
Heapsort
 Phase 1: Transform arbitrary array to heap

Apply max-heapify ()
to subtree rooted
 at 21

Apply max-heapify()
to subtrees rooted at
37 and 54

Apply max-heapify()
to subtrees rooted at
88 and 18

18

73

21

3754
88 18 12 57

73 65 14

88

54

65 37

57
21

37
88 73 12 57

18 65 14

54

88

73

21

21

5788
65 73 12 37

18 54 14

 We now have a heap 88

57 73
65 21 12 37

18 54 14

Heapsort
 Phase 2: Transform heap to sorted array

88

54
88

5773
65 21 12 37

18 54 14

Exchange root with
last element

54

73

65
54

5773

65 21 12 37

18 88 14

max-heapify()

73

14
73

5765

54 21 12 37

18 88 14

Exchange root with
last element

18

65

Exchange root with
last element

57

65

54

14 21 12 37

18 88 73

65

54

14
57

14

65

54 21 12 37

18 88 73

max-heapify()

57

37

18

max-heapify() 18

54

14 21 12 37

65 88 73

57

Five more exchanges, followed by calls to fixHeap(), complete
the transformation from a heap to a sorted array.

18

57

Exchange root with
last element 57

54

14 21 12 18

65 88 73

37

max-heapify()

18

54

21
18

54

14 21 12 57

65 88 73

37

The Heapsort Algorithm

void max-heapify(T[] A, Integer n, Integer i)
 p = i;
 while (2p ≤ n)
 if (2p+1 ≤ n and A[2p+1] > A[2p])
 m = 2p+1;
 else
 m = 2p;
 if (A[p] < A[m])
 swap(A[p], A[m]);
 p = m;
 else
 return;

void build-max-heap(T[] A)
 n = A.length;

for (i = n/2, n/2–1, ..., 1)
 max-heapify(A, n, i)

void sort-max-heap(T[] A)
 n = A.length;

for (i = n, n–1, ..., 2)
 swap(A[1], A[i]);
 max-heapify(A, i–1, 1);

void heapsort(T[] A)
 build-max-heap(A);
 sort-max-heap(A);

Recall that our array A implicitly represents a nearly complete binary tree. The max-heap property holds
at A[p] provided A[p] ≥ A[2p] and A[p] ≥ A[2p+1] whenever 2p and 2p+1 are within bounds.

Initially: A is an array of size at
least n, and 1 ≤ i ≤ n. The max-
heap property holds everywhere
in the subtree of A[1..n] rooted at
A[i], except possibly at A[i]
itself.
Upon return: The subtree of
A[1..n] rooted at A[i] is a max-
heap. The rest of A is unchanged.
Comparisons: at most 2h, where
h is the height of the subtree.
This height is
 1 if n/22+1 ≤ i ≤ n/2,
 2 if n/23+1 ≤ i ≤ n/22,
 etc.

Initially: A is an arbitrary array.
Upon return: A is a max-heap.
Note: Pass i through the loop
makes the subtree of A rooted at
A[i] into a max-heap.
Comparisons: at most 2n.

Initially: A is a max-heap.
Upon return: A is a sorted array.
Note: Pass i through the loop
moves the ith smallest element to
position i, and then rebuilds
A[1..i–1] into a max-heap.
Comparisons: at most 2n lg(n)

Initially: A is an arbitrary array.
Upon return: A is sorted.
Comparisons: at most 2n lg(n) +

 O(n)

