
Heapsort 
 Phase 1:  Transform arbitrary array to heap 
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Heapsort 
 Phase 2:  Transform heap to sorted array 
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Five more exchanges, followed by calls to fixHeap(), complete 
the transformation from a heap to a sorted array. 
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The Heapsort Algorithm 
 

void max-heapify( T[] A, Integer n, Integer i ) 
 p = i; 
 while ( 2p ≤ n ) 
  if ( 2p+1 ≤ n  and  A[2p+1] > A[2p] ) 
   m = 2p+1; 
  else 
   m = 2p; 
  if ( A[p] < A[m] ) 
   swap( A[p], A[m]); 
   p = m; 
  else 
   return; 
 
 
void build-max-heap( T[] A) 
 n = A.length; 

for ( i = n/2, n/2–1, ..., 1 ) 
  max-heapify( A, n, i) 
     
 
void sort-max-heap( T[] A) 
 n = A.length; 

for ( i = n, n–1, ..., 2 ) 
  swap( A[1], A[i]); 
  max-heapify( A, i–1, 1); 
   
 
void heapsort( T[] A) 
 build-max-heap( A); 
 sort-max-heap( A); 
 
Recall that our array A implicitly represents a nearly complete binary tree.  The max-heap property holds 
at A[p] provided A[p] ≥ A[2p] and A[p] ≥ A[2p+1] whenever 2p and 2p+1 are within bounds. 

Initially:  A is an array of size at 
least n, and 1 ≤ i ≤ n.  The max-
heap property holds everywhere 
in the subtree of A[1..n] rooted at 
A[i], except possibly at A[i] 
itself. 
Upon return:  The subtree of 
A[1..n] rooted at A[i] is a max-
heap. The rest of A  is unchanged. 
Comparisons: at most 2h, where 
h is the height of the subtree.  
This height is 
     1  if   n/22+1 ≤ i  ≤  n/2, 
     2  if   n/23+1 ≤ i  ≤  n/22,  
     etc. 

 

Initially:  A is an arbitrary array. 
Upon return: A is a max-heap. 
Note: Pass i through the loop 
makes the subtree of A rooted at 
A[i] into a max-heap.  
Comparisons:  at most 2n.

Initially:  A is a max-heap. 
Upon return: A is a sorted array. 
Note: Pass i through the loop 
moves the ith smallest element to 
position i, and then rebuilds  
A[1..i–1] into a max-heap. 
Comparisons: at most 2n lg(n) 

Initially:  A is an arbitrary array. 
Upon return: A is sorted. 
Comparisons: at most 2n lg(n) + 

    O(n)


