
Applications of Depth-First Search: 
Topological Sort 

Label the vertices of an acyclic digraph G by 1, 2, ..., n, so that  

   vw is an edge of G  ⇒  label[v] < label[w] . 

Perform a depth-first search of the digraph, with these additions: 

Initialization:        k =  n; 

Postorder processing     label[v] =  k; 
of vertex v :       ––k; 

Back edge processing     detect error (graph is not acyclic); 
of edge vw : 
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Another example of Topological Sort 
(same digraph, different order to choosing verticies) 

Vertices selected in reverse alphabetical order, when an arbitrary 
choice must be made.  Thick border indicates a starting vertex in 
depth-first search. 
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Applications of Depth-First Search: 
Critical Path 

 

We have a directed acyclic graph, in which each vertex v repre-
sents a task taking a known amount of time (duration[v]).  An edge 
from v to w indicates that task v depends on task w; that is, v 
cannot start until w has finished.  (Otherwise, tasks may be 
performed in parallel.)   

Find the earliest possible finish time. 

Find a critical path (a sequence of tasks, each dependent on the 
next, that prevents an earlier finish). 
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Adjoin a vertex labeled “done”, with duration 0, and an edge from 
done to each source in the graph.  Then perform a depth-first 
search, with these additions: 

Initialization:         for (each vertex v of graph ) 
        eft[v] = 0; 
        critDep[v] = null; 

Tree edge postorder    if ( eft[w] > eft[v] ) 
processing and cross edge     eft[v] = eft[w]; 
processing of edge vw:1   critDep[v] = w; 

Postorder processing      eft[v] = eft[v] + duration[v]; 
of vertex v: 

Back edge processing      detect error (graph is not  
edge vw:      acyclic); 

Upon termination, eft[v] is the earliest finish time of task v.  In 
particular, eft[done] is the earliest finish time for the entire set of 
tasks. 

The critical path is c0,c1,...,ck, where 
 c0 = done, 
 ci = critDep[ci–1], 
 critDep[ck] = null. 
 
 

                                                 
1 No harm in performing these operations for descendent edges as well. 



Applications of Depth-First Search: 
Strongly Connected Components — Phase 1 

 

Perform a depth-first search of the digraph, numbering the vertices 
as in topological ordering, except that back edges are not treated as 
an error.  
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Strongly Connected Components — Phase 2 

Form the transpose graph (edge directions reversed), retaining the 
vertex numbering of phase 1. 

Perform a depth-first search of the transpose graph.  In the outer 
loop (for loop), process the vertices in the order of their numbers 
(assigned in phase 1). 

Each white vertex chosen in the outer loop is the leader of a 
strongly connected component, and the depth-first search from that 
leader processes the vertices of the component.  
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