The RSA Algorithm

The RSA (Rivest-Shamir-Adleman algorithm) is the most important public-key cryptosystem.

The RSA works because:
If $n=p q$, where p and q are large primes (several hundred digits), then
i) Given p and q, we can easily multiply them to obtain n, but
ii) Given n, there is no known way to factor n as $p q$ in any reasonable amount of time.

We also need these lemmas.
Lemma 1. If $n=p_{1} p_{2} \ldots p_{h}$ is a product of distinct primes, then
i) $\varphi(n)=\left(p_{1}-1\right)\left(p_{2}-1\right) \ldots\left(p_{h}-1\right)$, and
ii) $p_{i}-1$ divides $\varphi(n)$ for all i.

Proof: We know in general that

$$
\begin{aligned}
\varphi(n) & =n\left(1-1 / p_{1}\right)\left(1-1 / p_{2}\right) \ldots\left(1-1 / p_{h}\right) \\
& =p_{1} p_{2} \ldots p_{h}\left(1-1 / p_{1}\right)\left(1-1 / p_{2}\right) \ldots\left(1-1 / p_{h}\right) \\
& =p_{1}\left(1-1 / p_{1}\right) p_{2}\left(1-1 / p_{2}\right) \ldots p_{h}\left(1-1 / p_{h}\right) \\
& =\left(p_{1}-1\right)\left(p_{2}-1\right) \ldots\left(p_{h}-1\right) .
\end{aligned}
$$

This proves (i), and (ii) follows immediately.

Lemma 2: If $n=p_{1} p_{2} \ldots p_{h}$ is a product of distinct primes, then

$$
k \equiv 1(\bmod \varphi(n)) \Rightarrow a^{k} \equiv a(\bmod n) \text { for any } a .
$$

Proof: It suffices to show that, for any a,

$$
a^{k} \equiv a\left(\bmod p_{i}\right) \text { for } i=1,2, \ldots, h
$$

(If this holds, p_{i} divides $a^{k}-a$ for all i, so n must divide $a^{k}-a$, showing that $a^{k} \equiv a(\bmod n)$.

Consider each prime p_{i} separately.
i) If $a \equiv 0\left(\bmod p_{i}\right)$, then $a^{k} \equiv 0 \equiv a\left(\bmod p_{i}\right)$.
ii) Otherwise Fermat's Little Theorem tells us that $a^{p_{i}-1} \equiv 1\left(\bmod p_{i}\right)$. Since $p_{i}-1$ divides $\varphi(n)$, $a^{\varphi(n)} \equiv 1\left(\bmod p_{i}\right)$. So if $k \equiv 1(\bmod \varphi(n))$, $k=\varphi(n) t+1$ for some integer t, and

$$
a^{k} \equiv a^{\varphi(n) t+1} \equiv\left(a^{\varphi(n)}\right)^{t} a \equiv a\left(\bmod p_{i}\right) .
$$

Note: None of these results hold if the square of some prime divides n.

For example, if $n=12=2^{2} 3$, then

$$
\begin{aligned}
& \varphi(12)=4 \neq\left(2^{2}-1\right)(3-1) . \\
& 5 \equiv 1(\bmod \varphi(12)), \text { but } 2^{5}=32 \not \equiv 2^{1}=2(\bmod 12) .
\end{aligned}
$$

The RSA works like this:
i) Alice chooses two large primes p_{A} and q_{A}.
ii) Alice computes $n_{\mathrm{A}}=p_{\mathrm{A}} q_{\mathrm{A}}$ and $\varphi\left(n_{\mathrm{A}}\right)=\left(p_{\mathrm{A}}-1\right)\left(q_{\mathrm{A}}-1\right)$
iii) Alice chooses an integer e_{A} with $\operatorname{gcd}\left(e_{\mathrm{A}}, \varphi\left(n_{\mathrm{A}}\right)\right)=1$, possibly at random.
iv) Alice computes $d_{\mathrm{A}} \equiv e_{\mathrm{A}}{ }^{-1}\left(\bmod \varphi\left(n_{\mathrm{A}}\right)\right)$.
v) Alice's public key is $\left(\boldsymbol{n}_{\mathrm{A}}, \boldsymbol{e}_{\mathrm{A}}\right)$. She distributes this. Her private key is $\boldsymbol{d}_{\mathbf{A}}$. She keeps this secret.
Alice can discard $\boldsymbol{p}_{\mathrm{A}}, \boldsymbol{q}_{\mathrm{A}}$, and $\varphi\left(\boldsymbol{n}_{\mathrm{A}}\right)$.
vi) If $2^{k} \leq n_{\mathrm{A}}<2^{k+1}$, Alice's encryption function for short messages (k bits or less, so $\mathrm{M}<n_{\mathrm{A}}$) is:

$$
E_{\mathrm{A}}(\mathrm{M})=\mathbf{M}^{e_{\mathrm{A}}}\left(\bmod n_{\mathrm{A}}\right)
$$

Anyone can compute $E_{\mathrm{A}}(\mathrm{M})$. A longer message is encrypted by splitting it into k-bit blocks, and encrypting each block separately. Note that each encrypted block has $k+1$ bits.
vii) Alice's decryption function for short messages is:

$$
\boldsymbol{D}_{\mathbf{A}}(\mathbf{M})=\mathbf{M}^{d_{\mathbf{A}}}\left(\bmod \boldsymbol{n}_{\mathrm{A}}\right), \text { provided } 0 \leq \mathrm{M}<n_{\mathrm{A}} .
$$

No one except Alice (or someone else who has discovered Alice's private key) can compute this.

$$
\begin{aligned}
\text { Note: } & D_{\mathrm{A}}\left(E_{\mathrm{A}}(\mathrm{M})\right) \equiv\left(\mathrm{M}^{e \mathrm{~A}}\right)^{d_{\mathrm{A}}} \equiv \mathrm{M}^{e_{\mathrm{A}} d_{\mathrm{A}}} \equiv \mathrm{M}\left(\bmod n_{\mathrm{A}}\right) \\
& \text { since } e_{\mathrm{A}} d_{\mathrm{A}} \equiv 1\left(\bmod \varphi\left(n_{\mathrm{A}}\right)\right)
\end{aligned}
$$

Once Alice has done this, she can

1) receive encrypted messages from Bob (or anyone else), and
2) send digitally-signed messages to Bob (or anyone else).

In order for Alice to send encrypted messages to Bob, or to receive digitally-signed messages from Bob, Bob will need to choose his own public and private keys, $\left(\boldsymbol{n}_{\mathrm{B}}, \boldsymbol{e}_{\mathrm{B}}\right)$ and $\boldsymbol{d}_{\mathrm{B}}$.

Bob sends a short message M (at most k bits) to Alice like this:
i) Bob encrypts M as $\mathrm{M}^{e \mathrm{~A}}\left(\bmod n_{\mathrm{A}}\right)$, and sends $\mathrm{M}^{e \mathrm{~A}}$ to Alice. (Note Bob knows e_{A} and n_{A}.)
ii) Alice decrypts $\mathrm{M}^{e_{\mathrm{A}}}$ as $\left(\mathrm{M}^{e \mathrm{~A}}\right)^{d_{\mathrm{A}}} \equiv \mathrm{M}\left(\bmod n_{\mathrm{A}}\right)$. Thus Alice recovers M.
(Note Alice actually recovers the value of $\mathrm{M}\left(\bmod n_{\mathrm{A}}\right)$, but this equals M as long as $\mathrm{M}<n_{\mathrm{A}}$.)

For longer messages, Bob could break the message up into k bit blocks, and encrypt each block separately. Alice would break the encrypted message in $k+1$ bit blocks, and decrypt each block separately.

Example:

i) Alice chooses: $\quad p_{\mathrm{A}}=59, q_{\mathrm{A}}=71$.
ii) Alice computes: $n_{\mathrm{A}}=59.71=4189$,

$$
\varphi\left(n_{\mathrm{A}}\right)=(59-1) \cdot(71-1)=4060
$$

iii) Alice chooses: $\quad e_{\mathrm{A}}=671$.
iv) Alice computes: $d_{\mathrm{A}} \equiv e_{\mathrm{A}}{ }^{-1}(\bmod 4060) \equiv 1791$.

She may do this using Euclid's extended algorithm, which uses only $\mathrm{O}\left(\log \left(n_{\mathrm{A}}\right)\right)$ steps, so is feasible even if n_{A} has hundreds of digits.

\boldsymbol{c}	$\boldsymbol{q}[\boldsymbol{i}]$	$\boldsymbol{r}[\boldsymbol{i}]$	$\boldsymbol{x}[\boldsymbol{i}]$	$\boldsymbol{y}[\boldsymbol{i}]$
-1		4060	1	0
0		671	0	1
1	6	34	1	-6
2	19	25	-19	115
3	1	9	20	-121
4	2	7	-59	357
5	1	2	79	-478
6	3	$\mathbf{1}$	$\mathbf{- 2 9 6}$	$\mathbf{1 7 9 1}$
7	2	0		

v) Alice distributes her public key $(\mathbf{4 1 8 9}, \mathbf{6 7 1})$ and keeps her private key 1791 secret.
vi) Alice's encryption function is: $\boldsymbol{E}_{\mathrm{A}}(\mathbf{M}) \equiv \mathbf{M}^{671}(\boldsymbol{m o d}$ 4189), provided $0 \leq M<2^{12}-1=4095$.

Alice's decryption function is: $\boldsymbol{D}_{\mathbf{A}}(\mathbf{M}) \equiv \mathbf{M}^{\mathbf{1 7 9 1}}(\boldsymbol{\operatorname { m o d }}$ 4189), provided $0 \leq \mathrm{M}<4095$.

Both functions can be computed using at most $2 \log _{2}\left(n_{\mathrm{A}}\right)$ modular multiplications, using fast exponentiation.

Bob sends Alice the message "RSA" as follows:

$$
\text { RSA }=010100100101001101000001 \text { in ASCII. }
$$

Bob breaks this up into two 12-bit integers:

$$
010100100101001101000001 \text {, or } 1317,833
$$

He computes $1317^{671} \equiv 3530,833^{671} \equiv 3050(\bmod$ 4189).

The ciphertext is 3530,3050 , or

$$
01101110010100101111101010 .
$$

(Note that 13-bit blocks were used, as $\mathrm{M}^{671}(\bmod 4189)$ could be greater than 4095.)

Alice decrypts the message by computing

$$
3530^{1791} \equiv 1317,3050^{1791} \equiv 833(\bmod 4189)
$$

giving plaintext 1317, 833, or 0101001001010011 01000001, or "RSA".

