
BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 2, Number 3, May 1980 

DIFFEOMORPHIC COMPLETE INTERSECTIONS 

WITH DIFFERENT MULTIDEGREES 
BY ANATOLY S. LIBGOBER AND JOHN W. WOOD1 

A complete intersection Xn(d) C CPn+r of hypersurfaces of degrees 
dx, . . . , dr is determined up to diffeomorphism by the dimension n and the 
multidegree which is the unordered r-tuple d = (dx, . . . , dr). A general prob­
lem is to find invariants which determine the diffeomorphism type of X. In this 
note we announce partial results which allow us to prove that in any odd di­
mension there are infinitely many pairs of multidegrees for which the correspond­
ing complete intersections are diffeomorphic. This follows from a result character­
izing the homotopy type of X under some restrictions, an estimation of the 
number of differential structures with prescribed Pontryagin classes on a given 
homotopy type, and a counting argument. Complete proofs of these results will 
appear elsewhere. 

A necessary feature of these examples is a large codimension. 

PROPOSITION. / / 2 r < n and n > 29all complete intersections diffeomor­
phic to a given complete intersection of codimension r have the same multi-
degree, where (di, . . . , dr) with each d. > 1 may be identified with 
(d19...9dr9l9...9l). 

Let d be the total degree, d = dx . . . dr9 and assume d — ± 1 mod 8. Let 
n - 2m + 1. Then there is a differentiable connected sum decomposition Xn(d) 
= Mn(d) #Sn x Sn # • • • #Sn x Sn where Mn(d) has the homology of CPn\ 
this follows from a computation of the Kervaire invariant, see [5]. The coho-
mology ring structure of Mn(d) is Z[x, y]l{xm + l = dyfx

n^x = 0} where the 
dimensions of x and y are 2 and « 4 - 1 respectively. We call a simply connected, 
2«-dimensional CJV-space M with such a ring structure ad-twisted homology CPn. 

THEOREM 1. Ifn~2m + \ and d has no divisors less than m + 2, then 
any two 2n-dimensionalf d-twisted homology CPn's are homotopy equivalent. 

As a consequence, with these hypotheses the homotopy type of Xn(d) is 
determined by n9 d9 and the Euler characteristic. The theorem follows from a 
spectral sequence argument which shows M is equivalent to the 2«-skeleton of the 
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fibre of the map CPn —> K(Z/d, «4-1) defined by the cohomology class 
y mod d. 

THEOREM 2. Let M be a smooth, d-twisted homology CPn. Assume d 
has no divisors less than n + 3. Then the number of differentiable structures on 
M with given Pontryagin classes does not exceed the order of the reduced stable 
cohomotopy group ir°s (CPn) = lim [Sq A CPn, Sq]. 

The proof is an application of surgery theory, see [1], [2]. By the sur­
gery exact sequence, the set of homotopy smoothings of M, hS(M), embeds in 
[M, G/O]. Also there is an exact sequence 

TT°(M) - > [M, G/O] - > KO(M). 

The image of [M, G/O] is contained in the free part of KO(M) and consequently 
if Afj and Af2 in hS(M) have the same Pontryagin classes, then they differ by an 
element of 7r° (M). The assumption on divisors of d implies 7r° (M) = 7r° (CPn). 

To construct diffeomorphic complete intersections it suffices, for a fixed d 
satisfying our hypotheses, to find more complete intersections with given 
middle Betti number and Pontryagin classes than the order of ir°(CPn). These 
invariants depend on the first n symmetric functions ot, . . . , on of the multi-
degree. A counting argument shows that, for sufficiently large codimension r, 
the number of distinct multidegrees corresponding to a fixed (sufficiently large) 
degree d is greater, by an arbitrarily assigned factor, then the number of possible 
corresponding values of the vectors (o1, . . . , on). 

The examples promised by this general theory have very large degrees and 
Betti numbers. However classification theorems for low dimensional manifolds 
permit us to give examples for n < 3. For algebraic curves the classification of 
real 2-dimensional surfaces gives many examples. The first two examples are 
X1(1) = X1(2) = 5 2 andX1(2,2) = Z1(3)= JS

1 x 5 l . For surfaces,X2(2,2,2) 
= X2(3, 2) = X2(4) are diffeomorphic K-3 surfaces. The classification of 
simply connected 4-manifolds up to homotopy type [3, p. 103] yields examples 
of homotopy equivalences—but there the diffeomorphism question remains 
open. The first three of these further examples are: 

Multidegree Degree Signature Betti number cx intersection 
form 

5,2,2,2,2,2 160 

6,5,3 90 

6,6,6,2,2,2,2 3456 

8, 4, 4, 3, 3, 3 " 

6,6,6,2,2,2,2,2 6912 

8,4,4,3,3,3,2 

-1920 
19 

•131328 
it 

-269568 

5758 
n 

639358 
n 

1403134 

- 6 
- 8 

-16 
II 

-17 

even 

odd 
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Wall's classification theorem [4] for simply-connected 6-manifolds gives 
examples of diffeomorphic 3-folds. The first case is ^3(16, 10, 7, 7, 2, 2, 2) = 
^3(14, 14, 5, 4, 4, 4), both of degree 62720. The examples were found by com­
puter search; we thank Neil Rickert for guidance in this. 
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