
Prim’s Minimal Spanning Tree Algorithm

vert edge wt

A --- ---

vert edge wt

L --- ---

10

11

7

8

22

19

18

20

14

29

6

4

17

19

2

1

5

12

16

13

21

9

3

A

C

B
D

F

E
K

L

I

H

J

G

M

10

11

7

8

22

19

18

20

14

29

6

4

17

19

2

1

5

12

16

13

21

9

3

A

C

B
D

F

E
K

L

I

H

J

G

M

Starting from
vertex A

Starting from
vertex L

Prim’s Algorithm (Minimal Spanning Tree)

Input: A (undirected) weighted graph G = (V, E, W), that is
connected. We let n = |V| and e = |E|.

Output: A subset E' of E such that T = (V, E', W) is a minimal
spanning tree for G.

Algorithm: Start with a single vertex. Repeatedly choose the
cheapest edge leading from a vertex already
chosen to one not yet chosen. Choose the new
vertex to which this edge leads.

Here is a crude implementation using Θ(n3) time.

1. SetOfEdges prim(WeightedGraph G)
2. Choose any vertex v;
3. V' = {v}; E' = φ;
4. while (V' ⊂ V)
5. Among all pairs (x,y) with x ∈ V–V' and y ∈ V',
 choose (x,y) to minimize W(xy);
6. V' = V' ∪ {x}; E' = E' ∪ {xy};
7. return E';

On the kth pass through the loop, |V'| = k in line 5, so we are mini-
mizing over k(n–k) pairs. This requires time about ck(n–k), c
constant. Summing over k = 1,2, ...,n, we obtain Θ(n3) total time
for line 5, and for the algorithm.

Here is a faster implementation using Θ(n2) time.

An array near[] is used to avoid performing the same computa-
tions repeatedly in line 5 of the crude version. For each vertex
w of V–V', near[w] will hold the vertex in V' closest to w.

1. SetOfEdges prim(WeightedGraph G)
2. Choose any vertex v;
3. V' = {v}; E' = φ;
4. for (each vertex w in V–{v})
5. dist[w] = ∞;
6. for (each vertex x adjacent to v)
7. near[x] = v; dist[x] = W(vx);
8. while (V' ⊂ V)
9. Choose a vertex x in V–V' to minimize dist[x];
10. V' = V' ∪ {x}; E' = E' ∪ {near[x] x };
11. for (each vertex y of V–V' adjacent to x)
12. if (W(xy) < W(near[y] y))
13. near[y] = x; dist[y] = W(xy);
14. return E';

Lines 4-5 require Θ(n) time. Lines 6-7 combined with all passes
over lines 11-13 traverse each adjacency list once, performing a
constant amount of work for each entry, so the total time for these
lines is Θ(e) with an adjacency list (Θ(n2) with an adjacency matrix).
Line 9 uses Θ(n) time on each pass, or a total of Θ(n2). The total
running time is Θ(n2).

Dijkstra’s Single Source Shortest Path Algorithm

The problem: Given a weighted graph or digraph G = (V,E,W),
and a fixed vertex v, find the distances and shortest paths from v
to every other vertex. (We assume all weights are positive;
short(v,w) denotes shortest path from v to w.)

Idea:

If v,x,y,z,w is the shortest path from v to w, then
i) v,x,y,z is the shortest path from v to z,
ii) dist(v,z) < dist(v,w),
iii) dist(v,w) = dist(v,z) + W(zw).

short(v,w) = short(v,z), w

dist(v,w) = dist(v,z) + W(zw)

Which vertex z? Among all possible z, that which
minimizes dist(v,z) + W(zw).

If we already know the k closest vertices to v, and their distances
from v, the k+1st closest vertex may be found like this:

T = { k closest vertices to v, including v itself (tree vertices)},
F = { vertices of V–T adjacent to vertex in T (fringe vertices)}.

Choose z ∈ T and w ∈ F to so

dist(v,z) + W(zw) = min{ dist(v,t) + W(tf) : t ∈ T, f ∈ F}.

v
x

y

z
w

fo r so m e v e rte x z , a d ja c e n t to w ,
w ith d is t(v , z) < d is t(v ,w) .

Then
w is the k+1st closest vertex to v,
dist(v,w) = dist(v,z) + W(zw),
short(v,w) = short(v,z),w

A straightforward implementation would take Θ(n2) time to
find a single pair (z,w) above, and hence Θ(n3) time to find the
distance from v to all other vertices.

But a technique very similar to that used to speed up Prim’s
algorithm works here — and reduces the total time to Θ(n2).

t = tree
vertex

f = fringe
vertex

dist(v,t)
+ W(tf)

B C 27

J C 26

J D 41

J I 31

H G 25

H I 29

Distances from
vertex A

1

21

22

17

0
10

2

1

8

14

29

17

21

6

5

12

8

9

19

4

A

C

B

D

E

H

G

J

F

I

Minimum occurs for (H,G).
Fifth closest vertex is G, and
dist(A,G) = 25.

Note: dist(A,D) ≠ 41,
 dist(A,I) ≠ 29.

tree
vertex

fringe
vertex

