Math 517. Spring 2009
 Abstract Algebra. Midterm 2
 A.Libgober

1. Find the degree of the extension $\mathbf{Q}(\sqrt{\mathbf{2}+\sqrt{\mathbf{2}}}) / \mathbf{Q}$. Show that it is a Galois extension and determine its Galois group.
2. Determine the splitting field of the polynomial $x^{p}-x-a$ over $\mathbf{F}_{p}\left(a \neq 0, a \in \mathbf{F}_{p}\right)$. Find the Galois group of the splitting field over \mathbf{F}_{p}.
3. Find a primitive element of $\mathbf{Q}(\sqrt{5}, \sqrt{17}, \sqrt{19}) / \mathbf{Q}$
4. Find the degree of the extension $\mathbf{Q}\left(\zeta_{2^{n}}\right) / \mathbf{Q}$ where $\zeta_{2^{n}}$ is a primitive root of unity $(n \geq 2)$. Find the degree and the Galois group of the extension $\mathbf{Q}\left(\zeta_{2^{n}}+\zeta_{2^{n}}^{-1}\right) / \mathbf{Q}$.
5. Express $x_{1}^{2} x_{2}^{2}+x_{1}^{2} x_{3}^{2}+x_{2}^{2} x_{3}^{2}$ as a polynomial in elementary symmetric functions.
6. a) Find the discriminant of the cylotomic polynomial $\Phi_{13}(x)$.
b) Show that $\mathbf{Q}(\sqrt{13}) \subset \mathbf{Q}\left(\zeta_{13}\right)$.

7 Find the Galois group of the polynomial $t^{4}+4 t+2$.

8 Find the transcendence degree of $\mathbf{Q}(t, u, v, w) / \mathbf{Q}$ where $t^{2}=2, u$ is transcendental over $\mathbf{Q}(t), v^{3}=t+5$ and w is transcendental over $\mathbf{Q}(t, u, v)$.

