Math 517. Spring 2009
 Abstract Algebra. Final exam
 A.Libgober

1. Prove that two 3×3 matrices are similar if and only if they have the same characteristic and minimal polynomials. Give an explicit counterexample to this assertion for 4×4 matrices.
2. Describe the Galois group of $x^{4}-7$ over \mathbf{Q} as a subgroup of permutation group of the roots.
3. Let $V=\mathcal{Z}(x y-z) \subset \mathbf{A}^{3}$. Show that V is isomorphic to \mathbf{A}^{2}.
4. Show that the quotient of $S L_{2}\left(\mathbf{F}_{3}\right)$ by its center is the alternating group A_{4} and use it to prove that $H^{2}\left(A_{4}, \mathbf{Z}_{2}\right) \neq 0$.
5. Prove that a finitely generated abelian group A is free if and only if $\operatorname{Ext}^{1}(A, \mathbf{Z})=0$.
