Cauchy Integral Formula
Theorem. Let f(z) be analytic in the closed region

Dr = {|z| < R}.
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Proof: Fix z. For € small, let C, . = {C| |¢ — z| = €}. Define g.(¢) = rt Then ¢.(¢)
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is an analytic function of ¢ in the region between the two circles C, . and Cr.

Then for |z| < R,

By the Two Circles Theorem
[IAGLSE SRGYS
CR Cz,é

G s
fiRc—de_fiz,ec—de'

Since f is analytic at z, for ¢ near z,
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Power Series Representation of Analytic Functions

We will show that the analytic function has a power series representation with a radius
of convergence at least R.

Fix ¢, [¢| = R, and fix z, [2| < R. Let § = |Z|. Then
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Theorem. Let f(z) be analytic in the closed region
Dr =A{|z| < R}.

Then for |z| < R:
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