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NUMERICAL CHARACTERISTICS OF SYSTEMS
" oF STRAIGHT LINES ON COMPLETE INTERSECTIONS
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*;. We obtain an equation for the number of stratght lines on the complete intersection of hyper-
[ surfaces and find Hilbert's polynomial for the variety of straight lines of a cublc three-
dimensional hypersurface,

]

Let V,2 ™ be the algebrale varlety in the projective space PF of dimension r, which is the complete

My, .o

intersection of s hypersucfaces of degrees ny, . . ., ng. We know that straight lines in PT, lying on V).,

w1 7Y
’ if in general they exist, can be parameterized by the algebraic variety s (V:.".""') . This variety is canoni- :1‘. .‘
cally embedded in a Grassman variety and so in 2 projective space. l‘.ggj_;]

it follows from the equation obtained by Predonzan that for a general V:.".'j"‘ we have

dims, (V™) =2(r — 1) = Dy (3 + ).

S i

il

syence, if
2(r—1) —Z(m+1) =0, (1)

|  thenthere is a finite numbeor of straight lines on a general V"™, For example, it has long been known i y
: that therc are 27 stralght lines on 2 nonsingular cubic surface. e
. we find the number of struight lines on a general V™;*™ inthe case (1), i.e., when their number is gg
finite. . B o
For P® and PB, ecmbedded in PY (we can assume that o + 8 > y), and not contained in any PY"1, the . w

aumber of straight lines in PY intersecting them dnd lying on a geferal V3 .y will be denoted by N(.;e '*"'"Q

The fundamental result is

THEOREM 1. fa * 8 =n + 1, then Ng’ﬁ is finite and equal to
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where ok is the k-th clementary symmetric polynomial in the arguments —g—, —5—, ..y =T~ -0 77 X

)
$3. 3

From this there easily follows .
THEOREM 2. If 2r—n=3 = 0, the number of straight lines on Vi_; is finite and equal to

—~——

al A= n—i 1 a—1 n—14 1 )]
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’ - shere the notation is the same as in Theorem 1. . ta
|
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Let Que (0 < ao<<a; <) denote the Schubert variety of straight lines of the space PT contalned 1n b

P24 and intersecting PA0C P21, We know that this Is an Irreducible variety of dimensionay +ag3land Uf f
the numbers r, ny, . . ., ng satlsfy Eq. (1), the number ’ 73

’ Kiw oo .f. = (R rep-2ety, . Ny, 2rm, 2 = i)
’ is defined for any set of numbers iy, . . ., lg 6atisfying the inequalities

max{r —n, — 2,0) <y <1 — o — f
| 1 ) <h<r——3 4
| —i,...,max(r—n,—2,0)<t,<r——-'zl._g. ’

calculated in a standaxd manner using the equations for multiplication In a ring of classes of cycles to
within numerical equivalence of a Grassman variety. '

THEOREM 3. The number of straight lines on ¥,!,"™ In the case when

2(r—4) — iy (m+1) =0
is finite and equzl to

-

LI T Y n 3l r 1=
2‘-...!. Noly cee ¥raq, ‘ Kh...l. '

where each of the indices iy, . « + lg Tuns through the appropriate set of values:

max((),r-—-n,—Z)éf<f-%-1.
| max (0,r-n,—-2)<i.<r—-L2'-—l.

For example,
- s, (VD = 5.2, 455, (V3 = 313, F 0, (V3) = 2°.5.
In the second section we calculate the Hilbert polynomizal of the variety of straight lines lyingon a

cubic hypersurface in P. It is -%- n? — i'zi’-n + 6. Some of its coefficients were calculated in a paper by

~F '?E‘Y'EW'W‘ AT

Fanu.

' $1. Finite Systems of Straight Lines. For P2 and PP, embedded in PY (@ *+ 8> v) and not contained E
in PY"T (or contained in P77, but not contained in any PY™Y, the variety of straight lines intersecting thes E

will be denoted by M‘,} B (or M?)','ﬁ).

The variety of straight lines of M®+# (or MZ+A) lying on V%-y will be denoted by LY 8 (or LaB).
PN(M,Y) geaotes the space of coefficients of the equations of the hypersurfaces of degree n in PY,

e

The proof of Theorem 1 is in several stages.
Stage 1. For a general V')l/-t the varieties Lg # and Eg 8 are of zero dimension whena t f=n*1
and are empty whena t §<nt 1. .

w0

Consider the incidence correspondence z4(zy) between MJ 8 (or }@+A) and the space PN(.Y) which,
' being a cyclo z,; < M2B x PN(0Y) (or Z, < MZF x PN(n,7)) set-theoretically consists of the pairs (7, V),
wherc I ¢ M%', B jfor 1 € M‘%‘,’-ﬂ), v ¢ pN(n, ¥} angl lies on the hypersurface V.

R aaiate I - o
PO I Pt

The family of hypersurfaces of degree n in PY passing ttrough a s+l:raight line is 2 fiber of Z{(Z,)
over a point MY '3(1'7!% ). This family {s a linear space of dimension (‘,;, Yy={n+1).

The variety Z, is irreducible since it can be stratified over the irreducible variety M2+8 on projec-
tive spaces. The varicty Z, consists of two components corresponding to the components of the variety
Ma.B,

Y

The image of the correspondencez(z,) {8 the whole space of hypersurfaces. Indeed, it easily fol-
lows from [1) that when @ * § = n+ 1 we have ¢ (Va.iQy.ae0) >0, and since Rz 18 in the decomposi-
tion of Mg B with coefficient 1, then (5 (Vi) -M3%) D> 0.
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128 (L2.B) is a fiber of z, (z,) over a general point of the image under a projection on PN(MY), The
dnciple for calculating the constants of zy (z,) ylelds

at8+(" ) e r0=("TT) +amirieo T,

from which, when o + g8 =n+1, we obtain dim 12,8 = dtm ﬁgvﬁ =0, If,fora* B <n*1,the image of Z;
(Z, wers the whole space PN(M:¥), the same equation would hold, However, whena*g<n*1itlsim-

P

possible.
Stage 2, fa* g=nt1,then

N:-: = NYi— N3, (2
NyP = N —Nad™ )

Equation (3) follows from (2) by reverse {nduction on y. We shall prove (2).

Let P and P8 lie in PY so that they generate the whole of PY, Counsider the straight line C in pYh,
pot lying in P¥ and not intersecting pB-1, Each point t € C generates not only P31, but also Pf. PB*1 de-
potes the space generated by PA-1and C.

Let U be a correspondence between C and L:;’l" , congtructed for a general v and for the P® and
"pB*1 chosen above, defined set-theoretically as the set of palrs (I, t) such that 1€ LY B, constructed for P
and Pf.

Since, by stage 1, L%8 ig a fiber of an {rreducible correspondence over PN, 1+0 | there is an open
get in PY1+0 , for which L5549 is of the same size.

A fiber of the projection U —~ L5 (g either a straight line (for 1 < L™ ) or lylng in PP*lor in-
tersecting P N PB-Y) or a point.

Since stage 1 asserts that in C there {s an open get C', and that a fiber of the projectionU — C over
points of C' is of zero dimension, there are no general points of the cycle U in the fibers of this morphism
over C'. Hence the projection U — C over C!' s a plane morphism.

I8 is a fiber of U over the point of intersection of C and PY and, by stage 1, this point belongs to

Tel?

¢, while Lyl “is a fiber over the remaining points. Because the morphism is plane it follows, that
2 (L5 = 2 (Tud.
y(L%]) is obviously Nl ,The variety L%u{ consists of straight lines in P7Y which intersect PZ and
p and of straight lines of PY lutersecting pa N PB. The number of straight lines of the first type Is N‘,fﬁ
and of the second N7
By stage 1, there are no straight lines an a general V3 _, intersecting P 1 PlforatB=ntl.
Hence
=Nt N

g8 was asserted. .
Stage 3. Calculation of the numbers

Fach straight line in P2*1 {ntersecting P and FB and lying on a hypersurface of degree n {3 defined
by the two points (Xgs « » +» Xgr) 204 (Yos ¢ ¢ s y@ in which it intersects P¥and PR (we assume that the poiut

of intersection of P and P8 does not lie on that hypersurface).

If the equation of P¥ has the form zq+( = « « « = Za+g = 0, and that of PB: zy= ... 2q%; = 0,the
equations of the straight line have the form -
Ty = Tgll, o .o Za = Zalh YoV, Zen = Pidyooo, Zaed = YA (4)
The conditions that the straight line should belong to the hypersurface are obtained by equating to zero

the coefficients of ut" (E+1n=n + 1) 1inthe polynomial obtained by substituting the variables {4) in the
. equation of the hypersurface Vi. Thus, L%} lies on P& x P8 and is the intersection of divisors of bide-

glees (n, o)o (n— 1, 1), ¢ ooy (0, n)o
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The index of their intersection is N8 and it is obviously equal to the coefficient of x"y!8 In the poly~
nomial nx{(n~1) x+y]...[x* (n—1ylny. This coefficlent is equal to the coefficient of z@~1 {n the poly-
nomial . v

n{l 4 (n—1)2) ... ns, (5)

which is the (a — 1)th elementary symmetr‘ic polynomial of the roots of (5) which are ~1/(a~ 1}, = 2/(n — 2.
.+ —(n—1)/1. Theorem 1 follows from this and stage 2.

Now the variety of straight lines in PT lying on Vi, is LE"1/-1, Application of Theorem 1 yields

Theorem 2 since 2r—n—3 = 0,

We now derive Theorem 3 from Theorem 1. We know that the basis of the cycles of 2 Grassman var-
iety with respect to the modulus of numerical equivalence is comprised of Schubez{
for any r and m,

varieties naﬁlo Hence,

.

' _ a0y, 3r-n-a-1
(Vi) = Lt~ 3

max (g, r-n-g)Si<r— % _1.

(6}

Moreover, (Qi w-n-a-ii Qmsatr.r-i) I8 unity for i = i; and zero otherwise [2]. Hénce it follows from

{6) that .

-1, =1 844~ =
a = (I‘r ' Qn{!bl-r, r-i) - Nl'-l‘4 al l-

The variety of straight lines on the intersection of hypersurfaces is the intersection of the varieties

of straight lines on each hypersurface. Hence

S (Vi) = (5, (VI o5y (ViR

Calculation of this Index using (6) ylelds Theorem 3.

the Hifbert polynomial of the variety X.

§2. Straight Lines on a Cubic Three-Dimensional Hypersuriace. Let hx(n) denote in what follows

Arguing as in the proof of stage 2, we see that A s, = hyaa
‘s

The variety T3 is the unton of two varieties: L}® and L}, which intersect in L%, Hence

3 g = "x};-’ + hq.s - h,_;.t- (7

Moreover, ha= hzzs. The variety L7 ts the union of the varieties L} and L}*, which intersect

in L}, Hence

h,_:,s = hL§.4 + ,‘,_a‘.s - ’Ls.s- -

Similarly, A4 = h;ze. The variety T2 splits into LY and L§S, which intersect in L, Hence
{9)

hl,:"' = hi,:" --i' hl.:" - "L;"'

Combining (7)-(9), we obtain

hLi" = h,_:.: — h,:,l + hb-:.a- (10)

Now we calculate each of the polynomials on the right side.
For any cycle Z in P* x P, let i, denote its embedding in P? x P, let Py and P, denote the projec-

tions of P2 x P? on each of the factors.

The variety L33 is embedded in P* x P? and is the intersection of divisors of bidegrees @3,0), 2, 1),

(1, 2), (0, 3).

54

Let D, be the divisor of bidegree (3, 0). Then we have
0— pi (O (— 3) — Oprxn— Op,— 0.

Forming the tensor product of this sequence with p:(O(n)) @ p; (0(m)), we obtain

L B <R g R &
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In particular, pa(L}™) = §, deg L] = 45, which 18 Fano's classical result [3].

The author wishes to use this opportunity to express his deep gratitude to Yu. 1. Manin under Whose
direction this paper was written,
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