MTHT 435. Fall 2007
 Abstract Algebra
 Final exam
 A.Libgober

1. Prove that $\mathbf{Q}[x] /<x^{2}-7>$ is ring-isomorphic to $\mathbf{Q}(\sqrt{7})$.
2. Let $f(x)=5 x^{4}+3 x^{3}+1$ and $g(x)=3 x^{2}+2 x+1$ be polynomials in $\mathbf{Z}_{7}[x]$. Determine the quotient and remainder upon dividing $f(x)$ by $g(x)$.
3. Write $x^{3}-1$ as a product of irreducible polynomials over \mathbf{Z}_{7}.
4. Find the degree of extension $\mathbf{Q}(\sqrt{2}+\sqrt{5}) / \mathbf{Q}$.

5 Write $(2+4 \sqrt{3})^{-1}$ in the form $a+b \sqrt{3}(a, b \in \mathbf{Q})$
6. Find the degree and a basis of $\mathbf{Q}(\sqrt{2}+\sqrt{3})$ over $\mathbf{Q}(\sqrt{6})$ (resp. over \mathbf{Q}).
7.a) Calculate the order of alternating group A_{5}.
b)Find the order of the permutation (125)(4376).
8. Find the degree of the extension $\mathbf{Q}\left(\cos 40^{\circ}\right) / \mathbf{Q}$ and $\mathbf{Q}\left(\cos 15^{\circ}\right) / \mathbf{Q}$. Show that angle 40° is not constructible but the angle 75° is.

