A GEOMETRICAL PROCEDURE FOR KILLING THE MIDDLE DIMENSIONAL HOMOLOGY GROUPS OF ALGEBRAIC HYPERSURFACES

A. LIBGOBER

ABSTRACT. Explicit construction for decomposition of algebraic hypersurfaces into a connected sum of handles and a homological projective space is discussed. Also a connection is provided between Levine's results about the Arf invariant in the theory of knots and the computation of Arf invariant of hypersurfaces by S. Morita and J. Wood.

Morita [1] and Wood [2] have recently proved the following theorem:

THEOREM 1. Let V_n^d be a nonsingular algebraic hypersurface of an odd dimension n and of degree d in an (n + 1)-dimensional complex projective space. Then there are two cases:

(i) If $d \neq \pm 3$ (8) or n = 1, 3, 7, then V_n^d is decomposable into a connected sum of copies of $S^n \times S^n$, and a differentiable manifold M_n^d with middle Betti number zero.

(ii) If $d \equiv \pm 3$ (8) and $n \neq 1, 3, 7$, then V_n^d is decomposable into a connected sum of copies of $S^n \times S^n$ and a differentiable manifold M_n^d with middle Betti number 2 and Kervaire invariant 1.

In this paper we describe an explicit geometrical construction for getting such a decomposition, from which Theorem 1 will follow. Our theorem however will not include the case n = 4k + 1, $d \equiv 4$, 6 (mod 8).

In subsequent work we shall study in more detail the topological structure of M_n^d starting with the description of it obtained below, and also use the degeneration discussed here to get some information about the topology of even dimensional projective hypersurfaces.

We study a special hypersurface $V_n^d(c)$ which is a projective closure of an affine hypersurface defined by the equation

 $P_n(Z_0 \cdots Z_n) = Z_0^d + Z_1^{d-1} + Z_1 Z_2^{d-1} + \cdots + Z_{n-1} Z_n^{d-1} = C.$

In the following theorem we discuss some properties of this hypersurface.

THEOREM 2. (i) The hypersurface $V_n^d(c)$ is a nonsingular projective variety for $c \neq 0$, and has a single isolated singularity for c = 0 at the point $Z_0 = Z_1 = \cdots = Z_n = 0$.

© American Mathematical Society 1977

Received by the editors April 26, 1976 and, in revised form, September 30, 1976.

AMS (MOS) subject classifications (1970). Primary 14M99, 57A15, 57D55.

(ii) If C is sufficiently close to zero then the intersection of $V_n^d(c)$ with a disk of a small radius ε , centered at the origin, is an (n - 1)-connected (2n)-manifold F_n^d and its n-dimensional Betti number b_n is given by

$$b_n = d^{-1} [(d-1)^{n+2} - (d-1)].$$

(iii) The characteristic polynomial $\Delta_n(t)$ of the monodromy of the isolated singularity of V_n^d can be computed by the recursive equation

$$\Delta_{n+2}(t) = \Delta_n(t) \frac{t^{d(d-1)^{n+2}} - 1}{t^{(d-1)^{n+2}} - 1} \frac{t^{(d-1)^{n+1}} - 1}{t^{d(d-1)^{n+1}} - 1},$$

$$\Delta_1(t) = \frac{t^{d(d-1)} - 1}{t^d - 1} \frac{(t-1)}{t^{(d-1)} - 1}.$$

(iv) If n is odd then

$$\Delta_n(1) = 1,$$

$$\Delta_n(-1) = d \quad for \ d \ odd,$$

$$\Delta_n(-1) = (d-1)^{(n+1)/2} \quad for \ d \ even.$$

Now let T_{2n} be a 2*n*-dimensional manifold which is a plumbing of two copies of a tangent bundle of the sphere S^n . Since $\Delta_n(1) = 1$, it is known that the boundary of T_{2n} is homeomorphic to S^{2n-1} . Denote by D^{2n} the disk of dimension 2n. Then we have the following theorem.

THEOREM 3. Define the manifold M_n^d as a gluing of $V_n^d(C) - F_n^d$ and D^{2n} when $d \neq \pm 3$ (8), or $d \neq 4$, 6 mod (8) and n = 4k + 1, or n = 1, 3, 7. Otherwise define M_n^d as a gluing of $V_n^d(C) - F_n^d$ and T_{2n} . In the first case M_n^d is a closed manifold with vanishing middle homology group. In the second case the n-dimensional Betti number of M_n^d is 2 and its Kervaire invariant is 1, except in the case when $d \equiv 4$, 6 (mod 8) and n = 4k + 1. In both cases the hypersurface $V_n^d(C)$ is diffeomorphic to a connected sum of M_n^d and copies of $S^n \times S^n$.

In the case $d \not\equiv 4$, 6 (mod 8) and n = 4k + 1 all assertions of Theorem 1 are evidently contained in Theorem 3.

PROOF OF THEOREM 3. From the results of Levine [3] it follows that F_n^d has Kervaire invariant one if $\Delta(-1) \equiv \pm 3$ (8), and Kervaire invariant zero if $\Delta(-1) \equiv \pm 1$ (8). Hence we can derive the value of the Kervaire invariant of F_n^d by (iv) of Theorem 2. Since the boundary of F_n^d is a homotopy sphere, Wall's results [4] show the diffeomorphism type of F_n^d is determined by the Betti number b_n and the Kervaire invariant. Hence for $d \neq \pm 3$ (8) or $d \neq 4$, 6, and n = 4k + 1 or $n = 1, 3, 7, F_n^d$ is diffeomorphic to a connected sum of copies of $S^n \times S^n$ with removed disk, otherwise F_n^d is a connected sum of T_{2n} and copies of $S^n \times S^n$. The assertion about the Betti number of M_n^d follows from the well-known fact that the Betti number of a nonsingular hypersurface of odd dimension n and degree d is equal to $d^{-1}[(d-1)^{n+2} - (d-1)]$ (i.e., to the Betti number of F_n^d). This completes the proof of Theorem 3. **PROOF OF THEOREM 2.** Assertion (i) follows by a standard computation. Next recall [5] that the polynomial $f(Z_0 \cdots Z_n)$ is weighted homogeneous of type $(W_0 \cdots W_n)$ if it can be expressed as a linear combination of monomials $Z_0^{i_0} \cdots Z_n^{i_n}$ for which

(1)
$$i_0/W_0 + i_1/W_1 + \cdots + i_n/W_n = 1.$$

We claim that polynomial $P_n(Z_0 \cdots Z_n)$ is weighted homogeneous of the type

$$\left[d, d-1, \ldots, \frac{d(d-1)^{i}}{(d-1)^{i} + (-1)^{i-1}}, \ldots, \frac{d(d-1)^{n}}{(d-1)^{n} + (-1)^{n-1}}\right]$$

This follows since (1) can be checked directly for every monomial of the polynomial $P(Z_0 \cdots Z_n)$.

To complete the proof of Theorem 2 we need the results of Milnor and Orlik [5] which we describe now.

To each polynomial of one variable $(t - \alpha_1), \ldots, (t - \alpha_n)$ assign the element $\langle \alpha_1 \rangle + \cdots + \langle \alpha_n \rangle$ of the group ring $Z[\mathbb{C}^*]$ of the group \mathbb{C}^* . We denote this element by

$$\operatorname{div}((t-\alpha_1)\cdots(t-\alpha_n)),$$

and let Λ_n denote div $(t^n - 1)$. Milnor and Orlik proved

THEOREM 4 [5]. Let $f(Z_0 \cdots Z_n)$ be a weighted homogeneous polynomial of type $(W_0 \cdots W_n)$ having an isolated singularity at the point $Z_0 = \cdots = Z_n$ = 0. Then for C sufficiently close to zero the intersection of the hypersurface $f(Z_0 \cdots Z_n) = C$ with a disk of small radius ε centered at the origin, is an (n-1)-connected 2n-manifold and

(a) the rank of the n-dimensional homology group of this intersection equals $(W_0 - 1) \cdots (W_n - 1);$

(b) if $\Delta(t)$ is the characteristic polynomial of monodromy of the isolated singularity of $f(Z_0 \cdots Z_n) = 0$ then

$$\operatorname{div} \Delta_n(t) = \left(v_0^{-1}\Lambda_{u_0} - 1\right) \cdot \cdot \cdot \left(v_n\Lambda_{u_n} - 1\right)$$

where the weights are expressed in the form $w_i = u_i/v_i$ (i = 0, ..., n) with u_iv_i -mutually prime integer numbers.

We are ready to show (ii). We use the values of the weight $W_0 \cdots W_n$ which were found above, and then from (a) of Theorem 4 it follows that the expression for the rank of $H_n(F_n^d, Z)$ is

$$\mu = (W_0 - 1) \cdots (W_n - 1) = (d - 1) \prod_{i=1}^n \left[\frac{d(d - 1)^i}{(d - 1)^i + (-1)^{i-1}} - 1 \right]$$
$$= (d - 1) \prod_{i=1}^n \frac{(d - 1)^{i+1} + (-1)^i}{(d - 1)^i + (-1)^{i-1}}$$
$$= d^{-1} \left[(d - 1)^{n+2} - (d - 1) \right].$$

(iii) We prove now that

(2)
$$\operatorname{div} \Delta_n(t) = \sum_{i=0}^n (-1)^{n-i} \Lambda_{d(d-1)^i} + \sum_{i=0}^n (-1)^{n-i-1} \Lambda_{(d-1)^i}.$$

The proof of (2) is based on the following identities [5]:

$$\Lambda_{(d-1)^{n+1}}\Lambda_{d(d-1)^{i}} = (d-1)^{i}\Lambda_{d(d-1)^{n+1}},$$

$$\Lambda_{(d-1)^{n+1}}\Lambda_{(d-1)^{i}} = (d-1)^{i}\Lambda_{(d-1)^{n+1}}.$$

The inductive step follows from the next computation:

$$\begin{aligned} \operatorname{div} \Lambda_{n+1} &= \operatorname{div} \Lambda_n \cdot \left(\frac{d}{(d-1)^{n+1} + (-1)^n} \Lambda_{(d-1)^{n+1}} - 1 \right) \\ &= \left(\sum_{i=0}^n (-1)^{n-i} \Lambda_{d(d-1)^i} + \sum_{i=0}^n (-1)^{n-i-1} \Lambda_{(d-1)^i} \right) \\ &\times \left(\frac{d}{(d-1)^{n+1} + (-1)^n} \Lambda_{(d-1)^{n+1}} - 1 \right) \\ &= \sum_{i=0}^n (-1)^{n-i-1} \Lambda_{d(d-1)^i} + \sum_{i=0}^n (-1)^{n-i} \Lambda_{(d-1)^i} \\ &+ \left[\frac{d}{(d-1)^{n+1} + (-1)^n} \sum_{i=0}^n (-1)^{n-i} (d-1)^i \right] \Lambda_{d(d-1)^{n+1}} \\ &+ \left[\frac{d}{(d-1)^{n+1} + (-1)^n} \sum_{i=0}^n (-1)^{n-i} (d-1)^i \right] \Lambda_{d(d-1)^{n+1}} \\ &= \sum_{i=0}^n (-1)^{n-i+1} \Lambda_{d(d-1)^i} \\ &+ \sum_{i=0}^n (-1)^{n-i+1} \Lambda_{d(d-1)^i} + (-1)^{n+1} \Lambda_{d(d-1)^{n+1}} + (-1)^i \Lambda_{(d-1)^{n+1}} \\ &= \sum_{i=0}^{n+1} (-1)^{n-i} \Lambda_{d(d-1)^i} + \sum_{i=0}^{n+1} (-1)^{n-i} \Lambda_{(d-1)^i}. \end{aligned}$$

From (2) it follows:

$$\Delta_{n+1}(t) = \Delta_n^{-1} (t^{d(d-1)^{n+1}} - 1) (t^{(d-1)^{n+1}} - 1)^{-1}.$$

The recursive equation mentioned in Theorem 2 is implied by the last formula. The assertion about Δ_1 follows immediately from Theorem 4.

(iv) It can be seen from the recursive equation in (iii) that

$$\Delta_n(1) = \Delta_{n+2}(1),$$

$$\Delta_n(-1) = \Delta_{n+2}(-1) \text{ for } d \text{ odd, and}$$

$$(d-1)\Delta_n(-1) = \Delta_{n+2}(-1) \text{ for } d \text{ even.}$$

A. LIBGOBER

The value $\Delta_1(1)$ equals 1 and $\Delta_1(-1)$ equals d for d odd and (d-1) for d even.

Thus all assertions of Theorem 2 are proved.

I am grateful to the referee for his very interesting and important remarks. I also wish to thank Professor Moishezon for his help and advice.

References

1. S. Morita, The Kervaire invariant of hypersurfaces in complex projective spaces, Comment. Math. Helv. 50 (1975), 403–419. MR 52 #6756.

2. J. Wood, Removing handles from nonsingular algebraic hypersurfaces in CP_{n+1} , Invent. Math. 31 (1975), 1-3.

3. J. Levine, Polynomial invariant of knots of codimension two, Ann. of Math. (2) 84 (1966), 537-554.

4. C. T. C. Wall, Classification of (n - 1)-connected 2n-manifolds, Ann. of Math. (2) 75 (1962), 163-198. MR 26 # 3071.

5. J. Milnor and P. Orlik, Isolated singularity defined by weighted homogeneous polynomials, Topology 9 (1970), 385–393. MR 45 #2757.

DEPARTMENT OF MATHEMATICS, TEL-AVIV UNIVERSITY, TEL-AVIV, ISRAEL