ and $g(n)$ be functions such that $\lim _{n \rightarrow \infty} f(n)=\lim _{n \rightarrow \infty} g(n)=\infty$. If you wish, you may assume $\lim _{n \rightarrow \infty} f(n) / g(n)$ exists.
a) Prove that $f(n)=\mathrm{O}(g(n))$ implies $\ln (f(n))=\mathrm{O}(\ln (g(n)))$.
b) Show by example that $\ln (f(n))=\mathrm{O}(\ln (g(n)))$ does not imply $f(n)=\mathrm{O}(g(n))$.

C2. Use Stirling's Formula to obtain a good estimate of the value of 51! (51 factorial). Then include the $1+1 /(12 n)$ term to obtain an even better estimate. Write your answers in scientific notation, with enough decimal places shown to distinguish the two estimates.

