CS / MCS 401 Week #2 Exercises (Spring, 2008)

Exercise 3.1–4 (page 50).

Exercise 3.2–6 (page 57).

Exercise 3–2 (<i>page 58</i>).	You make use of the facts proven in class about the relative rates of growth of logarithms, polynomials, and exponentials, i.e., Theorems 1, 2, and 3 on the <i>Rate of</i> <i>Growth: Exponentials, Polynomials, and Logarithms</i> handout.
Exercise 3–3, part (a) (<i>page 58</i>).	You may omit the functions involving $lg^*(n)$. Again, you make use of the facts proven in class about the relative rates of growth of logarithms, polynomials, and exponentials.

C1. Let f(n) and g(n) be functions such that $\lim_{n\to\infty} f(n) = \lim_{n\to\infty} g(n) = \infty$. If you wish, you may assume $\lim_{n\to\infty} f(n)/g(n)$ exists.

a) Prove that f(n) = O(g(n)) implies $\ln(f(n)) = O(\ln(g(n)))$.

b) Show by example that $\ln(f(n)) = O(\ln(g(n)))$ does **not** imply f(n) = O(g(n)).

C2. Use Stirling's Formula to obtain a good estimate of the value of 51! (51 factorial). Then include the 1 + 1/(12n) term to obtain an even better estimate. Write your answers in scientific notation, with enough decimal places shown to distinguish the two estimates.