Rate of Growth of Functions

(The special case in which $\lim _{n \rightarrow \infty} f(n) / g(n)$ exists)
Let $g(n)$ be a fixed function.

$$
\omega(\boldsymbol{g}(n))
$$

Functions $f(n)$ such that

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty
$$

Functions $f(n)$ that dominate $g(n)$, for large n.

$\Theta(\boldsymbol{g}(\boldsymbol{n}))$

Functions $f(n)$ such that

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=c
$$

where $0<c<\infty$.
Functions $f(n)$ that are roughly proportional to $g(n)$, for large n.

$0(g(n))$

Functions $f(n)$ such that

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0
$$

Functions $f(n)$ that are insignificant compared to $g(n)$, for large n.

Rate of Growth of Functions

(The general case: $\lim _{n \rightarrow \infty} f(n) / g(n)$ need not exist)
Let $g(n)$ be a fixed function.

	$\omega(g(n))$ Functions $f(n)$ such that $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty$	$\Omega(g(n))$ Functions $f(n)$ such that for all n sufficiently large, $\underline{f(n)} \geq c_{1}$
$\mathbf{O}(\boldsymbol{g}(\boldsymbol{n})$)	$\Theta(\boldsymbol{g}(\boldsymbol{n})$)	for some constant c_{1} with $c_{1}>0$.
Functions $f(n)$ such that for all n sufficiently large, $\frac{f(n)}{g(n)} \leq c_{2}$, for some constant c_{2}.	Functions $f(n)$ such that for all n sufficiently large, $c_{1} \leq \frac{f(n)}{g(n)} \leq c_{2}$ for some constants c_{1} and c_{2} with $0<c_{1}<c_{2}<\infty$.	$\begin{gathered} \Omega(g(n)) \supseteq \\ \omega(g(n)) \cup \Theta(g(n)) . \end{gathered}$ Note $g(n) /(1+\cos (n))$ is in $\Omega(g(n))$ (Let $c_{1}=0.5$), but not in $\omega(g(n)) \cup \Theta(g(n))$.
Note $g(n)(1+\cos (n))$ is in $\mathrm{O}(g(n))$ (Let $\left.c_{2}=2\right)$, but not in $\mathrm{o}(g(n)) \cup \Theta(g(n))$.	$\mathrm{o}(g(n))$ Functions $f(n)$ such that $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$	

Note that, in the general case, some function $f(n)$ are in none of the categories above.

For example, if

$$
f(n)=g(n) \tan ^{2}(n)
$$

then $f(n) / g(n)$ takes on both values arbitrarily close to 0 , and values arbitrarily large, as n increases. This implies
$\lim _{n \rightarrow \infty} f(n) / g(n)$ doesn't exist, and neither of the constants c_{1} or c_{2} exist.

Example: Here are various ways to write the approximation to $\lg (n!)$ given by Stirling's formula. Each line gives a more careful approximation than the line above it.

$$
\begin{aligned}
& \lg (n!)=\Theta(n \lg (n)) \\
& \lg (n!)=n \lg (n)+\mathrm{o}(n \lg (n)) \\
& \lg (n!)=n \lg (n)+\Theta(n) \\
& \lg (n!)=n \lg (n)-\lg (e) n+\mathrm{o}(n) \\
& \lg (n!)=n \lg (n)-\lg (e) n+\Theta(\lg (n)) \\
& \lg (n!)=n \lg (n)-\lg (e) n+0.5 \lg (n)+\mathrm{o}(\lg (n)) \\
& \lg (n!)=n \lg (n)-\lg (e) n+0.5 \lg (n)+\Theta(1) \\
& \lg (n!)=n \lg (n)-\lg (e) n+0.5 \lg (n)+0.5 \lg (2 \pi)+\Theta(1 / n)
\end{aligned}
$$

Rate of Growth of Functions: An Example
Let $\boldsymbol{g}(\boldsymbol{n})=\boldsymbol{n}^{2} \lg (\boldsymbol{n})$.

$f(n)$	$\mathrm{O}(\mathrm{g}(\mathrm{n}) \mathrm{)}$	$\Omega(g(n)$)		$\begin{array}{r} f(n) / g(n) \\ \text { as } n \rightarrow \infty \end{array}$
		$\Theta(g(n))$	$\omega(g(n))$	
	$\mathbf{O}(\underline{g}(\mathrm{n})$)			
$8 n^{2} \lg (\lg (n))$	\checkmark			$\rightarrow 0$
$3 n^{2} \lg (n)+12 n^{2}-56 n$		\checkmark		$\rightarrow 3$
$n^{2} \lg \left(n^{5}\right)$		\checkmark		$=5$
$n^{2} \ln (7 n)$		\checkmark		$\rightarrow \ln (2)$
$n^{3}+3 n^{2}$			\checkmark	$\rightarrow \infty$
$\left(6 n^{5}+n^{4}\right) \lg (n) /\left(n^{3}-7 n^{2}\right)$		\checkmark		$\rightarrow 6$
$n^{2} \lg (n)^{3}$			\checkmark	$\rightarrow \infty$
$n^{2.1} / \lg (n)^{3}$			\checkmark	$\rightarrow \infty$
$5 n^{2} \lg (n) / \lg (\lg (n))$	\checkmark			$\rightarrow 0$
$4^{\lg (n)} 2^{\lg (\lg (n))}$		\checkmark		$=1$
$n^{1.9} \lg (n)^{5}$	\checkmark			$\rightarrow 0$
$\lg (n)^{\lg (n)}$			\checkmark	$\rightarrow \infty$
$\lg (n!)$	\checkmark			$\rightarrow 0$
$\lg \left((n!)^{n}\right)$		\checkmark		$\rightarrow 1$
$n^{2} \lg (n)(2+\sin (n))$		\checkmark		oscillates in (1,3)
$n^{2} \lg (n)(1+\sin (n))$	in $\mathrm{O}(\mathrm{g}(\mathrm{n})$) only			oscillates in (0,2)
$n^{2} \lg (n) \tan ^{2}(n)$	in none of above			oscillates in (0,

