$$
\lim _{x \rightarrow 0} \sin x / x=1 \text { and } \lim _{x \rightarrow 0}(1-\cos x) / x=0
$$

Let x be an angle with $0<x<\pi / 2$. In right triangle CDB, the Theorem of Pythagoras tells us that

$$
h^{2}=\sin ^{2} x+(1-\cos x)^{2}=\sin ^{2} x+1-2 \cos x+\cos ^{2} x=2-2 \cos x
$$

Note $h \leq x$ (A straight line is shortest path between two points), so $h^{2} \leq x^{2}$, and hence $2-2 \cos x \leq x^{2}$. Thus

$$
\begin{align*}
& 1-\cos x \leq x^{2} / 2, \quad \text { or } \tag{1}\\
& \cos x \geq 1-x^{2} / 2 \tag{2}
\end{align*}
$$

Although we assumed that x is small and positive, these inequalities are equally valid for negative x, since they involve only even functions.

Dividing (1) by x, and using the fact that $\cos x \leq 1$, we obtain

$$
\begin{array}{ll}
0 \leq(1-\cos x) / x \leq x / 2 & \text { if } x>0, \\
0 \geq(1-\cos x) / x \geq x / 2 & \text { if } x<0 .
\end{array}
$$

These combine to give

$$
|(1-\cos x) / x| \leq|x| / 2 \quad \text { if } x \neq 0 .
$$

Since $\lim _{x \rightarrow 0}|x| / 2=0, \lim _{x \rightarrow 0}(1-\cos x) / x=0$.

Again assume x is positive, and note

$$
\begin{equation*}
\text { (Triangle ABC) } \subseteq(\text { shaded area }) \subseteq \text { (Triangle ABE) } \text {. } \tag{3}
\end{equation*}
$$

Triangle ABC has base 1 and height $\sin x$. Area $=1(\sin x) / 2=(\sin x) / 2$.
The shaded area is $x / 2 \pi$ of the unit circle. Area $=(x / 2 \pi)\left(\pi 1^{2}\right)=x / 2$.
Right triangle ABE has base 1 and height $\tan x$. Area $=(\tan x) / 2$.
So $(\sin x) / 2 \leq x / 2 \leq(\tan x) / 2$, and $\sin x \leq x \leq \tan x$.
From $\sin x \leq x$, we obtain $\sin x / x \leq 1$. From $x \leq \tan x=\sin x / \cos x$, we multiply by $(\cos x) / x$ to obtain $\cos x \leq \sin x / x$. In view of (2), we can substitute $1-x^{2} / 2$ to obtain

$$
\begin{equation*}
1-x^{2} / 2 \leq \sin x / x \leq 1 \tag{4}
\end{equation*}
$$

We assumed $0<x<\pi / 2$. But since $1-x^{2} / 2$ and $\sin x / x$ are even functions, (4) holds when $0>x>-\pi / 2$ as well.

Let $f(x)=1-x^{2} / 2$ and $g(x)=1$. Then

$$
f(x) \leq \sin x / x \leq g(x) \text { and } \lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} g(x)=1,
$$ $\lim _{x \rightarrow 0} \sin x / x=1$.

