MTHT 435. Fall 2007 Abstract Algebra Final exam A.Libgober

1. Prove that $\mathbf{Q}[x]/\langle x^2-7\rangle$ is ring-isomorphic to $\mathbf{Q}(\sqrt{7})$.

2. Let $f(x) = 5x^4 + 3x^3 + 1$ and $g(x) = 3x^2 + 2x + 1$ be polynomials in $\mathbb{Z}_7[x]$. Determine the quotient and remainder upon dividing f(x) by g(x).

3. Write $x^3 - 1$ as a product of irreducible polynomials over \mathbf{Z}_7 .

4. Find the degree of extension $\mathbf{Q}(\sqrt{2} + \sqrt{5})/\mathbf{Q}$.

5 Write $(2+4\sqrt{3})^{-1}$ in the form $a+b\sqrt{3}$ $(a,b \in \mathbf{Q})$.

6. Find the degree and a basis of $\mathbf{Q}(\sqrt{2}+\sqrt{3})$ over $\mathbf{Q}(\sqrt{6})$ (resp. over \mathbf{Q}).

7.a) Calculate the order of alternating group A_5 . b)Find the order of the permutation (125)(4376).

8. Find the degree of the extension $\mathbf{Q}(\cos 40^\circ)/\mathbf{Q}$ and $\mathbf{Q}(\cos 15^\circ)/\mathbf{Q}$. Show that angle 40° is not constructible but the angle 75° is.