
Primitive Roots mod p 

Fermat’s Little Theorem tells us that a p−1 ≡ 1 (mod p) if p is prime  
a ≡/ 0 (mod p).   Let us look at some examples 

p = 5 p = 7 p = 13 p = 23 
a = 2 a = 2 a = 3 a = 2 a = 3 a = 2 a = 3 a = 5 

20 ≡ 1 20 ≡ 1 30 ≡ 1 20 ≡ 1 30 ≡ 1 20 ≡ 1 30 ≡ 1 50 ≡ 1 
21 ≡ 2 21 ≡ 2 31 ≡ 3  21 ≡ 2 31 ≡ 3 21 ≡ 2 31 ≡ 3 51 ≡ 5 
22 ≡ 4 22 ≡ 4 32 ≡ 2 22 ≡ 4 32 ≡ 9 22 ≡ 4 32 ≡ 9 52 ≡ 2 
23 ≡ 3 23 ≡ 1 33 ≡ 6 23 ≡ 8 33 ≡ 1 23 ≡ 8 33 ≡ 4 53 ≡ 10 
24 ≡ 1 24 ≡ 2 34 ≡ 4 24 ≡ 3 34 ≡ 3 24 ≡ 16 34 ≡ 12 54 ≡ 4 
 25 ≡ 4 35 ≡ 5 25 ≡ 6 35 ≡ 9 25 ≡ 9 35 ≡ 13 55 ≡ 20 
 26 ≡ 1 36 ≡ 1 26 ≡ 12 36 ≡ 1 26 ≡ 18 36 ≡ 16 56 ≡ 8 
   27 ≡ 11 37 ≡ 3 27 ≡ 13 37 ≡ 2 57 ≡ 17 
   28 ≡ 9 38 ≡ 9 28 ≡ 3 38 ≡ 6 58 ≡ 16 
   29 ≡ 5 39 ≡ 1 29 ≡ 6 39 ≡ 18 59 ≡ 11 
   210 ≡ 10 310 ≡ 3 210 ≡ 12 310 ≡ 8 510 ≡ 9 
   211 ≡ 7 311 ≡ 9 211 ≡ 1 311 ≡ 1 511 ≡ 22 
   212 ≡ 1 312 ≡ 1 212 ≡ 2 312 ≡ 3 512 ≡ 18 
     213 ≡ 4 313 ≡ 9 513 ≡ 21 
     214 ≡ 8 314 ≡ 4 514 ≡ 13 
     215 ≡ 16 315 ≡ 12 515 ≡ 19 
     216 ≡ 9 316 ≡ 13 516 ≡ 3 
     217 ≡ 18 317 ≡ 16 517 ≡ 15 
     218 ≡ 13 318 ≡ 2 518 ≡ 6 
     219 ≡ 3 319 ≡ 6 519 ≡ 7 
     220 ≡ 6 320 ≡ 18 520 ≡ 12 
     221 ≡ 12 321 ≡ 8 521 ≡ 14 
     222 ≡ 1 322 ≡ 1 522 ≡ 1 

Some observations on the table. 

1) In all cases, a p−1 ≡ 1 (mod p).  We already knew this had to occur, by 
Fermat’s Theorem. 

2) For each prime p in the table, we can find some integer b (not 
divisible by p) such that bi ≡/ 1 (mod p) for 0 < i < p−1.  In other 
words, p−1 is the smallest positive integer j such that b j ≡ 1 (mod p). 

  We call b a primitive root mod p. 

  2 is a primitive root mod 5, and also mod 13. 
 3 is a primitive root mod 7. 
 5 is a primitive root mod 23.  

  It can be proven that there exists a primitive root mod p for every 
prime p.  (However, the proof isn’t easy; we shall omit it here.) 

3) For each primitive root b in the table, b0, b1, b2, ..., bp−2 are all 
distinct in Zp, and they constituted all the nonzero elements of Zp. 

Again, this is always true, and easy to prove.  We know that b 
has an inverse since b  ≡/ 0 (mod p).  If 

  bi ≡ bk  (mod p)  for 0 ≤ i < k ≤ p−2,  
then  

  bi (b−1)i  ≡ bk (b−1)i   ⇒   bi b−i  ≡ bkb−i   ⇒   1 ≡ b k−i  (mod p) 

  and 0 < k−i ≤ k ≤ p−2, which contradicts b being primitive. 



4) For each prime in the table, we can find nonzero integers a that are 
not primitive roots mod p.  In each case, if k is the smallest positive 
integer with a k ≡ 1 (mod p), then k divides p−1.  

Once more, this always holds, and is easy to show.   If it k does 
not divide p−1, write p−1 = qk + r,  with 1 ≤ r < k.  (r ≠ 0 since   
k does not divide p−1.)  Then  

    a p−1≡ a qk+r  ⇒   a p−1≡ (a k)q ar   ⇒  1 ≡ 1qar  ⇒  ar ≡ 1  (mod p) 

which contradicts k being the smallest positive integer with 
a k ≡ 1 (mod p). 

The smallest positive integer k with a k ≡ 1 (mod p) is called the 
order of a mod p.  I will write the order of a as o(a).  (Recall it 
depends on p).   

We have shown that o(a) divides p−1 for all a  ≡/ 0 (mod p).  Note 
a is a primitive root if and only if o(a) = p−1. 

5) In the table, whenever b is a primitive element mod p, then every 
integer x with x  ≡/ 0 (mod p) is a power of b,  i.e., x ≡ bk for some 
integer k. 

 Again, this is true in general, and follows immediately from (3). 

However, given x, we have no practical way to find k, assuming 
p is large.   

Computing k involves finding a discrete logarithm, and finding 
discrete logarithms with a large prime base is (as far as anyone 
knows)  too difficult to be practical.  (Much of public key 
cryptography would collapse if an efficient algorithm for 
discrete logs were discovered.) 

 

6) If b is a primitive root mod p, then  o(bk) = (p−1) / gcd(p−1,k).  

Let     d  =   gcd (p−1,k), 
  p−1 =   ud 
     k  =    vd. 

If  (bk)m ≡ 1, then bkm ≡ 1,  so  (p−1) | km  and  (p−1)/d | (k/d)m. 

Since (p−1)/d  and k/d are relatively prime, we conclude 
(p−1)/d | m.  In other words,  (p−1) /gcd(p−1,k) divides m.  In 
particular, (p−1) /gcd(p−1,k) divides o(bk). 

(bk)(p−1)/d  ≡  (bvd )(p−1)/d  ≡ b(p−1)v ≡ 1 (mod p), so o(bk) divides  
(p−1)/d  = (p−1) /gcd(p−1,k).   

So o(bk) = (p−1) /gcd(p−1,k). 

7) If b is any primitive root mod p, then the set of all primitive roots 
mod p is exactly  {bk | gcd(p−1,k) = 1}.  The number of primitive 
roots mod p is ϕ(p−1). 

  For example, consider the case p = 13 in the table.   

  ϕ(p−1) = ϕ(12) = ϕ(223) = 12(1−1/2)(1−1/3) = 4.   

  If b is a primitive root mod 13, then the complete set of primitive 
roots is  {b1, b5, b7, b11}.   We see from the table that 2 is a 
primitive root mod 13..  The complete set of primitive roots mod 
13 is {21, 25, 27, 211} = {2, 6, 11, 7}. 


