Prim's Minimal Spanning Tree Algorithm

vert	edge	wt
Α		

Starting from 21 vertex L C D 10 В 18⁄ 20 3 19 19 ĸ E A J 9 14 5 13 22 17 29 Ĺ M 4 12 F 8 11 I 6 16 G H 7

vert	edge	wt
L		

Prim's Algorithm (Minimal Spanning Tree)

- *Input:* A (undirected) weighted graph G = (V, E, W), that is connected. We let n = |V| and e = |E|.
- **Output**: A subset E' of E such that T = (V, E', W) is a minimal spanning tree for G.
- *Algorithm:* Start with a single vertex. Repeatedly choose the cheapest edge leading from a vertex already chosen to one not yet chosen. Choose the new vertex to which this edge leads.

Here is a crude implementation using $\Theta(n^3)$ *time.*

1. SetOfEdges prim(WeightedGraph G)2. Choose any vertex v;3. $V' = \{v\}; E' = \phi;$ 4. while ($V' \subset V$)5. Among all pairs (x,y) with $x \in V-V'$ and $y \in V'$,
choose (x,y) to minimize W(xy);6. $V' = V' \cup \{x\}; E' = E' \cup \{xy\};$ 7. return E';

On the k^{th} pass through the loop, |V'| = k in line 5, so we are minimizing over k(n-k) pairs. This requires time about ck(n-k), c constant. Summing over k = 1, 2, ..., n, we obtain $\Theta(n^3)$ total time for line 5, and for the algorithm.

Here is a faster implementation using $\Theta(n^2)$ *time.*

An array *near*[] is used to avoid performing the same computations repeatedly in line 5 of the crude version. For each vertex w of V-V', *near*[w] will hold the vertex in V' closest to w.

1. SetOfEdges <i>prim</i> (WeightedGraph G)
2. Choose any vertex v ;
3. $V' = \{v\}; E' = \phi;$
4. for (each vertex w in $V - \{v\}$)
5. $dist[w] = \infty;$
6. for (each vertex x adjacent to v)
7. $near[x] = v; dist[x] = W(vx);$
8. while $(V' \subset V)$
9. Choose a vertex x in $V-V'$ to minimize $dist[x]$;
10. $V' = V' \cup \{x\}; E' = E' \cup \{near[x]x\};$
11. for (each vertex <i>y</i> of $V-V'$ adjacent to <i>x</i>)
12. if ($W(xy) < W(near[y]y)$)
13. $near[y] = x; dist[y] = W(xy);$
14. return <i>E</i> ';

Lines 4-5 require $\Theta(n)$ time. Lines 6-7 combined with all passes over lines 11-13 traverse each adjacency list once, performing a constant amount of work for each entry, so the total time for these lines is $\Theta(e)$ with an adjacency list ($\Theta(n^2)$ with an adjacency matrix). Line 9 uses $\Theta(n)$ time on each pass, or a total of $\Theta(n^2)$. The total running time is $\Theta(n^2)$.

Dijkstra's Single Source Shortest Path Algorithm

The problem: Given a weighted graph or digraph G = (V, E, W), and a fixed vertex v, find the distances and shortest paths from v to every other vertex. (We assume all weights are positive; *short*(v,w) denotes shortest path from v to w.)

Idea:

If v, x, y, z, w is the shortest path from v to w, then

- i) v, x, y, z is the shortest path from v to z,
- ii) dist(v,z) < dist(v,w),
- iii) dist(v,w) = dist(v,z) + W(zw).

short(v,w) = short(v,z), w dist(v,w) = dist(v,z) + W(zw)for some vertex z, adjacent to w,
with dist(v,z) < dist(v,w).

Which vertex z? Among all possible *z*, that which minimizes dist(v,z) + W(zw).

If we already know the *k* closest vertices to *v*, and their distances from *v*, the $k+1^{st}$ closest vertex may be found like this:

 $T = \{ k \text{ closest vertices to } v, \text{ including } v \text{ itself } (tree \text{ vertices}) \},\$

 $F = \{ \text{ vertices of } V - T \text{ adjacent to vertex in } T (fringe \text{ vertices}) \}.$

Choose $z \in T$ and $w \in F$ to so

 $dist(v,z) + W(zw) = min\{ dist(v,t) + W(tf) : t \in T, f \in F \}.$

Then

w is the $k+1^{st}$ closest vertex to v, dist(v,w) = dist(v,z) + W(zw),short(v,w) = short(v,z),w

A straightforward implementation would take $\Theta(n^2)$ time to find a single pair (z,w) above, and hence $\Theta(n^3)$ time to find the distance from *v* to all other vertices.

But a technique very similar to that used to speed up Prim's algorithm works here — and reduces the total time to $\Theta(n^2)$.

Distances from

<i>t</i> = tree vertex	f = fringe vertex	dist(v,t) + $W(tf)$
В	С	27
J	С	26
J	D	41
J	Ι	31
H	G	25
Н	Ι	29

Minimum occurs for (H,G). Fifth closest vertex is *G*, and dist(A,G) = 25.

Note: $dist(A,D) \neq 41$, $dist(A,I) \neq 29$.