Prim's Minimal Spanning Tree Algorithm

Starting from

Starting from

vert	edge	wt
A	---	---

vert	edge	wt
L	---	---

Prim's Algorithm (Minimal Spanning Tree)

Input: $\quad \mathrm{A}$ (undirected) weighted graph $G=(V, E, W)$, that is connected. We let $n=|V|$ and $e=|E|$.

Output: A subset E^{\prime} of E such that $T=\left(V, E^{\prime}, W\right)$ is a minimal spanning tree for G.

Algorithm: Start with a single vertex. Repeatedly choose the cheapest edge leading from a vertex already chosen to one not yet chosen. Choose the new vertex to which this edge leads.

Here is a crude implementation using $\Theta\left(n^{3}\right)$ time.

```
SetOfEdges prim ( WeightedGraph \(G\) )
    Choose any vertex \(v\);
    \(V^{\prime}=\{v\} ; E^{\prime}=\phi ;\)
    while ( \(V^{\prime} \subset V\) )
        Among all pairs \((x, y)\) with \(x \in V-V^{\prime}\) and \(y \in V^{\prime}\),
            choose \((x, y)\) to minimize \(W(x y)\);
        \(V^{\prime}=V^{\prime} \cup\{x\} ; E^{\prime}=E^{\prime} \cup\{x y\} ;\)
    return \(E^{\prime}\);
```

On the $k^{\text {th }}$ pass through the loop, $\left|V^{\prime}\right|=k$ in line 5 , so we are minimizing over $k(n-k)$ pairs. This requires time about $c k(n-k), c$ constant. Summing over $k=1,2, \ldots, n$, we obtain $\Theta\left(n^{3}\right)$ total time for line 5 , and for the algorithm.

Here is a faster implementation using $\Theta\left(n^{2}\right)$ time.
An array near[] is used to avoid performing the same computations repeatedly in line 5 of the crude version. For each vertex w of $V-V^{\prime}$, near $[w]$ will hold the vertex in V^{\prime} closest to w.

```
SetOfEdges prim ( WeightedGraph \(G\) )
    Choose any vertex \(v\);
    \(V^{\prime}=\{v\} ; E^{\prime}=\phi\);
    for ( each vertex \(w\) in \(V-\{v\}\) )
        \(\operatorname{dist}[w]=\infty\);
    for ( each vertex \(x\) adjacent to \(v\) )
        near \([x]=v ; \operatorname{dist}[x]=W(v x)\);
    while ( \(V^{\prime} \subset V\) )
        Choose a vertex \(x\) in \(V-V^{\prime}\) to minimize \(\operatorname{dist}[x]\);
        \(V^{\prime}=V^{\prime} \cup\{x\} ; E^{\prime}=E^{\prime} \cup\{\) near \([x] x\}\);
        for ( each vertex \(y\) of \(V-V^{\prime}\) adjacent to \(x\) )
            if \((W(x y)<W(\operatorname{near}[y] y))\)
                \(n e a r[y]=x ; \operatorname{dist}[y]=W(x y) ;\)
    return \(E^{\prime}\);
```

Lines 4-5 require $\Theta(n)$ time. Lines 6-7 combined with all passes over lines 11-13 traverse each adjacency list once, performing a constant amount of work for each entry, so the total time for these lines is $\Theta(e)$ with an adjacency list $\left(\Theta\left(n^{2}\right)\right.$ with an adjacency matrix $)$. Line 9 uses $\Theta(n)$ time on each pass, or a total of $\Theta\left(n^{2}\right)$. The total running time is $\Theta\left(n^{2}\right)$.

Dijkstra's Single Source Shortest Path Algorithm

The problem: Given a weighted graph or digraph $G=(V, E, W)$, and a fixed vertex v, find the distances and shortest paths from v to every other vertex. (We assume all weights are positive; $\operatorname{short}(v, w)$ denotes shortest path from v to w.)

Idea:

If v, x, y, z, w is the shortest path from v to w, then
i) v, x, y, z is the shortest path from v to z,
ii) $\operatorname{dist}(v, z)<\operatorname{dist}(v, w)$,
iii) $\operatorname{dist}(v, w)=\operatorname{dist}(v, z)+W(z w)$.
\(\left.\begin{array}{l}\operatorname{short}(v, w)=\operatorname{short}(v, z), w

\operatorname{dist}(v, w)=\operatorname{dist}(v, z)+W(z w)\end{array}\right\}\)| for some vertex $z, \operatorname{adjacent}$ to w, |
| :--- |
| with $\operatorname{dist}(v, z)<\operatorname{dist}(v, w)$. |

Which vertex $z ? \quad$| Among all possible z, that which |
| :--- |
| minimizes $\operatorname{dist}(v, z)+W(z w)$. |

If we already know the k closest vertices to v, and their distances from v, the $k+1^{\text {st }}$ closest vertex may be found like this:
$T=\{k$ closest vertices to v, including v itself (tree vertices) $\}$,
$F=\{$ vertices of $V-T$ adjacent to vertex in T (fringe vertices) $\}$.
Choose $z \in T$ and $w \in F$ to so

$$
\operatorname{dist}(v, z)+W(z w)=\min \{\operatorname{dist}(v, t)+W(t f): t \in T, f \in F\}
$$

Then
w is the $k+1^{\text {st }}$ closest vertex to v,
$\operatorname{dist}(v, w)=\operatorname{dist}(v, z)+W(z w)$,
$\operatorname{short}(v, w)=\operatorname{short}(v, z), w$
A straightforward implementation would take $\Theta\left(n^{2}\right)$ time to find a single pair (z, w) above, and hence $\Theta\left(n^{3}\right)$ time to find the distance from v to all other vertices.

But a technique very similar to that used to speed up Prim's algorithm works here - and reduces the total time to $\Theta\left(n^{2}\right)$.

$t=$ tree vertex	$f=$ fringe vertex	dist (v, t) $+W(t f)$
B	C	27
J	C	26
J	D	41
J	I	31
\boldsymbol{H}	\boldsymbol{G}	$\mathbf{2 5}$
H	I	29

Minimum occurs for (H, G). Fifth closest vertex is G, and $\operatorname{dist}(A, G)=25$.

Note: $\quad \operatorname{dist}(\mathrm{A}, \mathrm{D}) \neq 41$, $\operatorname{dist}(\mathrm{A}, \mathrm{I}) \neq 29$.

