The Hamming [7,4,3] Code
We decode as follows:

Encode: $\quad x_{0} x_{1} x_{2} x_{3} \rightarrow p_{0} p_{1} x_{0} p_{2} x_{1} x_{2} x_{3}, \quad$ where $\quad p_{0}=x_{0} \oplus x_{1} \oplus x_{3}$,

$$
\begin{aligned}
& p_{1}=x_{0} \oplus x_{2} \oplus x_{3}, \\
& p_{2}=x_{1} \oplus x_{2} \oplus x_{3} .
\end{aligned}
$$

The encoded block satisfies $\quad p_{0} \oplus x_{0} \oplus x_{1} \oplus x_{3}=0$,

$$
\begin{aligned}
& p_{1} \oplus x_{0} \oplus x_{2} \oplus x_{3}=0 \\
& p_{2} \oplus x_{1} \oplus x_{2} \oplus x_{3}=0
\end{aligned}
$$

Decode: Say we receive $p_{0}{ }^{\prime} p_{1}^{\prime} x_{0}{ }^{\prime} p_{2}^{\prime}{ }^{\prime} x_{1}{ }^{\prime} x_{2}^{\prime} x_{3}^{\prime} . \quad\left(p_{i}^{\prime}=p_{i}, x_{j}^{\prime}=x_{j}\right.$ if no errors $)$
Let $c_{0}=p_{0}{ }^{\prime} \oplus x_{0}{ }^{\prime} \oplus x_{1}{ }^{\prime} \oplus x_{3^{\prime}}$,

$$
c_{1}=p_{1}^{\prime} \oplus x_{0}^{\prime} \oplus x_{2}^{\prime} \oplus x_{3}^{\prime},
$$

$$
c_{2}=p_{2}^{\prime} \oplus x_{1}^{\prime} \oplus x_{2}^{\prime} \oplus x_{3}^{\prime} .
$$

Suppose at most one error has occurred in transmission.

Position of error	Error	$\boldsymbol{c}_{\mathbf{0}}$	$\boldsymbol{c}_{\mathbf{1}}$	$\boldsymbol{c}_{\mathbf{2}}$	$\left(\boldsymbol{c}_{\mathbf{2}} \boldsymbol{c}_{\mathbf{1}} \boldsymbol{c}_{\mathbf{0}}\right)_{\mathbf{1 0}}$
--	none	0	0	0	0
1	$p_{0}{ }^{\prime} \neq p_{0}$	1	0	0	1
2	$p_{1}{ }^{\prime} \neq p_{1}$	0	1	0	2
3	$x_{0}{ }^{\prime} \neq x_{0}$	1	1	0	3
4	$p_{2}{ }^{\prime} \neq p_{2}$	0	0	1	4
5	$x_{1}{ }^{\prime} \neq x_{1}$	1	0	1	5
6	$x_{2}{ }^{\prime} \neq x_{2}$	0	1	1	6
7	$x_{3}{ }^{\prime} \neq x_{3}$	1	1	1	7

So $\left(c_{2} c_{1} c_{0}\right)_{10}$ tells us the position of the error $(0=$ no error $)$.

We can also encode like this: $\left(x_{0} x_{1} x_{2} x_{3}\right) \rightarrow\left(x_{0} x_{1} x_{2} x_{3}\right) \mathbf{G}$, where

$$
\mathbf{G}=\left(\begin{array}{lllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

\mathbf{G} is called the generator matrix for the code.

Another useful matrix is the parity-check matrix (often denoted \mathbf{H}).

$$
\mathbf{H}=\left(\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right)
$$

The rows of H are orthogonal to the rows of \mathbf{G}.

$$
\begin{aligned}
\left(p_{0}^{\prime} p_{1}^{\prime} x_{0}^{\prime} p_{2}^{\prime} x_{1}^{\prime} x_{2}^{\prime} x_{3}^{\prime}\right) \mathbf{H}^{\mathrm{T}}= & \left(p_{2}^{\prime} \oplus x_{1}^{\prime} \oplus x_{2}^{\prime} \oplus x_{3}^{\prime}, p_{1}^{\prime} \oplus x_{0}^{\prime} \oplus x_{2}^{\prime} \oplus x_{3}^{\prime},\right. \\
& \left.p_{0}^{\prime} \oplus x_{0}^{\prime} \oplus x_{1}^{\prime} \oplus x_{3}^{\prime}\right)=\left(c_{2}, c_{1}, c_{0}\right)
\end{aligned}
$$

$\left(c_{2} c_{1} c_{0}\right)_{\mathbf{1 0}}$	Decode to
3	$\overline{x_{0}{ }^{\prime}} x_{1}{ }^{\prime} x_{2}{ }^{\prime} x_{3}{ }^{\prime}$
5	$x_{0}{ }^{\prime} \overline{x_{1}{ }^{\prime}} x_{2}{ }^{\prime} x_{3}{ }^{\prime}$
6	$x_{0}{ }_{1}{ }_{1}{ }^{\prime} \overline{x_{2} x_{3}}{ }^{\prime}$
7	$x_{0}{ }^{\prime} x_{1}{ }^{\prime} x_{2}{ }^{\prime} \overline{x_{3}}$
other values	$x_{0}{ }^{\prime} x_{1}{ }^{\prime} x_{2}{ }^{\prime} x_{3}{ }^{\prime}$

