CONGRUENCES MODULO POWERS OF 2 FOR
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INTERSECTIONS
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In this note we give formulas for the signature of complete intersections
modulo certain powers of 2. Our method also yields relations modulo
powers of 2 on the signature of ramified covers. We conclude with a
formula for the behavior under ramified cyclic covers of Rokhlin’s in-
variant for characteristic surfaces in a 4-manifold.

1. Signatures of intersections

Let X,,.(d) be a nonsingular complete intersection of hypersurfaces of
degrees d=d,,...,d, in CP,,.,. Suppose d,,...,d, are even and
d,.y,...,d, are odd integers. Let d=d, - - - d, denote the total degree.
Then the signature of X satisfies the congruence ([4] or [5])

d mod 8 if ("‘”) is odd,
. S
Slgﬂ XZm(‘_i)E (1)
0 mod 8 if (m:— s) is even.

This is a simple consequence of the theory of integral quadratic forms. If

m+s\ . . .
( ) is even, then the intersection form on H= H,, (X, Z) has even
S .

+
type, [5,(2.1)]. If (ms s) is odd, the homology class h € H defined by

intersection with a generic CP,,, is characteristic, that is x-x=
x-hmod?2 for any xe H. But also h-h=d, so (1) follows from the
lemma of van der Blij.

For a complete intersection of complex dimension 2 Rokhlin’s formula
relating the signature of an oriented 4-manifold and the self-intersection
of a characteristic submanifold implies a congruence modulo 16. Namely,
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210 A. LIBGOBER, J. WOOD AND D. ZAGIER

using the formula for the computation of an Arf invariant in coverings,
see § 7, we obtain for complete intersections of odd degree d

Sign X,(d)=d +8¢&(d) mod 16 2)
where
e(d)z{o if d=+£1mod8
1 if d=%3modS8.

S. Ochanine [6] has generalized Rokhlin’s formula to higher dimen-
sions and used mod 16 signatures to compute the Kervaire invariant of
certain complete intersections.

These examples suggest the problem: modulo which power of 2 does
the signature depend only on the total degree and what are explicit
formulas? In this note we give such formulas modulo 64 and higher
powers of 2. In particular we show (2) holds for any complete intersection
of odd degree d and dimension 2m congruent to 2 modulo 4. Our main
result is

THeOREM 1. Let X,,(d) be a complete intersection as above. Let D =
d,., - d, be the product of the odd entries in the multidegree, s the
number of even entries, and s* the number of d, divisible by 4. Then

Slgﬂ X2m(‘_i) = d(am,n - (D2 - I)Bm,x - 45*7111,1)
mOd 2mlx {6,5+3,4+35+3%}

(3

where a,, ,, Bm.,, and v,,, are constants depending only on m and s, and are
given by the generating functions (14) below.

The proof will start from the generating function for ¥ Sign X,,,(d)z*™.
The result (3) can also be given by a generating function (13); the point is
that working modulo an appropriate power of 2 the coefficients are much
easier to analyze.

In the following corollaries we give several cases where the congruence
has a simpler expression.

CoroLLary 1. If d is odd,

m+1

Sign xz,n(g)sd(1+(d2—1)(m—4[T])) mod 64 ()

where [r] denotes greatest integer <r.

Note that since, for odd d, 8 divides d*—1, we need only know
[m+1/2Jmod 2;itis 1 for m=1,2mod 4 and 0 for m=3,4 mod 4.

CoroLLarY 2. Sign X, (d) modulo 32 depends only on m, s, and d
except when d=2mod4 when it depends also on D.
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CoroLLARY 3. Modulo 16 the signature is determined by m, s, and d
and is given by the generating function

- d 822
Sign X,,.(d)z*" =——————+£(d) —— mod 16 5
,,,Z.:o gn Xzm(d) 1-z5)(1+ 2% ( )1+z“ )
where £(d) =0 unless d =+3 mod 8.
s m Sign X, (d) mod 16
0 0 mod 2 d
1mod?2 d+8e(d)
1 0 mod 2 d
1mod2 0
2 OorSmod8 . d
lor4mod8 —-d
2o0r3mod8 2d
. 6or7mod8 0
3 0O mod 4 d
1,2,0or3mod 4 0
=4 all m 0

2. Real varieties

In [8] Rokhlin showed that the signature of a projective variety
coincides modulo 16 with the Euler characteristic of the set of its real
points provided they form an M-manifold. Thus Corollary 3 provides
simplified formulas for the Euler characteristic mod 16 in the case of
complete intersections.

Let X,(d) be defined by polynomials with real coefficients and let
A=XNRP"" be its set of real points. It is a consequence of Smith
theory [8, § 2] that

dim Hy(A; Z/2)<dim H(X; Z/2).
A is called an M-manifold when equality holds (an M-curve in the
classical case n =1 of Hilbert’s sixteenth problem).

CoRrOLLARY 4. Let A*™(d) be an M-manifold, then the Euler charac-
teristic e(A) is given modulo 16 by the table of Corollary 3.
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3. Ramified covers

The method of proof of Theorem 1 also yields information about the
signature of ramified covers. Let N be an oriented manifold of dimension
divisible by 4 on which the cyclic group G = Z/d acts preserving orienta-
tion and acting freely on N—F where F is a codimension 2 submanifold
fixed by each ge G. N is called a cyclic cover of N/G ramified along F.
Then Sign N —d Sign N/G depends only on F and its normal bundle in N.
In [3] Hirzebruch gives an expression for this difference as a formal series
in Sign F*” with rational functions of d as coefficients, where F’ denotes
the r-fold self-intersection of F in N. Working modulo powers of 2 we
give explicit formulas for the coefficients.

THeEOREM 2. Let N be a d-fold cyclic cover ramified over F.
Then for d =2 mod 4,
Sign N—d Sign N/d = —Sign F - F mod 32. 6)
For d =0 mod 4,
Sign N—d Sign N/G = -5 Sign F - F+4 Sign F¥ ™
—4Sign F®+ —- - - mod 16.
For d odd
Sign N —d Sign N/G =(d*—1)(-3 Sign F® +Sign F®
~3 Sign F® +Sign F®— +- - -) mod 64
=(d*-1)(Sign F®+Sign F¥+- - ) mod 32
=0 mod 8. t))

CoroLLARY 5. If N** has an almost complex structure preserved by the
action of G = Z/d, then for d odd

Sign N—d Sign N/G =8&(d)c,_,(N) N ix[F] mod 16."

Here ¢ denotes the Chern class and i: F — N is the inclusion.

4. Proof of Theorem 1
Let
_l(1+z)'—(1—z)'
*E = a2y
Then

r

S Sign Xom ()2 =— [ ¢a(2)

2
m=0 1-z jm1
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where d =(d,, .. ., d,). This is Hirzebruch’s formula [2, 22.1.1] with y=1
and k=0. Now ¢;(z) can be expanded as a power series in z° whose
coefficients are polynomials in [ with rational coefficients. In fact these
coefficients have only odd denominators, that is ¢;(z) € Z,[[][[z*]] where

Zy ={a/b: a,be Z and b is odd}.
To see this observe that
1
H(z) =—l; tanh ([ artanh z)

and that the power series for tanh x and artanh x have only odd powers
of x and coefficients with odd denominators.

Next note that ¢;(z) is an even function of I, so the coefficients are
polynomials in I?, and that ¢(z)—1 vanishes for |==+1. Therefore
¢i(z)—1 is divisible by 1?~1 in Z,[I*][[z*]]. Moreover for | odd,
[?=1 mod 8, and hence (¢ (z) — 1)/(I*— 1) mod 8.isindependent of I. Taking
1=3, we find this value is —3z%/(1+3z?). Since if | is odd }I*—1)=
3(I12— 1) mod 64,

2

lodd=> ¢n(z)=1— (- )1 ~smod 64, )
Similarly if =2 mod 4, then [?=4 mod 32, so
I=2mod 4= ¢(z)= 1:22 mod 32. (10)
Finally if {=0mod 4, then I*=0mod 16, so
1+ 22
Di1(2)=4(2) =167 5" mod 16.
Now
(1+z)* 4z 4z
1+627+2* L TH62+24 ! (1+z2)2m°d16’
O
=20 mod > dy(z) =— (1— 4z ) od 16 11)
o Az)=117 a+z22 " '

We next observe that (9) implies the congruence

d,l:lddd"“(Z)E'ml (d2—1)1+3 )

2
s1- ), (dz—l) 2mod64

di odd

because each d?—1 is divisible by 8.
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214 A. LIBGOBER, J. WOOD AND D. ZAGIER

Moreover the function d~>d*—1mod 64 from the multiplicative
semigroup of odd integers to the additive group 8Z/64Z is a
homomorphism since, if k and [ are odd,

K2R -1=(k*-1)+(*-1)+ (k2 1)(*-1)
= (k*—1)+(1*—1) mod 64.

Hence
2

132

where D=d,,, - - - d, is the product of the odd entries in the multidegree.
Combining (12) with (10) and (11) and observing that 2***" divides d we
obtain

l'l ¢4(z)=1—(D*-1) mod 64 (12)

Y, Sign X,,,(d)z*"

m=0

d < 322 1V 422 \*
== (o055 (5 ) (- ae)
1-2?% ( )1+3z 1+2? 1 1+ z%?
d z? 45*2 )
-
(1-z3(1+z2%* 1+3z (1-+-22)2 _
mod 2mu(6,5+:.4+1+:‘) (13)

This is equivalent to (3) if we define the a’s, B’s, and v’s as the
coefficients of the following expansions:

(1—(D2 1)

Z 1 1
,,,-oa"'" T1-22 2(1+ 2%
had 1 1 322

2m _ 4
,,.Z.Oﬁ"‘*'z 1-22(1+22) 1+32% (14)
i m 1 z?
m_o‘y""' 1-22(1+ 237

Note ¥, = a,,_; 4+2. For our purpose the a’s are computed mod 64, the
B’s mod 8, and the y’smod 4.

5. Proofs of the corollaries

For complete intersections of odd degree we have s=0. From (14)
a,, o= 1 for all m. Since s* =0, the term in (3) with s* vanishes. Therefore
we need only compute B,omod8. It is easy to check —-B,,=
m—4[{m+1/2]mod 8.

Next consider congruences mod 32. If d=0mod 8, the terms in (3)
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CONGRUENCES MODULO POWERS OF 2 215

involving D and s* ‘vanish mod 32, so the signature is congruent to
da,, , mod 32, If d =4 mod 8, then the term involving D vanishes mod 32,
so the signature mod 32 depends only on m, d, s, and s*. But s* itself is
determined by s since d=4mod 8 implies s=1, s*=1o0r s =2, s*=0.1f
d=2mod 4, then s*=0 and we have

- Sign X, (d)=d(a,,, — (D*—1)B,.,) mod 32.

Actual dependence on D can be seen in the examples X,(6, 1) and
X,(2, 3) of degree 6 in CP,: Sign X,(6, 1) = —64, Sign X,(2,3)=-16 and
the difference is 16 mod 32.

For the computation of the table mod 16, formula (5) follows from (13)
since (i) if s* #0 then 4d =0 mod 16 and (ii) D*~1=8&(D) mod 16. The
results of the table follow easily.

6. Proof of theorem 2
Denote the quotient manifold N/G by M and let i: F — M be the
inclusion of the branch set. Then i J[F]=dxN[M] for a class xe
H?*(M; Z). The signatures of M and N are given by
Sign M ={L(M){M]
Sign N = d{¢, (tanh x) L(M)}{M]

where L(M) is the Hirzebruch L-genus, see [3] or [9, (8.3)].

Let t=tanh i*xe H*(F; Q). F” is the intersection of r slightly de-
formed copies of F which meet transversely. The signatures of these
self-intersections are given by

Sign F"*V={rL(F)}{F], r=0.
Now

Sign N~ d Sign M = d{(¢,(tanh x) — 1) L(M)}{M]

_ [éa(tanh i*x)~1

N d{ tanh i*dx L(F)}[F]
_ ¢d(t)_ 1

=4 wan - fi

If d=2mod4, then by (10) ¢,(t)=1/(1+t*))mod32 and hence
(da(t)—1)/d4(t) = —t. This proves (6).

For d =2 the congruence can be replaced by equality. If d =0 mod 4
then ¢,4(t)=¢,(t) mod 16 and

cbd(t)—la_ 5+
th4 (1) 1+1¢2

=(—-5+42—4t*+— - - ) mod 16,
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from which (7) follows. If d is odd, ¢ ()—1=—(d2—-1)3¢%/(1+3¢3)
mod 64 by (9) and also 1/¢,(t)=1mod 8, so

<¢>,,(t)—1E 3t
td,(1) 143¢2
m=(d?—1)1(—3+2-3t*+ 15—+ - - -) mod 64.

From this (8) follows.
To prove Corollary 5 we must show

—(d*-1) mod 64

Y. Sign F® =¢,  (N)Ni[F]mod 2. (15)
rel
Now Sign F” is 0 for r odd and is congruent mod2 to the Euler
characteristic e(F") in any case. Denote by i the inclusion of F in N.
If Fis dual to ye HXN; Z), then F” is dual to y", that is iQ[F"]=
y’ N[N]. The normal bundle of i is the sum of r complex line bundles
with Chern class 1+i*y. Hence

e(F?) = (c(F7), [FD = (i*c(N)YA +iP*y) ™, [F]D
=(c(N)A +y) ™, iQ[FOD = (c(N)(1+y)"y", [ND.

Now

Y A+y) Ty =y,

r=}

]

Y e(F™) = 1 (N)y N[N] = oy (N) N ig [ F].

r=1

This shows (15) and completes the proof of Corollary 5.

7. Behavior of Rokhlin’s invariant in cyclic covers

First we recall Rokhlin’s definitions. Let V be a 4-manifold with
H,(V; Z/2)=0 and let K be an oriented characteristic surface, that is a
2-dimensional submanifold whose homology class mod 2 in V is dual to
wy(V). Let q: H,(K; Z/2)—>Z/2 be the quadratic function defined as
follows: given a class a € H,(K; Z/2) there is a surface S with boundary
such that S < K represents a and K meets S transversely at j interior
points. Let i be the obstruction to extending across S the field of unit
normal vectors to dS in K. Then q(a) = i +j mod 2 is a quadratic function
associated to the intersection pairing on K and Rokhlin’s invariant
k(V, K) is the Arf invariant of q.
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CONGRUENCES MODULO POWERS OF 2 217

Rokhlin’s formula [7] is
Sign V=K - K+8k(V, K) mod 16. (16)

It follows in particular that k(V, K) depends only on the integer homo-
logy class of K.

The behavior of Rokhlin’s invariant in ramified covers is given by the
following

ProposTiON. Let 71 V'—V be a cyclic cover of odd order d ramified
over F. Let K’ be an invariant surface in V' and K its quotient. Then K’ is
characteristic for V' iff K is for V and

k(V,K)=k(V,K)+e(d)K - Fe ZJ2. 17)

Proof. If X is any surface in V let tX, the transfer, be its inverse image
in V'. The basic formula for intersections is

tX-tY=dX-Y (18)

since we may assume XNY is disjoint from F. Since K’ is invariant,
K'=tK. If X' is a surface in V’, then as homology classes tmX'=dX'.
Now suppose K is characteristicc. Then K'- X'=tK- X'=tK - dX'=
(K- tnX'=dK - X' =dnX' - 7#X'=tnX' - tnX'=d’X'- X'=X'-X', so
K' is characteristic. The converse is similar, but shorter.

Formula (17) is a consequence of (16) and (8). Modulo 2 we have

k(V',k)=3(Sign V'-K'- K"
by (16)
=}(d Sign V+(d*—1)F - F-dK - K)
by (8) and (17)
=d}(Sign V-K-K)+¢(d)F- F
=k(V,K)+e(d)K-F

since K is characteristic.

There is also a simple geometric proof of (17) which does not depend
ultimately on the G-signature theorem. The restriction of 7 to K,
w: K'—= K, is a d-fold cover branched over KN F and transfer induces an
injection t: H,(K) — H,(K') on homology with Z/2 coefficients. An
a € H(K) can be represented by S € K where SN KN F = ¢. Then ta is
represented by 3(1S). Now ¢S meets K’'=tK in j'=dS - K points. Lifting
to 1S a vector field with isolated, nondegenerate zeros normal to S we see
i'=di and hence q'(t, x)=q(a)e Z/2. Hence q'|image t=q. Also q’ is
invariant under the covering transformations (which act on all of V).

Thus we can apply [10, Theorem 4] which, written additively, gives
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Arfqg'=Arfq+e(d)K - F since e(K) is even and the Jacobi symbol
(2] d)=(=1)*“). The proof in [10] is a simple counting argument.

To deduce formula (2) note first that, since d is odd, X,(d) is charac-
teristic for X,(d) and X,(d) - X,(d)=d so (2) follows from Rokhlin’s
formula (16) if we show that k(X;(d), X,(d)) = e(d). This is proved by
induction on r. For r=0 we have d =1 and k(CP,, CP,) =1 by (15). Let
d=(d,,...,d) and e=(d,,...,d) where d,<d, for 1<j=<r. By [11,
(2.1)] there is a regular branched cyclic cover X,(d)— X,(e) branched
over F=X,(d). Referring to the proof in [11, §2] we see that the
hyperplane section K’ of X,(d) obtained by setting the last variable equal
to 0 is a characteristic surface invariant under the group action; K’ and F
are homologous in X,(d) but not equal. The quotient K is the hyperplane
section X;(e) of X,(¢) and KNF= Xy(d) so KoF=d=1mod 2. Hence
by (17)

k(X,(d), X,(d)) = k(X,(e), X,(e)) + e(d,).
Therefore
k(Xy(d), Xi(d)) = e(d)+- - -+ &(d,) = e(d).
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