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DIFFERENTIABLE STRUCTURES
ON COMPLETE INTERSECTIONS. I

ANATOLY S. LIBGOBER AND J OHN W. wooD'

1. Introduction. In this paper we describe some work on the homotopy and
diffeomorphism classification of nonsingular complete intersections. This is in
part a survey of earlier results (especially [LW2,LW3]) and in part an extension
of those results to the even-dimensional case. R. Thom observed that the
diffeomorphism type of the complete intersection X,(d) is determined by the
dimension n and the multidegree d = (dy,...,d,). In fact these irgvariaﬁts de-
termine the isotopy class of the embedding of X in CP,,,. A basic problem is to
describe X up to homotopy or diffeomorphism in terms of a minimal set of
invariants computed from n and d. For example when n = 1, X is diffeomorphic
to a connected sum of tori and the number of summands is determined by the
Euler characteristic e =d{2 — 2j_(d; — 1)} where d=1%-,d; is the total
degree. .

By the Lefschetz theorem on hyperplane sections the inclusion X, <> CP,.,is
an n-equivalerice, that is m X —» mCP,,., is an isomorphism for i <» and an
epimorphism for i = n. From this and Poincaré duality it follows that the
homology groups of X, and CP, are the same except that the middle-dimensional
group, H = H(X; Z), is free of rank generally much greater than 1. (T he rank
can be computed from the Euler characteristic.)

Intersection pairing (i.e., Poincaré duality) makes H a unimodular bilinear form
space which is symmetric for n even and skew symmetric for n odd. Study of this
form leads to connected sum decompositions of X, the first step in our study of
differentiable structures. The skew symmetric case gives rise to a Kervaire
invariant studied by several authors, see especially [B3]. Differentiable structures
in this case are studied in part I of this paper [LW3]. Connected sum decomposi-
tion in the symmetric case is treated in [LW2]; we summarize these results in §2.
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Circumstances in which the homotopy type of X is determined by the integral
cohomology ring are presented in §3. For this in §4 we construct degree one maps
between nonsingular complete intersections from certain algebraic maps of X to
projective space which are one-to-one with singular image, generalizing the notion
of cuspidal projection for curves. The application of surgery theory is given in §5
and in §6 results on diffeomorphism, isotopy, and the moduli space of complete
intersections are described.

Unless otherwise specified we will always assume 7 > 2: most of our methods
do not work when n = 2.

The case n = 3 illustrates the program we would like to carry out in higher
dimensions. A sequence of papers [W, J, 7] gives a complete classification of
simply connected 6-manifolds up to homotopy or diffeomorphism type. For a
complete intersection there is a smooth connected sum decompositions

X,(d) = M#S* X $#% - #53%x 83

where M is simply connected and has the same homology module as CPs. I
x € H¥( X; Z) is a generator, x3 N [M]=d is the total degree. The homotopy
type of M is determined by d, the Stiefel-Whitney class wy, and when d and w; are
both even, the Pontryagin class p,mod48. The diffeomorphism type of M is
determined by d, w,, and p;; see [LW3, §9] for more detail. We have used a
computer search to find examples of homotopy equivalence and of diffeomor-
phism:

X,(15,14,3,3,2) = X,(18,7,6,5)
and
X,(16, 10,7,7,2,2,2) = X;(14,14, 5,4,4,4)
are the examples in each case with smallest Chern class ¢,.

2. Connected sum decompositions. We begin by recalling results which permit
us to decompose X up to diffeomorphism as a connected sum X = M#N where N
is a smooth, (n — 1)-connected, almost parallelizable manifold and where rank
H,_ M is as small as possible.

First let us consider the case when n is odd. Then the minimal rank of H,M is
either 2 or 0. The former case holds if and only if the following two circumstances
happen.

(a) There is no homologically trivial n-sphere embedded in X with nontrivial
normal bundle.

In this case one can construct a natural nondegenerate quadratic form on
H(X,Z/2) associated with the intersection pairing.

(b) The Arf invariant of this quadratic form is nontrivial.

In terms of the multidegree of the complete intersection, (2) holds if and only if
the binomial coefficient (7111 is even where n = 2m -+ 11,3, or 7and /is the
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number of even entires in d = (d},..:,4d,). Provided (a) holds, the Arf invariant,
called the Kervaire invariant K(X), is given as follows:
() If d is odd

_ {0 ifd==x=1mod8,
K(x)= { 1 jfd=x+3mods.

(ii) If d is even K(X) = 1if and only ifn=1mod8, /=2, and 81d.

This was proven by Browder [B3] with special cases (and alternate methods) in
[M, W1, W3, L, O].

In the piecewise linear or topological category however one always has a
decomposition X ~ K#N where rank H, K = 0. The cohomology structure of K is
given by H*(K; Z) = Z[x, yl/{x" = dy,y*=0},n=2m+ 1. Wecalla simply
connected CW-space with this cohomology ring a d-twisted homology CP,. For
d = 1 such a space is homotopy equivalent to CP,. We will call K a coreand M a
smooth core of X.

The situation for » even is quite different, rank H, K can never be 0. The reason
is that not all homology classes in H, X are spherical. More precisely the image of
the Hurewicz map 7, X —» H, X is the orthogonal complement in H, X to the class
h Poincaré dual to x"/2 where x is the generator of H*(X). Geometrically # is the
class of a section of X by a linear subspace of CP,, of dimension n/2 + r. The
following results are proved in [LW2}:

(1) There is an orthogonal decomposition H,X= A ©® Bwhere h € 4 and rank
A<S.

(2) To any such homology decomposition corresponds a topological connected
sum decomposition X =~ K#N such that A = HK,B=H,N, and N — D" is
smooth, parallelizable, and (n — 1)-connected.

But 3(N — D?") is not necessarily a smooth 5§21 We call & manifold K
corresponding to an A of minimal rank a core of X. It depends on choices made in
its construction. The precise value of the minimal rank 4, in fact the entire
structure of A as a unimodular bilinear form space, is determined by 4 and the
type. The type of A is the same as the type of H which is even iff the binomial
coefficient (™}') is even where n = 2m and [ is the number of even entries in d,
see [LW2, §3].

Note that in fact N = a(S" X SH)#B(V' U D?*) where ¥ is the manifold
obtained by plumbing of tangent bundles over S™ according to the graph E;. Here
a and B are determined by the Euler characteristic and signature of X and the
rank and signature of 4. For example if the intersection form on H has even type,
then rank 4 = 2, & = ¥(e(x) — n — 2 — o(x)), and B = }o(X).

To construct a smooth connected sum decomposition of X let =48, 1,
0 < r < B,, where B, is the order of the group of homotopy spheres in dimension
2n — 1. Since aV generates this group, B,(¥ U D*") = (V4 ---RV) U D is a
smooth manifold and we have

(3) X = M#N where N = (8" X S"y#gBR (VU D) and M = K#r(V'U
D?") are smooth.



126 A. S. LIBGOBER AND J. W. WOOD

M is called a smooth core of X; its homotopy type is determined by the
homotopy type of the core K and by o(X). .

3. Homotopy type- We are interested in the question under what circumstances
the homotopy type of X,(d) or of a core K is determined by simple invariants. For
example when n is odd K is a d-twisted homology CP,. Assuming that d does not
have small divisors it is shown in [LW3, §2] that X is homotopy equivalent to the
2n-skeleton of the fibre of the map CP, - K(Z/d, n + 1). The result is

THEOREM 3.1. If n is odd and if p| d implies 2p = n + 3, then:
(i) Any two d-twisted homology CP,’s are homotopy equivalent.
(i) The homotopy type of X,(d) is determined by n, d, and the Euler characteristic.

‘Note that these invariants are all consequences of the intégral cohomology ring.
When 7 is even the core K is more complicated and we do not have a similar,
obstruction theoretic characterization. Nevertheless we make the following

Conjecture. If p| d implies 2p = n + 3, then the homotopy type of X,(d) and its
core are determined by the integral cohomology ring. ‘

This is true for n odd and also, for certain multidegrees, when » is even by 3.2
below. On the other hand, 3.4 gives an example where d has a small divisor in
which cohomology operations distinguish between homotopy types. Under the
assumption of the conjecture, however, by 3.5 cohomology operations are de-
termined by the ring structure. We pose the question when the homotopy type or
p-homotopy type is determined by the integral cohomology, for example assum-
ing2p=n+3 A related fact due to Deligne, Griffiths, Morgan, and Sullivan is
that any K%i:hlet manifold is formal (see [D]) and in particular the rational
homotopy type is determined by ‘the rational cohomology. Pete Bousfield pointed
out to us that if a finite complex is formal its p-homotopy type is determined for
sufficiently large p.

W. Browder has made the appealing conjecture that the homotopy type of a
complete intersection is determined by the integral cohomology ring and the type
of the tangent sphere bundle as a spherical fibration. -

We say a multidegree is pairwise relatively prime if d, is prime to d; for i # Jj.

TueoreM 3.2. Let X and X' be two n-dimensional complete intersections with
pairwise relatively prime multidegrees. Then they have homotapy equivalent cores if
and only if they have the same total degree.

PrOOE. Note that since we assume n > 2, the total degree is determined by the
cohomology ring of the core so the condition is necessary. Let p§t - - - pit be the
prime decomposition of the total degree of X, We will show that X has a core
homotopy equivalent to a fixed core Kof X= X(pf,...,pf). In the next section
we construct a map ¢: X — X such that ¢*X = x where x and X are generators for
H?(; Z). Since X and X have the same total degree, @ is a map of degree one.
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The theorem then follows from

PROPOSITION 3.3, Let ¢: X - X be a continuous map of degree one between
complete intersections of dimension n > 2 which commutes up to homotopy with the
inclusion in projective space and let K be a given core of X. Then there is a core K of
X which is homotopy equivalent to K.

PROOF. Let #: X — K be the map collasping N to a point. If we split X as K#N
where 7 © ¢ can be factored as g o 7,

le

X
7l

kK %

o [ |
A

so that § induces an isomorphism on homology, then by Whitehead’s theorem ¢
will be a homotopy equivalence.

Suppose first that n is even. Since 7 o ¢ has degree one, Poincaré duality
defines a splitting 8: H,K » H, X of 7 o ¢, cf. [B1, 1.2.5]. It follows from the
definition of 8 that B(hz) = k, so we may take A = BH,K as the unimodular
summand of H, X containing 4, and apply (2) of §2 to obtain a connected sum
decomposition X =~ K#N. Now N — D2 has the homotopy type of a bouquet of
n-spheres Such a sphere, f: §” —'X, satisfies f,[S"] € A+, so @, f,[S"] €
(H,K)*. Since =, X is a subgroup of H,,)? [W2, Lemma 2] it follows that
# o ¢ o fis null-homotopic so that 7 o ¢ can be factored as required above.

Now suppose 1 is odd. Then 7, X = Z/d ® H,X and similarly for X; further
@, Testricts to an isomorphism on Z/d. Then a,K = Z/d and (7 ° @), restricts
to an isomorphism. Hence the symplectic basis for H,X given by embedded
copies of " V §" in X used in the handle removing argument of [W1, §1] can be
modified so that these spheres lie in ker(7 o @),. This basis gives rise to a
decomposition X ~ K#N such that 7 e ¢ factors through K as required. This
completes the proof of Proposition 3.3.

The rest of §3 is not essential for the sequel; it concerns when cohomology
operations can be used to distinguish homotopy types of cores and when they are
formal consequences of the ring structure.

PROPOSITION 3.4. If 2p <n + 2, X,(p, p) and X,(p*) do not have homotopy
equivalent cores. . .

PRrOOF. We will show these cores are distinguished by their mod p characteristic
class q,, see [MS, p. 229]. First there is a Wu formula characterizing ¢, in terms of
the action of the mod p Steenrod algebra, hence g, is a homotopy invariant. Next
w*q,K = q, X where m: X - K is the collapsing map since g, is determined by the
Pontryagin classes py,...,2; (! = (p — 1)/2) and these correspond under 7* for
2(p — 1) <2n since N is almost parallelizable. Hence q,(K) is determined by
¢,(X). Finally g, belongs to a multiplicative sequence in the Pontryagin classes

rwes e w7
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and so can be computed from its value on line bundles: ¢,(¥®9) = (dx)?~'. It
follows tht g,(X,(p, p)) = (n+ 3 —2p*")x?"'mod p and ¢\(X,(p*)) =
(n+2—p%P~")x?"'mod p. For 2p <n+2, the class x?~! is indivisible,
hence these classes are different mod p.

For p = 2 replace ¢, by w, in the argument. Except when p =2 andn=2or4
mod 8, the cores have isomorphic cohomology rings. (In the exceptional case the
type of the intersection pairing is different.)

This method of detecting counterexamples cannot work when d does not have
small divisors:

THEOREM 3.5. If the total degree d of X,(d) satisfies p|d = 2p = n + 3, then the
action of the Steenrod algebra ( for any prime) is determined by the cohomology ring
of X.

PROOF. If n is odd this follows from 3.1 so we may assume 7 is even. Let E be
the subgroup of H"(X; Z) dual to the vanishing cycles, E = k' . The subgroup
generated by x"/2 and E has index 4 in H"(X; Z). Fix a prime p. Since
dim x = 2, Pix¥ = (¥)x**/#~1 (see [SE, p. 78]) and we need only consider the
action of Pf on H"(X Z/p). The only primes p for which PJ(H") lies in a
nonzero group satisfy 2p < n + 2 and these primes do not divide d. Therefore
x"/2 and E generate H*( X, Z/p). But the Steenrod operations vanish on E by
the following, since X is a hyperplane section.

LEMMA 3.6. Let V, be a nonsingular hyperplane section and let E be the subgroup
of H™(V) dual to the vanishing cycles. Then the Steenrod operations vanish on E.

PROOF. E is generated by classes dual to homology classes represented by
embedded spheres with normal bundle isomorphic to their tangent bundle [AF].
Let f: S" = V be dual to « € H"(V), let N be the normal bundle of f, and N* the
Thom space. Let p: ¥ - N* denote the map which collapses the complement of ¥
to the base point. Then p*(u) = a where u generates H"(N*). By naturality it is
enough to show the Steenrod operations vanish on u. This follows from the fact
that N* is homeomorphic to the product $” X §* modulo the diagonal. \

4. Special projections. The existence of the degree one map between complete
intersections needed for 3.2 is a consequence of the following

LEMMA 4.1. If a and b are relatively prime, then there is a degree one map
o: X (ab,cy,...,c,) = X,(a,b,¢p,..00¢).

PROOF. By repeated use of Bertini’s theorem the hypersurfaces given by the
equations
28+ +28=0,
b

Nozg +---+A,zk =0, A, #0,

and k equations of the form
fi=meft o Tz =0, i=1..k,
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have nonsingular intersection for generic choice of the coefficients. Bertini’s
theorem applies since the only base point of such a system, [1,0,...,0], does not
satisfy the first equation. Thus we may represent X, (a, b, c,....¢) up to
diffeomorphism by this complete intersection, cf. [W3, §2].

The image of this variety under projection to CP,,_, from {1,0,...,0], that is

under the map sending [z,. . .,Z,] t0[2},...,2,], is given by the equations
g8 . —gaYo = _z‘_lb_..._}\_mba
( Z) zm) }\ozl )\ozm

and f,=0 for i = l,...,k. The image is a singualr variety V. If a given point
[2y5...,2,] € V is the image of [z, z,,...,2,,], then z§ and z¢ are determined by
(2s..-+2,,)- Since a and b are relatively prime, z, is determined. Therefore :
X(a, b, cy,...,¢,) — Vis 1-1 and hence a homeomorphism.

Let ¢ be the retraction induced by degeneration of a nonsingular complete
intersection X,(ab, ¢,,...,c,) onto V. Then ¢ = 7' o y. These maps commute
with inclusion into CP,, so the generators of H?( ; Z) correspond. Since the total
degrees are the same, ¢ has degree one.

Another consequence of this construction is

COROLLARY 4.2. Ifd = (dy,...,d,) is pairwise relatively prime then there is a 1-1
algebraic map of X,(d) onto a singular hypersurface V of degree d. In particular
X.(d) and V are homeomorphic.

Given X,(d) C CP,,, the question of algebraically embedding X in lower
codimension has been much studied. Very recently L. Astey and S. Gitler have
obtained nonimmersion results in the smooth category. In the case of curves, 1-1
algebraic maps are called cuspidal projections and have been studied by R. Piene
[P]. §3 implies necessary conditions for such maps to exist.

PROPOSITION 4.3. Let X = X, () be a complete intersection which admits a 1-1
algebraic map into CP, .. Then X and the hypersurface X = X,(d) have homotopy
equivalent cores.

PrOOF. The image of X in CP,., is a singular hypersurface ¥ and the map
X - V is a homeomorphism. The retraction of X on ¥ provides a continuous,
degree one map X - X to which Proposition 3.3 applies. Hence the cores are
homotopy equivalent.

As a result applying 3.4 we get

COROLLARY 4.4. If 2p <n + 2, X,(p, p) does not admit a 1-1 algebraic map
into CP, .

5. Application of surgery theory. In this section we apply the exact sequence of
surgery theory to a smooth core of an even-dimensional complete intersection.
The treatment here is analogous to that in [LW3, §§3 and 4] for the case when M

-———am ¥
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is a d-twisted homology CP, for n odd. The main consequence is

THEOREM 5.1. The number of distinct diffeomorphism classes of complete intersec-
tions of even dimension n and total degree d with a core K of a fixed homotopy and
with given Euler characteristic and Pontryagin classes is less than a bound depending
only on n.

Let M be a fixed smooth core and denote by hS(M ) the set of smooth
manifolds homotopy equivalent to M.

LEMMA 5.2. If the middle Betti number of M is <b, the number of elements of
hS(M) with a given set of Pontryagin classes is bounded by a function of n and b

Proor. The exact sequence of surgery theory gives an inclusion of AS(M) in
[M, G/0), see [B1, 114.10). There is also an exact sequence

#9(M) - (M, G/0] » KO°(M) .

where the first term is reduced stable cohomotopy and the last is reduced real
K-theory, see [LW3, §3]. (This sequence is induced from the sequence of fibra-

tions SG » G/0 — BS0.) If the homotopy equivalence f: M, - M represents an-

element of AS(M), its image in KO°(M) is given by f-*rM, — M. 1f M, and M
have the same Pontryagin classes, then this image lies in the torsion subgroup of
KO°(M), cf. [B2, Lemma 2.24]. Also the set of elements in [M, G/ O] with the
same image in KO°(M) is bounded by the order of #°(M). Thus Lemma 5.2
follows from '

LEMMA 5.3. Let M be a core of a complete intersection of even dimension n with
middle Betti number less than or equal to b. Then:

(i) 7% M) is a finite group of order bounded by a function of b and n (and
independent of the degree). ‘ .

(ii) KO(M) has only even torsion of order < 2%,

PrOOF. The first assertion follows immediately from the Atiyah-Hirzebruch
spectral sequence for stable cohomotopy. The bound depends on b and the orders'
of the stable homotopy groups of spheres in dimensions < 2n, see [LW3;
Theorem 3.3(ii)].

Since H*(M; Z) is free and concentrated in even dimensions, the correspond-
ing spectral sequence for KO-theory shows that KO(M) has no odd torsion.
Replacing the map f: M - CP, by an inclusion the cohomology of the pair is
given by

freeof rank<b—1, g=n+1,
HY(CP,, M;Z) =1Z/d, g=n+3,n+5,....2n+1,
0, otherwise.

It follows from the spectral sequence for the pair that the even torsion in
KO'(CP,, M) is at most of order 2°~". Since the torsion in KO°CP,) has order
at most 2, assertion (ii) follows.
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For the odd-dimensional case in [LW3, §§4 and 5] with additional assumptions
more precise bounds are obtained.

Proor OF 5.1. For any X in a set of complete intersections with fixed invariants
as described in the theorem let X = M#N be a differentiable connected sum
decomposition where M is a minimal smooth core. The Pontryagin classes of X
determine the signature so by §2 the diffeomorphism type of N is the same for
each X as is the homotopy type of M. The middle Betti number of M is bounded
by b =75 + 8B, which depends only on n. The Pontryagin classes of M are
determined by those of X for if w1 X — M is the collapsing map, 7*: H*(M; Z) -
H*(X; Z) is injective and #*p(M) = p(X)for2j<n since the summand N is
almost parallelizable. The top Pontryagin class is then determined by the signa-
ture, 6(M) = o( X) — o(N). Therefore the theorem follows from Lemma 5.2.

6. Diffeomorphic complete intersections, isotopy, and moduli spaces. As a
consequence of the results of §§3 and 5 we have the following !

THEOREM 6.1. In any dimension n # 2 and for any integer k there are k distinct
multidegrees for which the corresponding complete intersections are all diffeomor-
phic. '

“ProoF. For n odd see [LW3, 6.3]. We give here the proof for n even. It suffices
to produce a sufficiently large number of complete intersections with the same
invariants as required in Theorem 5.1. The key result is a counting argument due
to A. O. L. Atkin, see [LW3, §6] for the proof.

PROPOSITION 6.2. Given integers n and N there are integers r and d such that the
number of distinct unordered r-tuples (d,,... ,d,) with product d and with the same
first n symmetric functions is greater than N. Moreover d may be taken to be a
product of 2r distinct primes.

It follows from [LW3, 6.1] that the Euler characteristic and Pontryagin classes
of the corresponding n-dimensional complete intersections are the same. Since
each multidegree is pairwise relatively prime, the cores are homotopy equivalent
by 3.2. The result follows by taking N greater than k times the bound in 5.1.

For n = 2 the recent work of Mike Freedman shows that the homeomorphism
type of these manifolds is deter.mineijl by the homotopy type and hence there are
many homeomorphic complete intersections with different multidegrees.

We conclude by quoting some results from [LW3] which hold for both even and
odd n and which relate equivalence up to diffeomorphism to isotopy and analytic
equivalence. First, examples of 5.1 never exist with small codimension because in
that case the differential structure on X determines the multidegree. More
precisely we have

TuroreM 6.3. If r=codim(X, C CP,,,)<n/2, n>2, then d and the
Pontryagin classes of X, determine certain symmetric functions of d from which r and
d,,...,d, can be recovered. If r is given and r<1+n/2,d,,...,d, can still be
recovered.
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An example shows the conditions on r are sharp: X(12,10) and X;(15,4,2)
have the same degree and Pontryagin class, in fact X;(12, 10) =
X,(15,4,2)#13440(S> X S%). By 6.3 this would not be possible if both had
codimension 2 or if either had codimension 1.

Using this result and Thom’s observation for the low codimension case and
Haefliger's work on isotopy classes of embeddings in higher codimension we
deduce

THEOREM 6.4. If X, and Y, are complete intersections in CP,,, and if X, is
diffeomorphic to Y,, then there is a diffeomorphism of CP, .., isotopic to the identity
carrying X, to Y,,.

On the other hand elementary considerations show

THEOREM 6.5. If X, and Y, are complete intersections of dimension n= 2 (and
with ¢, %0 if n=2) and if X, is analytically equivalent to Y,, then there is a
projective linear transformation of CP, .., carrying X, to Y,. Further they have the
same multidegree.

As was pointed out by B. Moishezon this implies

COROLLARY 6.6. The moduli space of complex structures on the smooth manifold
H underlying a complete intersection can have arbitrarily many irreducible components.

b Indeed if X and Y are complete intersections in the same component they are
| | connected by a sequence of small deformations. Then by a result of Sernesi [S] X
would be analytically equivalent to a complete intersection of the same multide-
1% gree as Y so by 6.5 X and Y would have the same multidegree. Thus 6.1 implies
T the corollary.
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