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LEVINE'S FORMULA IN KNOT THEORY
AND QUADRATIC RECIPOCITY LAW

by A. LIBGOBER

§ 1. INTRODUCTION

A k-knot is a k-dimensional submanifold of S**? which is homeo-
morphic to a sphere. Any knot X is bounded by a submanifold F**! < §t*3
which is called the Seifert surface of K. One associates with K the Alexander
polynomial 4 (¢). Moreover if k = 4n + 1 then one may associate with F4*+2

the non-degenerate quadratic Z,-form ¢ on H,,, , (F4*2, Z,). Levine's.

formula asserts that the Arf invariant of this quadratic form is trivial if
4 (~1) = £1 (mod 8) and is non trivial if 4 (=1) = +3 (mod 8).

Levine’s proof consists of two parts. The first one is topological and
states that both the quadratic function ¢ on H,,,, (F**32, Z,) which is
used for the computation of the Arf invariant, and the Alexander poly-
nomial can be expressed in terms of the Seifert pairing L of F***2, which
is the bilinear form on H,,. (F***2, Z). Namely

(1) @ (x mod 2) = L(x, x) mod 2
and ‘

@ A(1) = det (L—tLY

i.e.

(2a) 4(—1) = det(L+LY.

(L* ¢, y) is by definition L (y, x)).

The second part of Levine’s proof is the remarkable observation that
the Arf invariant of a quadratic function defined by (1) can be found in
terms of the associated bilinear form Z + Z'. He proved the following

(cf. [6]
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Levine's lemma. Let L (x, ¥) denote a bilinear form on g free abelian

group such that d = det (L +L)isodd. Let ¢ denote the quadratic function
on ¥V ® Z, defined by (1). Then .

1 if ds:l:l(modS)
Affp =

-1 if 4= 13 (mod 8)

(We suppose that the range of Arf invariant js +1).

The purpose of this Paper is to show that Levine’s lemma is closely
related to the Weil-Milgram reciprocity law ([4), [5D. In fact our main
result is a generalization of Levine’s lemma to arbitrary algebrajc number

Let F denote an algebraic number field and L be a bilinear form ona
projective module P over the ring R of integers in F. Suppose that the
determinant of the symmetrized form 4 = det (L+L% is relatively prime
to 2.

symbol by

0 if aep
p

2 1 if ais square in R/p
( ) -1 otherwise .

s - a
In the same way we denote the multiplicative extension of (—) on the
p

group of all non-dyadic ideals of R,

THEOREM. With the above notations,

2
4 Arf Lo= (_~.
o - (3
where p runs through all tamely ramified dyadic prime ideals of R and
dR is the principal ideal generated by d.

In § 2 we give the becessary definitions and formulate two lemmas about
Gauss sums for bilinear forms,

In § 3 we prove the theorem, using the results of § 2. The proofs of the
lemmas in §2 js given in §4, Finally I would like to thank A. Adler,
W. Pardon, and C. Weibel for usefu] discussions.
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§2. WEL-MILGRAM QUADRATIC RECIPROCITY LAW

Let Ag denote the adele group of the field F i.e. the group of infinite
vectors (... x, ...) where v runs through all valuations of F, x, is an element

of completion F,, and all x, except for finite number of s are integers,’

F is diagonally embedded in A;. Let y denote a character of 4 p trivial on F,
Let y, be the following special character of such type. On the archimedian
component v of the adele {x.} € 4, y, takes the value exp (~2=iTrx,),
and on a non-archimedian component exp (2niTrx,). Here Tr denotes the
absolute trace from the v-component F, of Ag to Q; where © is a valuation
of Q over which lies v. Recall that exponent of p-adic number g is defined
as exponent of a component a, in presentation g = a, + a, where a; € Q,
a =p*a,a1€Z and a, ¢ Z,. Any character y of the type above has
the form x — %, (2x) for some rational g,

Let g be a quadratic form defined on the vector space V over F, where v
is one of the non-archimedian valuations of F. Suppose that L is a lattice
in ¥ such that x (¢ (@) = 1 for any x € V. The dual lattice L* is defined as
follows

(6) L ={heV|2(@x,B) =1 for VxeV}
where
N q(x.5) = q(x+y) —a(x) — q ()

is the bilinear form associated to g. Then the correspondence g+ yX (g)
where

(8) r@= X x@®/| T xam)]
hel # 1, kel #L

defines a character of the Witt group W(F,) ([5]). (Over a field of zero
characteristic we can identify the Witt group of quadratic forms with the
Witt group of bilinear forms by the correspondence (7)). For an archimedian
valuation v, the character y¥ is defined as follows.

© Yi(@) = exp T @
if F,isR, and .

(10 velg) =1

-~



(1 IT7i@) =1

where v runs through ali valuations of F.
If §is 2 symmetric bilinear form over Z, on the lattice such that
7(x) = S(x,%) is an even quadratic form, then applying \(11) to @ (x)

1
= 3 ¢ (x) and the character Xo of the ring Aq defined above, one concludes

that
xie (q)
(12) e 4 = E ez-t'(x)/, Z e)ttr(x),

nL:[L' .u:.;‘/z.,

where L, is the lattice of integer vectors in the p-adic completion of £,
This is the essential part of Milgram’s formula ((4D.

Now let us consider properties of the character y* in more detail,

Let Fp be one of the completions of F where p is a non-dyadic prime
ideal.

LEMMA 1. Let g be a quadratic form over Fp. Let a be a unit in Fp.
Denote by (aq) the quadratic form defined by (2g) (x) = 4. g (x).
en

(13) 75 (ag) = ((det“q;E) v @

where (=) is the quadratic residue symbol, s is the support of the character
X, and rkq is rank of the form q.

Remark. det § is defined up to a square in Fp, and therefore the quad-
ratic residue symbol in (13) is well defined,
Now'we consider dyadic valuations,

LEMMA 2, Let ¢ denote a quadratic form over a ring of integers R, of

the dyadic field £y such that the determinant of the associated form ;
(see (7)) is a unit in R,. Let x be a character of F, with support R, Ifp
is tamely ramified over Q then

(19 Arf (g mod p) = yZ (2¢).
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Otherwise
(15) vp(29) = 1.

Remark. The condition on det g implies non-degeneracy of q at p.

§3. PROOF OF THE MAIN THEOREM

Note that the rank of ¢ is even because determinant of the associated
bilinear form is odd. Therefore

(16 vi(ag) = (( — a)) v @

for any character y. |

Now let us apply the Weil reciprocity law for the character x with
Support in dyadic components equal to the integers in the corresponding
ring, and to the forms ¢ and 24.

We have

I'.[ 75(29).= 1
1:[-7.'(4) =1.

For an archimedian components we have yZ (29) = yZ(g) because both
depend only on the signatures. Therefore dividing those two identities,
and using lemma 2 and (16) we obtain the identity (4).

Remark.- Levine’s lemma which in a specialization of the theorem for
R = Z in fact follows from Milgram’s formula (12). We should not worry
about ramification. Therefore lemma 1 can be used for the character x,
and is actually a classical property of Gauss sums ([2]). Lemma 2 in this
case essentially contains in [1]. ’

§4. PROOF OF THE LEMMAS

Proof of lemma 1. The Witt group of quadratic forms over a field of
zero characteristic is generated by one-dimensional forms ([4D. Because y*
is a character of the Witt group it is enough to check the lemma for forms
of one variable. Let = be a local parameter. Suppose that ¢ (x) = an®x3,
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and y (x) = exp (22 Tr (Br°x)) where « and 8 are upjts, Suppose that the
different b of Fo/Q, is b = (). Let # be an integer such that M+ b+e
+d > 0. Then We can take as Z, the lattice (). The dual lattice 2# jg
(CalataliY Therefore ‘

¥ (q) = > €xp 2ri (Tr afinctiz2yy

Xe(x=b-c=nd),(n)

| ¥y Xp 2ni (Tr af n**ex2) |
xu(l"'"“"""")l(l")

After a change of variables g~4-c-a-¢ ¥ = X, we obtaip

) xfy?
z = 2 TShri———
(17) (@ ( anlttz"z+°+°+‘) CXp 2mi Tr (1:2"'"*"“1:‘))

. afy?
na,/(-zg:rbﬂ“) %P 2mi Tr (M) /

The numerator of 7*(q) is a Gauss sum of the type considered by Hecke 2.
The same arguments show that

(13) 7 (ag) = (,,T"——,) 7o)

Now the support of y is (7%, (det 9) R, = (z), and (—az-;)= 1, therefore
b1

the lemma follows,
Now let F, 1 denote a field of 2/ elements, Lety denote a non-trivial
character of the additive &group of F, ;. There exist 2 canonical choice of %,
namely

(x)

Tr
F 1P
(19) fo() = (=1 ¢

LEMMA 3, Let g be a nop singular quadratic form defined op g vector
Space V over F, ;, Thep

(20) Y (@) = z 2aw)| Z x@w))

is equal to the Arf invariant of q.
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Proof. We follow the classical scheme in [2), Let x = x, + a1 x
where x; € ¥/ V and x, € ¥/x*~ L. Then

5 Jt(qoc)), 5 x(q(x,)w-*a(x.,xz)+n=--=q(xz))

xeviety \ T snevist-ly Ly
:qu[sy
q(xy) q(xy) q (xy, %,)
=N Y x ( )+ % x( Y
x1m0(x) n" x) n X1 E0(=) n
21¢V|:“"1 4 xeVixt—1y

xgaV[x¥Y

The sum in brackets is the sum of the values of the non-trivial (because

det 7 is unit and supp x = R) character, hence is equal zero. Therefore
we obtain the result of the lemma because

(%) q(x)

z, (%) L2, ()

B ()7, 1
Xje -

Now we are ready to conclude the

Proof of lemma 2. Let e denote the ramification index of F, over Q,.
Thus for a character with the support R, the dual of integer lattice ¥ with

1
respect to form 2g in the lattice = V. Hence

" (@23) re) = ¥ 2(a0)/] L ()

xc?l'l? xc;-?ll’

" G L ()

If e is odd then by lemma 4, (23) is equal to

q(x) q(x)
xQEIV X (_1-!—)/ xuV[ZIV * (T)

which is, by the corollary to lemma 3, the Arf invariant of ¢ mod p. If e
is even then it follows from (22) that (23) is equal 1. This concludes the
proof of lemma 2.
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E £, 1 ® F,4 on which X (3 (%)) takes the value 1, jg 2271 (Arf ) 27-1
and the number of elements where » @ (x)) takes the value ~1 o
231 A 22771, Indeed it js +4sy to check for form of Arf invariant |
(which is 7(x, f) = f). On the other hand form of Arf invariant — | can
be written as g (q, B) = a?+ a8 4 3B%, where 5 % Y * ¥ for anyy, ([4)).
But ifm s chosen in such a way that y (x) = Xo (mx) (%o is defined above),
we have

X +aprspty o 5 (422 (1 4 magay)

i.e. number of the elements for which 7 G &) =~1in a quadratic
' Space with Aff invariant —1, equals the number of elements for which
4 Zo(q () =1 in the Space with Arf invarjape L. Therefore the lemma 3

: Remark, A connection between the Arf invariant and Gaysg sums wag
first observed in [1).

COROLLARY, Zer £, be a dyadic local field, I ¢ X denote q character of
the additive group of F, with Support R.. Let q bean Integer Quadratic

Jorm on the R -modyule y Such that the determinany of the associateq bi.
linear form s 4 unit. Then

S R GG

is equal 10 the Arf invarian of ¢ mod p.

Proof. The map x -y (;x) defines a non-trivial characte, of Rp/an

Therefore the expressions (20) and (21) coincide,

LEMMA 4, Let X denotes a character of the dyadic field F, with support

Let g denote ap integer quadratic form over the R, module such that
determinant of the associated bilinear form js 5 unit. Then

. LT
G L S S T -

e

g . q(x)) — ndimy (q(x))
3 2 —l) =N =
*? 22 xel’/zt"l’ X( L a.V/§~3v nt=?

$aaa

where & is the norm of the prime idea] of R,
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