The Rabin-Miller Test - Examples

$\boldsymbol{n}=252601, n-1=2^{3} \cdot 31575$.
Choose $a=85132$.

$$
\begin{aligned}
& a^{31575} \equiv 191102(\bmod n) \\
& a^{2 \cdot 31575} \equiv 184829(\bmod n) \\
& a^{2^{2 \cdot 31575}} \equiv 1(\bmod n)
\end{aligned}
$$

Conclusion: n is composite. (184829 is a square root of 1 , $\bmod n$, different from ± 1.)
$\boldsymbol{n}=\mathbf{3 0 5 7 6 0 1}, \quad n-1=2^{6} \cdot 47775$.
Choose $a=99908(\bmod n)$.

$$
\begin{aligned}
& a^{47775} \equiv 1193206(\bmod n) \\
& a^{2 \cdot 47775} \equiv 2286397(\bmod n) \\
& a^{2^{2} \cdot 47775} \equiv 235899(\bmod n) \\
& a^{2^{3} \cdot 47775} \equiv 1(\bmod n)
\end{aligned}
$$

Conclusion: n is composite. (235899 is a square root of 1 , $\bmod n$, different from ± 1.)
$\boldsymbol{n}=104717, n-1=2^{2} \cdot 26179$.
Choose $a=96152$.
$a^{26179} \equiv 1(\bmod n)$
Conclusion: n is probably prime.
$\boldsymbol{n}=577757, \quad n-1=2^{2} \cdot 144439$.
Choose $a=314997(\bmod n)$.

$$
\begin{aligned}
& a^{144439} \equiv 373220(\bmod n) \\
& a^{2 \cdot 144439} \equiv 577756 \equiv-1(\bmod n)
\end{aligned}
$$

Conclusion: n is probably prime.
$\boldsymbol{n}=280001, \quad n-1=2^{6} \cdot 4375$.
Choose $a=105532$.

$$
\begin{aligned}
& a^{4375} \equiv 236926(\bmod n) \\
& a^{2 \cdot 4375} \equiv 168999(\bmod n) \\
& a^{2^{2} \cdot 4375} \equiv 280000 \equiv-1(\bmod n)
\end{aligned}
$$

Conclusion: n is probably prime.
$\boldsymbol{n}=95721889, n-1=2^{5} \cdot 2991309$.
Choose $a=21906436$.

$$
\begin{aligned}
& a^{2991309} \equiv 373440(\bmod n) \\
& a^{2 \cdot 2991309} \equiv 86363216(\bmod n) \\
& a^{2^{2} \cdot 2991309} \equiv 93382930(\bmod n) \\
& a^{2^{3} \cdot 2991309} \equiv 31803553(\bmod n) \\
& a^{2^{4 \cdot 2991309}} \equiv a^{(n-1) / 2} \equiv 63099174(\bmod n)
\end{aligned}
$$

Conclusion: n is composite.
(If $\left(a^{(n-1) / 2}\right)^{2} \equiv a^{n-1} \equiv 1(\bmod n)$, then $a^{(n-1) / 2} \equiv 63099174(\bmod n)$ is a square root of 1 , different from ± 1. Otherwise Fermat's Little theorem implies that n is composite.)

