Rate of Growth of Functions

(The special case in which $\lim_{n\to\infty} f(n) / g(n)$ exists)

Let g(n) be a fixed function.

Rate of Growth of Functions

(The general case: $\lim_{n\to\infty} f(n) / g(n)$ need not exist)

Let g(n) be a fixed function.

	$\omega(g(n))$	$\Omega(g(n))$
	Functions $f(n)$ such that $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$	Functions $f(n)$ such that for all n sufficiently large, $\frac{f(n)}{g(n)} \ge c_1$,
O(g(n))	$\Theta(g(n))$	for some constant c_1 with $c_1 > 0$.
Functions $f(n)$ such that for all n sufficiently large, $\frac{f(n)}{g(n)} \le c_2$, for some constant c_2 . $O(g(n)) \supseteq$	Functions $f(n)$ such that for all n sufficiently large, $c_1 \le \frac{f(n)}{g(n)} \le c_2$, for some constants c_1 and c_2 with $0 < c_1 < c_2 < \infty$.	$\Omega(g(n)) \supseteq$ $\omega(g(n)) \cup \Theta(g(n)).$ Note $g(n)/(1+\cos(n))$ is in $\Omega(g(n))$ (Let $c_1 = 0.5$), but not in $\omega(g(n)) \cup \Theta(g(n)).$
Note $g(n) \cup \Theta(g(n))$. Note $g(n)(1+\cos(n))$ is in $O(g(n))$ (Let $c_2 = 2$), but not in $o(g(n)) \cup \Theta(g(n))$.	o(g(n)) Functions $f(n)$ such that $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0.$	

Note that, in the general case, some function f(n) are in none of the categories above.

For example, if

٦

$$f(n) = g(n) \tan^2(n),$$

then f(n)/g(n) takes on both values arbitrarily close to 0, and values arbitrarily large, as *n* increases. This implies $\lim_{n\to\infty} f(n)/g(n)$ doesn't exist, and neither of the constants c_1 or c_2 exist.

Example: Here are various ways to write the approximation to lg(n!) given by Stirling's formula. Each line gives a more careful approximation than the line above it.

$$lg(n!) = \Theta(n lg(n))$$

$$lg(n!) = n lg(n) + o(n lg(n))$$

$$lg(n!) = n lg(n) + \Theta(n)$$

$$lg(n!) = n lg(n) - lg(e)n + o(n)$$

$$lg(n!) = n lg(n) - lg(e)n + \Theta(lg(n))$$

$$lg(n!) = n lg(n) - lg(e)n + 0.5 lg(n) + o(lg(n))$$

$$lg(n!) = n lg(n) - lg(e)n + 0.5 lg(n) + \Theta(1)$$

$$lg(n!) = n lg(n) - lg(e)n + 0.5 lg(n) + 0.5 lg(2\pi) + \Theta(1/n)$$

Rate of Growth of Functions: An Example

Let
$$g(n) = n^2 \lg(n)$$
.

f(n)	0 (g(n))	$\Omega(g(n))$		$f(u) \mid \alpha(u)$
		$\Theta(g(n))$	$\omega(\alpha(n))$	$\frac{J(n)}{g(n)}$
	O(g(n))		$\omega(g(n))$	as $n \to \infty$
$8n^2 \lg(\lg(n))$	\checkmark			$\rightarrow 0$
$3n^2 \lg(n) + 12n^2 - 56n$		\checkmark		$\rightarrow 3$
$n^2 \lg(n^5)$		\checkmark		= 5
$n^2\ln(7n)$		\checkmark		$\rightarrow \ln(2)$
$n^3 + 3n^2$			\checkmark	$\rightarrow \infty$
$(6n^5+n^4)\lg(n)/(n^3-7n^2)$		\checkmark		$\rightarrow 6$
$n^2 \lg(n)^3$			\checkmark	$\rightarrow \infty$
$n^{2.1}/\lg(n)^3$			\checkmark	$\rightarrow \infty$
$5n^2 \lg(n) / \lg(\lg(n))$	\checkmark			$\rightarrow 0$
$4^{\lg(n)}2^{\lg(\lg(n))}$		\checkmark		= 1
$n^{1.9} \lg(n)^5$	\checkmark			$\rightarrow 0$
$\lg(n)^{\lg(n)}$			\checkmark	$\rightarrow \infty$
lg(<i>n</i> !)	\checkmark			$\rightarrow 0$
$\lg((n!)^n)$		\checkmark		$\rightarrow 1$
$n^2 \lg(n)(2+\sin(n))$		\checkmark		oscillates in (1,3)
$n^2 \lg(n)(1+\sin(n))$	in $O(g(n))$ only			oscillates in (0,2)
$n^2 \lg(n) \tan^2(n)$	in none of above			oscillates in $(0,\infty)$