Math 554. Fall 2007
 Complex Manifolds, Final exam
 A.Libgober

1. Let $X=\mathbf{P}^{1} \times \mathbf{P}^{1}$ Let x_{0}, x_{1} and $\left(y_{0}, y_{1}\right)$ be homogeneous coordinates on the first and second factors respectively and let p be the bi-homogeneous polynomial

$$
\begin{equation*}
x_{0}^{d}\left(y_{0}^{l}+y_{1}^{l}\right)+x_{1}^{d}\left(y_{0}^{l}-y_{1}^{l}\right) \tag{*}
\end{equation*}
$$

a) Using the standard cover of \mathbf{P}^{1} (by two open sets given by non vanishing of one of the homogeneous coordinate) construct a cover of X by four open sets each biholomorphic to \mathbf{C}^{2}.
b)Show that equation $\left.{ }^{*}\right)$ defines the subset C of X and find defining equation in each of the charts you construct in a). Explain why a polynomial in $\left(x_{0} . x_{1}, y_{0}, y_{1}\right)$ which is not bi-homogeneous does not have a well defined zero set.
c) Show that C is a sub-manifold of X.
d) Consider the projection of C on \mathbf{P}^{1} which is one of the factors of X. Find the number of preimages each point of \mathbf{P}^{1} has. Use additivity of euler characteristic to determine the genus of C.
2. Construct a complex manifold homeomorphic to $S^{1} \times S^{5}$ (here S^{n} denotes the $\mathrm{n}=$ dimensional sphere).
3. Find the degree of the image of Segre embedding $\mathbf{P}^{2} \times \mathbf{P}^{\mathbf{2}} \rightarrow \mathbf{P}^{N}$. Determine the integer N.

4, Let E be a holomorphic vector bundle on a complex manifold X. Let U be an open set over which holomorphic bundle E is trivial. Describe the action of $\bar{\partial}_{E}$ on a C^{∞} section of $\left.E\right|_{U}$ and explain why the result is independent of holomorphic change of trivialization.
5. Describe Chern form of the bundle $\mathcal{O}_{\mathbf{P}^{1}}(1)$ and Chern form of the bundle given the Segre embedding of X from problem 1.

