
Rate of Growth of Functions 
(The special case in which limn→∞  f (n) / g(n) exists) 

Let g(n) be a fixed function. 
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Functions f (n) that dominate g(n), 
for large n. 

Θ(g(n)) 
Functions f (n) such that 
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 = c,   

where 0 < c < ∞. 

Functions f (n) that are roughly 
proportional to g(n), for large n. 
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O(g(n)) 

o(g(n)) 
Functions f (n) such that  
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 = 0. 

Functions f (n) that are insignifi-
cant compared to g(n), for large n. 

 



Rate of Growth of Functions 
(The general case:  limn→∞  f (n) / g(n) need not exist) 

Let g(n) be a fixed function. 
 

 

ω(g(n)) 

Functions f (n) such 
that  

lim n→∞
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Θ(g(n)) 
Functions f (n) such 

that for all n 
sufficiently large, 

 c1 ≤ 
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 ≤ c2,   

for some constants 
 c1 and c2 with   
0 < c1 < c2 < ∞. 

Ω(g(n)) 

Functions f (n) such 
that  for all n 

sufficiently large, 
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 ≥ c1,   

for some constant c1 
with c1 > 0. 

Ω(g(n)) ⊇  
ω(g(n)) ∪ Θ(g(n)). 

Note 
g(n) /(1+cos(n))  

is in Ω(g(n))  (Let 
 c1 = 0.5), but not in 
ω(g(n)) ∪ Θ(g(n)). 

O(g(n)) 

Functions f (n) such 
that for all n 

sufficiently large, 
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 ≤ c2,   

for some constant c2. 

O(g(n)) ⊇   
o(g(n)) ∪ Θ(g(n)). 

Note g(n)(1+cos(n)) 
is in O(g(n))  (Let 
 c2 = 2), but not in  
o(g(n)) ∪ Θ(g(n)).    

o(g(n)) 
Functions f (n) such 

that  
lim n→∞
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 = 0. 

 



Note that, in the general case, some function f (n) are in none of the 
categories above.   

For example, if  
f (n) = g(n) tan2(n), 

then f (n) /g(n)  takes on both values arbitrarily close to 0, and 
values arbitrarily large, as n increases.   This implies 
lim n→∞  f (n) /g(n) doesn’t exist, and neither of the constants c1 or c2 
exist. 

Example: Here are various ways to write the approximation to 
lg(n!) given by Stirling’s formula.  Each line gives a more careful 
approximation than the line above it. 

 lg(n!) = Θ(n lg(n)) 
 lg(n!) = n lg(n) + o(n lg(n)) 
 lg(n!) = n lg(n) + Θ(n) 
 lg(n!) = n lg(n) − lg(e)n + o(n) 
 lg(n!) = n lg(n) − lg(e)n + Θ(lg(n)) 
 lg(n!) = n lg(n) − lg(e)n + 0.5 lg(n) + o(lg(n)) 
 lg(n!) = n lg(n) − lg(e)n + 0.5 lg(n) + Θ(1) 
`  lg(n!) = n lg(n) − lg(e)n + 0.5 lg(n) + 0.5 lg(2π) + Θ(1/n) 



Rate of Growth of Functions:  An Example 

Let g(n) = n2 lg(n). 
 

Ω(g(n)) o(g(n))
Θ(g(n))f(n)  

O(g(n)) 
ω(g(n)) 

f(n)/g(n)  
as n → ∞ 

8n2 lg(lg(n))    → 0 
3n2lg(n) + 12n2 − 56n    → 3 

n2lg(n5)    = 5 
n2ln(7n)    → ln(2) 
n3 + 3n2    → ∞ 

(6n5+n4) lg(n) / (n3−7n2)    → 6 
n2lg(n)3    → ∞ 

n2.1/ lg(n)3    → ∞ 
5n2 lg(n) / lg(lg(n))    → 0 

4lg(n)2lg(lg(n))    = 1 
n1.9 lg(n)5    → 0 
lg(n) lg(n)     → ∞ 

lg(n!)    → 0 
lg((n!)n)    → 1 

n2lg(n)(2+sin(n))    oscillates in (1,3)

n2lg(n)(1+sin(n)) in O(g(n)) only oscillates in (0,2)

n2lg(n) tan2(n) in none of above oscillates in (0,∞)


