Finding Square Roots in The Integers Mod p, with p Prime

Let p be an odd prime.
We have an easy test that will tell us whether an integer $a, a \neq 0(\bmod p)$, has a square root $\bmod p$, or not. (i.e., whether a is a quadratic residue or quadratic nonresidue, $\bmod p$.)

Specifically, a is $\left\{\begin{array}{l}\text { a quadratic residue if } a^{(p-1) / 2} \equiv 1(\bmod p) \\ \text { a quadratic nonresidue if } a^{(p-1) / 2} \equiv-1(\bmod p)\end{array}\right.$
Assuming the a passes the test above for being a quadratic residue, the algorithm below will actually find a square root of $a \bmod p$. It is most useful when $p \equiv 1$ $(\bmod 4)$, as the case $p \equiv 3(\bmod 4)$ is very easy to solve.

```
Write \(p-1=2^{\mathrm{s}} \cdot m\), with \(m\) odd.
\(z=\) any nonresidue \(\bmod p\).
\(c \equiv z^{m}(\bmod p)\).
\(u \equiv a^{m}(\bmod p)\).
\(v \equiv a^{(m+1) / 2}(\bmod p)\).
for \((i=s-1, s-2, \ldots, 2,1)\{\)
    if \(\left(u^{2^{i-1}} \equiv-1(\bmod p)\right)\{\)
        \(u=u c^{2}\).
        \(v=v c\).
    \}
    \(c=c^{2}\).
\}
```

Now v is a square root of a.

Note $\mathrm{o}(c)$ is 2^{s}.
$\mathrm{o}(u)$ divides 2^{s-1}, as u is a quad res. Note $v^{2} \equiv u a(\bmod p)$.
Each pass starts with o(u) dividing dividing 2^{i}. Either o(u) divides 2^{i-1}, or $u^{i^{i-1}} \equiv-1(\bmod p)$. In the latter, case, we modify u and v so as to make o(u) divide 2^{i-1}, while maintaining the property $v^{2} \equiv u a$ $(\bmod p)$.

Example: Find a square root of $83 \bmod 673$.
$672=2^{5} \cdot 21$, so $s=5$ and $m=21$.
After trying several possibilities, we discover that $5^{336} \equiv-1(\bmod 673)$, so we may choose $z=5$.

$$
\begin{aligned}
& u \equiv a^{m} \equiv 589, \quad v \equiv a^{(m+1) / 2} \equiv 190, \quad c \equiv z^{m} \equiv 118(\bmod 673) \\
& i=4: u^{8} \equiv-1 \\
& u \equiv u c^{2} \equiv 58, \quad v \equiv v c \equiv 211, \quad c \equiv c^{2} \equiv 464(\bmod 673) \\
& i=3: u^{4}=1 \\
& u \text { and } v \text { are unchanged, } \quad c \equiv c^{2} \equiv 609 \\
& i=2: u^{2} \equiv-1 \\
& u \equiv u c^{2} \equiv 672, \quad v \equiv v c \equiv 629, \quad c \equiv c^{2}=58 \\
& i=1: u \equiv-1 \\
& u \equiv u c^{2} \equiv 1, \quad v \equiv v c \equiv 140, \quad c \equiv c^{2} \equiv-1 \\
& u \equiv 1
\end{aligned}
$$

Thus 140 is square root of $83 \bmod 673$, as is -140 .

