The RSA Algorithm

The RSA (Rivest-Shamir-Adleman algorithm) is the most important public-key cryptosystem.

The RSA works because:

If n = pq, where p and q are large primes (several hundred digits), then

- i) Given *p* and *q*, we can easily multiply them to obtain *n*, but
- ii) Given *n*, there is no known way to factor *n* as *pq* in any reasonable amount of time.

We also need these lemmas.

Lemma 1. If $n = p_1 p_2 \dots p_h$ is a product of *distinct* primes, then i) $\varphi(n) = (p_1 - 1)(p_2 - 1) \dots (p_h - 1)$, and ii) $p_i - 1$ divides $\varphi(n)$ for all *i*.

Proof: We know in general that

$$\varphi(n) = n(1-1/p_1)(1-1/p_2)...(1-1/p_h)$$

= $p_1p_2...p_h(1-1/p_1)(1-1/p_2)...(1-1/p_h)$
= $p_1(1-1/p_1) p_2(1-1/p_2)...p_h(1-1/p_h)$
= $(p_1-1)(p_2-1)...(p_h-1).$
This proves (i), and (ii) follows immediately.

Lemma 2: If $n = p_1 p_2 \dots p_h$ is a product of *distinct* primes, then $k \equiv 1 \pmod{\varphi(n)} \implies a^k \equiv a \pmod{n}$ for any *a*.

Proof: It suffices to show that, for any *a*,

 $a^k \equiv a \pmod{p_i}$ for i = 1, 2, ..., h.

(If this holds, p_i divides $a^k - a$ for all *i*, so *n* must divide $a^k - a$, showing that $a^k \equiv a \pmod{n}$.

Consider each prime p_i separately.

- i) If $a \equiv 0 \pmod{p_i}$, then $a^k \equiv 0 \equiv a \pmod{p_i}$.
- ii) Otherwise Fermat's Little Theorem tells us that $a^{p_i^{-1}} \equiv 1 \pmod{p_i}$. Since p_i^{-1} divides $\varphi(n)$, $a^{\varphi(n)} \equiv 1 \pmod{p_i}$. So if $k \equiv 1 \pmod{\varphi(n)}$, $k = \varphi(n)t + 1$ for some integer *t*, and $a^k \equiv a^{\varphi(n)t+1} \equiv (a^{\varphi(n)})^t a \equiv a \pmod{p_i}$.
- *Note:* None of these results hold if the square of some prime divides n.

For example, if $n = 12 = 2^2 3$, then $\varphi(12) = 4 \neq (2^2 - 1)(3 - 1)$. $5 \equiv 1 \pmod{\varphi(12)}$, but $2^5 = 32 \neq 2^1 = 2 \pmod{12}$. The RSA works like this:

- i) Alice chooses two large primes p_A and q_A .
- ii) Alice computes $n_A = p_A q_A$ and $\varphi(n_A) = (p_A 1)(q_A 1)$
- iii) Alice chooses an integer e_A with $gcd(e_A, \phi(n_A)) = 1$, possibly at random.
- iv) Alice computes $d_A \equiv e_A^{-1} \pmod{\phi(n_A)}$.
- v) Alice's <u>public key</u> is (n_A, e_A) . She distributes this. Her <u>private key</u> is d_A . She keeps this secret. Alice can discard p_A , q_A , and $\varphi(n_A)$.
- vi) If $2^k \le n_A < 2^{k+1}$, Alice's encryption function for short messages (*k* bits or less, so M < n_A) is:

 $E_{\rm A}({\rm M})={\rm M}^{e_{\rm A}}\ ({\rm mod}\ n_{\rm A}).$

Anyone can compute $E_A(M)$. A longer message is encrypted by splitting it into *k*-bit blocks, and encrypting each block separately. Note that each encrypted block has k+1 bits.

vii) Alice's decryption function for short messages is:

 $\boldsymbol{D}_{A}(\mathbf{M}) = \mathbf{M}^{d_{A}} \pmod{n_{A}}$, provided $0 \le M < n_{A}$.

No one except Alice (or someone else who has discovered Alice's private key) can compute this.

Note:
$$D_A (E_A (M)) \equiv (M^{e_A})^{d_A} \equiv M^{e_A d_A} \equiv M \pmod{n_A}$$

since $e_A d_A \equiv 1 \pmod{\varphi(n_A)}$

Once Alice has done this, she can

- 1) <u>receive</u> encrypted messages from Bob (or anyone else), and
- 2) <u>send</u> digitally-signed messages to Bob (or anyone else).

In order for Alice to send encrypted messages to Bob, or to receive digitally-signed messages from Bob, Bob will need to choose his own public and private keys, (n_B, e_B) and d_B .

Bob sends a short message M (at most *k* bits) to Alice like this:

- i) Bob encrypts M as $M^{e_A} \pmod{n_A}$, and sends M^{e_A} to Alice. (Note Bob knows e_A and n_{A} .)
- ii) Alice decrypts M^{e_A} as $(M^{e_A})^{d_A} \equiv M \pmod{n_A}$. Thus Alice recovers M.

(Note Alice actually recovers the value of M (mod n_A), but this equals M as long as M < n_A .)

For longer messages, Bob could break the message up into kbit blocks, and encrypt each block separately. Alice would break the encrypted message in k+1 bit blocks, and decrypt each block separately.

Example:

- i) Alice chooses: $p_A = 59$, $q_A = 71$.
- ii) Alice computes: $n_A = 59 \cdot 71 = 4189$, $\varphi(n_A) = (59-1) \cdot (71-1) = 4060$.
- iii) Alice chooses: $e_A = 671$.
- iv) Alice computes: $d_A \equiv e_A^{-1} \pmod{4060} \equiv 1791$.

She may do this using Euclid's extended algorithm, which uses only $O(\log(n_A))$ steps, so is feasible even if n_A has hundreds of digits.

i	q[i]	r[i]	x[i]	<i>y</i> [<i>i</i>]
-1		4060	1	0
0		671	0	1
1	6	34	1	-6
2	19	25	-19	115
3	1	9	20	-121
4	2	7	-59	357
5	1	2	79	-478
6	3	1	-296	1791
7	2	0	·	

- v) Alice distributes her public key (4189,671) and keeps her private key 1791 secret.
- vi) Alice's encryption function is: $E_A(\mathbf{M}) \equiv \mathbf{M}^{671} \pmod{4189}$, provided $0 \le \mathbf{M} < 2^{12} 1 = 4095$.

Alice's decryption function is: $D_A(M) \equiv M^{1791} \pmod{4189}$, provided $0 \le M < 4095$.

Both functions can be computed using at most $2 \log_2(n_A)$ modular multiplications, using fast exponentiation.

Bob sends Alice the message "RSA" as follows:

 $RSA = 01010010 \ 01010011 \ 01000001$ in ASCII.

Bob breaks this up into two 12-bit integers:

01010010 0101 0011 01000001, or 1317, 833

He computes $1317^{671} \equiv 3530$, $833^{671} \equiv 3050 \pmod{4189}$.

The ciphertext is 3530, 3050, or

0110111001010 0101111101010.

(Note that 13-bit blocks were used, as M⁶⁷¹ (mod 4189) could be greater than 4095.)

Alice decrypts the message by computing

 $3530^{1791} \equiv 1317, \ 3050^{1791} \equiv 833 \pmod{4189}$

giving plaintext 1317, 833, or 01010010 0101 0011 0111 01000001, or "RSA".