On the homotopy type of the complement
to plane algebraic curves

By A. Libgober at Chicago

0. Introduction

Let C be an algebraic curve in C? which may have arbitrary singularities. C*—C
is a two-dimensional Stein manifold [AF] and therefore has the homotopy type of a
two-dimensional complex. An algorithm for finding the fundamental group of C2—C
was given by van Kampen in 1932 [VK]. In this note we propose an approach to
finding the homotopy type of C? — C. Recall that to any presentation of a group G with
generators x,, ..., x, and relations r,, ..., r, one associates a two-dimensional complex
with one zero dimensional cell, n one dimensional cells corresponding to the generators
X{y..., X, and k two-dimensional cells corresponding to the relations r,...,r,. We
describe the homotopy type of C? —C by describing a presentation of the fundamental
group of C?—C such that the associated two-dimensional complex is homotopy
equivalent to C?—C. Note that presentations given in usual formulations of the van
Kampen theorem have the associated 2-complex with a bigger Euler characteristic than
C?—C (cf. [VK], [Ch]). Note that the presentation which we describe is the one given
by Moishezon [M] for curves with nodes and cusps. In the first section we give a proof
of the apparently known fact that the Wirtinger and Artin presentations of the
fundamental groups of the complement to a knot and closed braid respectively have
associated two-dimensional complexes homotopy equivalent to their complements in S>.
In the second section we describe the required presentation of n,(C*—C) in terms of
the braid monodromy introduced by B.Moishezon [M] and prove that for this
presentation the associated 2-complex is homotopy equivalent to C2—C. In the final
part we consider the change of homotopy type of the complement to the plane curves in
degenerations and consider computation of the homotopy type using the results of this

paper.

1. Presentations of knot groups
a. The Wirtinger presentation
Let L be an oriented link in 3-sphere S* which in this section we shall view as /3

compactified by one point. Let L be a projection of L onto a plane H which we can
assume given by the equation z=0. We shall assume that this projection is an
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immersion such that the image L has only double points as singularities. We can make
an isotopy of L to a link L which coincides with L everywhere except for a
neighborhood of a finite set D of points of L which contains the set of double points.
Moreover we can assume that

a) L coincides near any double point of L with the union of two curves one of
which is one of two branches of L and another running under H, (see figure 1a) and

b) L coincides near points of D which are not double points on L with a curve

running under H (see figure 1b). For sufficiently small ¢ the link L is a union of N arcs
in the half-space 4,={(x, y, z)lz> —¢} connected by underpasses. We consider a free

xa; xa; xal xaz
NS \—/
Xo,
H H

Figure 1a Figure 1b

group on N generators x,, a=1,..., N corresponding to those arcs. Each point of D
defines a relation of the following forms

8) X, X, Xz xn =1, or x;'x, x, x;;} =1 for each double point of L depending
on whether the orientation of L mduces left or right orientation at the double point,

b) x,,x,,'=1 for each point of D which is not double.

It is well known (cf. [R]) that {xi,. b X |R1, .. Rip-1} (ID| is the number of
points in D) is a presentation of =, (S*—L). It is called a Wirtinger presentation.
Analysis of the proof of this fact leads to the following more precise result.

Lemma 1. If L—D does not contain circles then the 2-complex associated to the
Wirtinger presentation of m,(S®— L) described above is homotopy equivalent to S —

Proof. Let B; denote an open box with the top face belonging to the plane
H,={(x, y, z)]z= —¢} and such that the underpass corresponding to the i-th point from
D belongs to B; (see figure 2a). We shall assume that only in one box, say Bp, which
corresponds to the |D|-th point for which the relation is dropped, the underpass does

touch the bottom face, say at the point p. In all other boxes B; the underpasses are in
{D|

the interior of the B’s. Let C=8%—{ A4, u U B) Then C —L is homeomorphic to a
closed 3 ball with the pomt LnocC omltted Therefore we can retract S*—L onto

v U B,~L by retracting C—LndC onto dC—LndC. Next each B,—L

(i=1,...,|D]—1) can be retracted onto 0B;—L which produces a retraction of
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|p| - _
4,0 |) B;—L onto (4,uBjp—L)yue, u---Uep -, where the ¢ (i=1,...,|D|—1) are
i=1

2-cells each of which is the union of the faces of B; not belonging to the plane H,.
Finally (4,v B, D.)-—Z is homeomorphic to a ball from which we have removed an
union of arcs the boundaries of which belong to the boundary of this ball. The latter is
homeomorphic to a cylinder with |D| vertical segments corresponding to overpasses of L
removed (see fig. 2b). Hence A, U B, Dl——f, can be retracted onto a wedge of circles
o, ..., &p corresponding to overpasses of L. m, (4, U Bjp— L) can be identified with the
free group on the generators x, ..., x;p described above. Thus we obtain a retraction
of $*—L onto a; U -+~ U p|-1 VI U+ Ulp -y. Clearly the attaching maps of the cells
e; are as described earlier. .
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b. The Artin presentation

Let B be a braid of n strings connecting sets §; and S, of n points in two disks D,
and D, belonging to parallel planes P and P. We can assume that D, and D, are the
top and the bottom of a cylinder C which is the part of a torus T in $3. By taking the
union of f and n untwisted strings in T — C one obtains the link f in $* which is the
closed braid corresponding to f. Any link is isotopic to a closed braid (cf. [B], p. 42).

Recall also ([M]) that any braid can be viewed as an isotopy class of orientation
preserving diffeomorphisms of D, which fix §; and induce the identity on dD,. Each
half twist of two strings corresponds to a rotation of a subdisk of D, by 180° about one
of the segments of a chosen system of (n — 1) non-intersecting segments in D, connecting
points in S;. Any diffeomorphism of D, fixing the set S, and which is the identity on
0D, is product of such half-twists which we denote in what follows by X,,..., X, _;.
Any such diffeomorphism & induces an automorphism of =, (D, —S;) which can be
shown to be of the form

D (y;) = 4; Yuy A !

where the y; are standard generators of n, (D, —S,) (cf. [B] and see fig.3a), u is a
permutation of n letters given by the braid f, and A; are certain words in y;, i=1,...,n.
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Recall that one can take as the y,’s a system of simple loops each of which, assuming
that S, is a set of points on horizontal diameter of D,, can be described as the union of
an arc, a vertical segment, and a small circle about a point of S, (see fig. 3a).

Figure 3a

It is well known (cf. [B]) that =, (S®—f) has a presentation with generators
V1s ---» ¥, and relations

Vi=AivanAit  i=1...,n-1.
We refer to this presentation of 7, (S —f) as to the Artin presentation.

Lemma 2. If a presentation of B as a reduced word in the X,;’s contains all the
generators X,,..., X,_, then the 2-complex associated with the Artin presentation is
homotopy equivalent to S — f.

Proof. Let N denote the number of half twists in the braid f or equivalently the
length of a reduced presentation of f as a word in generators X,,..., X,_,. After an
appropriate isotopy of f this number also will be equal to the number of double points
of a projection of B into a plane K perpendicular to P. For any pair of points of §
projecting into the same point of K, the point closest to K will be called an overpass
and the farthest will be called an underpass (relative to the projections on K). The
underpasses are naturally ordered by their distance from the plane P and we shall label
them by numbers 1,..., N.

We shall define a series of presentations AW,, k=0,..., N—1 of the group
7, (S® — B) which is a mixture of Artin and Wirtinger presentations such that

1. AW,,, can be obtained from AW, by a sequence of Tietze transformations of
the following type (cf. Section 3) (I): adding (or removing) a new generator g and a new
relation r which expresses the added (removed) generator g as a word in other
generators.

Clearly the two complexes associated with AW,,, and AW, have the same
homotopy type.

2. AW, can be obtained from Wirtinger presentation by means of Tietze
transformations of type (I).

3. AWy_, can be obtained from the Artin presentation by means of Tietze
transformations of type (I). '
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Let y,,..., y, be a system of generators chosen as above and with a base point B
on the boundary of D,. Let P, be a plane parallel to P such that the part of g between
P and P, contains k half-twists. Let C, be the part of the cylinder C between P and P,.
Let 7%, ..., j* be a system of generators of n,(C n P,— B, B;) (where B, is a boundary
point of C n P;) which we can assume are prOJectlons of y;’s onto P,. A choice of a path
connecting B, and B allows us to consider %, ..., 7* as elements of =, (S*—f,, B).

Underpasses between P, and P split the part of g between P, and P into a union
of arcs. Those arcs which do not intersect P, correspond in one to one fashion with the
underpasses between P, and P, by the correspondence relating to each underpass the
arc having it as the top end. Each arc not intersecting P, has as its end either two
consecutive underpasses along this arc (e.g. af, , on fig. 3b) or an underpass and a point
of BN P (e.g. of,, on fig. 3b). We denote these arcs by af,,, ..., ok where the lower
index is the number of the underpass which is the top end of the arc. To each arc

Pk/l\/ ||/

7
\T“
%+ 3—

Figure 3b

'v

a“(s=k+1,..., N) we relate a loop in S* — f consisting of two parts. The first one is a
curve on 0C connecting B and a plane P parallel to P and intersecting a* between s-th
and (s + 1)-th underpass. The second part is a loop in the plane P consisting of a union
of an arc with a small circle about a* N P chosen in such a way that the natural isotopy
of P—p into P,—p takes this composite loop to one of the j:’s. Denote these
loops by xf.,...,x%. Let AW, be the presentation with generators y,, ..., y,,

Voo, 7% xFi 1, .... x& and the following relations:

a) Artin relations: jz,’jk o=bPW)i=1,...,n—1, where B, is the part of f between
P and P, and y, is the permutation corresponding to f,.

b) Matching relations: Let us consider an isotopy of PN C into PN C (the
bottom of C into the top) obtained by moving the disk P~ C inside T — C. This gives
an identification of mn,(P—Pnf) with n,(P—Pnp) taking the set of standard
generators j,,...,y, of n,(P—Pnp) into y,, ..., y,. On the other hand each
¥s(s=1,..., n) is identified by isotopy inside C with one of x%’s or y}’s. Combining these
two identifications we get relations of the form y,=x! (for each arc with lower end in P)
or y,=y¥ (for each string of B connecting P, and P and not containing underpasses).
These relations, except for the one involving x%, we call matching relations (there are
(n—1) of them).



108 . Libgober, Homotopy type of the complement to algebraic curves

¢) Wirtinger relations corresponding to underpasses of B outside of C, involving
=k k
yi and xj.

Now in AWjy_, the matching relations have the form ¥ !=y, i%s where s is the
lower end of a§ ! and by eliminating them one obtains the Artin presentation of
n,(S® — B). This proves claim 3 above. To transform AW, into AW,,, one does the
following:

a) Add new generators yf*!, xt*1 i=1,...,n; j=k+2,...,N

a o+l

Xiv1=Ja'! »

o a+l
Figure 4

b) Add identifying relations y*= j**! for i+a, a+1 where a« and «+1 are
indices of interchanged points between planes P, and P,.,; the relations x}*'=ux},
j=k+2,..., N; the relation xf,,=j**!; and the relation 71} = 7 in the case of right

hand half twist (or y%,,=**! and i.e. y¥,, = y*}! in the case of left hand half twist).

¢) Eliminate, using identifying relations from b), all j¥ and x* for i+a+1 and

* eliminate y*,, using the Wirtinger relation j*,, = y¥iiy**1(55IH~1

After the substitutions, all Artin relations of the form j% ;= B, (y¥) will change to

Jeit =P+ (yF*Y), so that one obtains the presentation AW}/ .

Now in AW, one can eliminate all y; but one, say y,, by using matching relations
and x% using Wirtinger relations. With the remaining generators x;, j, i=1,..., N, one
obtains a Wirtinger presentation. The assumption in lemma 2 implies the assumption in
lemma 1. This concludes the proof of lemma 2.

Example. Let us consider the torus link of type (2. 4). The presentation AW, is
given by

o .0 .0 .0 -1_ .0 L0 0\-1_ .0 ,0.0/.0\—1
{¥1> Y25 X35 X2, X3, X3|y1 ¥2¥1 ' =x1, X}y (x]) 7' = x2, x3x3 (x3)

=33 X309 =58, =y}

(cf. fig. 5a). The first four relations are Wirtinger relations and the last one is the
matching relation. Elimination of y, using matching relations and x3 using the last
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Wirtinger relation gives the presentation

{93038 x5, 81y, x8y7 = xt, 2xE Q) =8, $x2x9) 7 =)

which is a Wirtinger presentation.

Figure 5a Figure 5b Figure 5S¢ . Figure 5d

The presentation AW, is given by
(V1 Y2, Y1, 95, X3, X5, x4ly2=y1, yi=v1y291 5 yiya 0™
=x3, X3 y1 (x3) 71 =x}, x3x3 (x3) 7 =x3, x3=y,}

(cf. fig Sb). To obtain AW, from AW, we rename the generators x? — xi, x3— xJ,
x3— x1, x% — yi, add a new generator yj}, and a new relation yl=y,.

The presentation AW, is given by

(1> y2, Y1, 93, %3, X21y1 92912 ' y0 =V vy
=5 110D =x3, 3yl (3) T = x4, x3 =y,}.
To obtain AW, from AW, we add new generators y?, y2, x3, x2 and relations y3 =y},

x} =y}, x} =x2, x}=x2. Using these relations we eliminate y}, x3, x3, xi. The resulting
presentation is

(V1 Y2 V3 V3 V3 X3, X3V =y, Vi=y1 0201 L V33 (03) 71
=y3 yiyi(D) t=x%, x3yi(xd) " =x3, xi =y,}.

Finally we eliminate y} using the first relation in this presentation and rewrite the third
relation using the second one. The presentation AW, is given by

V1 ¥2 ¥ 93, Y31y y2 vy y1 v v =V vavayava tyr !
| =3 Y1100 ' =x3, yi=y,}
(cf. fig. 5d). To obtain AW, we add to AW, three new generators y3, y3, x3 and three

relations y?=y3, x3=y3, x3=x2. Using these relations we eliminate x2, y? and x?
giving the presentation

{Vi> Y20 Y3 Vi V3 X302 a2 'y b=y vavayi ! .
=y4 y3y3(3) =y}, y1yi0d) =x3 yi=y.}.
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Now substitution of the expression for y7 into the third relation and elimination of y3
(i.e. substitution of second relation in the third) gives the presentation AW,. Finally
elimination of y} in AW, (i.e. substitution of the last relation into the first one) and
elimination of y3 and x} (i.e. dropping second and third relations) gives Artin’s
presentation.

2. The presentation of the fundamental group of the complement to plane curves

Let C be an algebraic curve in C? of degree d which we shall assume is in general
position relative to the line at infinity in CP2.

Let  denote a linear projection C2*—C'=% and p,, ..., py be the points in &
such that the fibres of n over p; are either tangent to C or contain singular points of C.
These tangency points or singular points of C will be called singularities of C relative to
the chosen pencil. For simplicity we shall assume that 7 is chosen in such a way that at
each tangency point the curve C and the line n~!(p;) can be locally given by the
equations y=x? and y=0 respectively. Also we shall assume that n~!(p) contains at
most one singular point of C and that =~ 1(p,) does not belong to the tangent cone of C
at this singular point. Let p, be any point in ¥ distinct from p;(i=1,..., N) and .
Lo=n"'(p,). We shall fix a base point B in L, and consider a system of non-
intersecting loops in Lo—Lo nC representing a basis X15...» Xy Of #;(Log— Lo C, B).

The natural projection n: n7' [ ¥ — U pi> —_ P — U p; defines a locally trivial bundle.

Let D; denote a small disk in L centered at p, and let s; be a system of non-intersecting
paths connecting p, with a point g; on the boundary of D; (see fig. 6).

—Di, 2

—Di, 1
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The intersection of the line L, =n""(g;) and C consists of d points, m; of which
have as limit the singular point of C over p; when g; approaches p;. Here m; denotes the
multiplicity of the corresponding singular point; for a tangency point m;=2. Let us
label these m; points in 7' (q;) as p; ..., Pi,m, Let I’y j, j=1,..., d be a system of non-
intersecting paths in L, connecting a base point B; (chosen, say, in vicinity of the base
point of the pencil n) of L,, with the boundary of a small disk D; ; about points L, n C
(i=1,...,N; j=1,...,d). These paths define the system of generators
yij=T; 00D, ;0TI } of my (L, — L, nC, B)). We may assume that the generators y; ;
are labeled in such a way that y; , Vi, m, correspond to the points p; { ... Pi m,-

Now we fix a system of non-intersecting segments in L, (resp. in L,) connecting
points L, n C (resp. Ly n C). These segments define a system of generators of the braid
group B(L,, L, nC) (resp. B(Ly, Lo C)) which is interpreted as the group of
difffomorphisms of L, fixing L, nC (resp. B(Lo, Lo C)). Each segment defines a
diffeomorphism which is a half twist about this segment. Let us fix also a diffeomor-
phism ¢; of (Lo, LonC) onto (L,, L, nC) which takes the chosen generators of
B(Ly, Lon C) into the chosen generators of B(L,, L, nC). A trivialization of the
bundle C?>—C|,p,—, defines a diffeomorphism of (L,, L, NnC), ie a braid
B.e B(L,, L, n C), which we shall call the local braid of the point p;. Note that for
appropriate choice of I'; ; the braid B; acts trivially on y; ,, ,,..., y; 4. In practice (cf.
[M] and section 3) the aforementioned choice of generators of B(L,,, L, n C) is made
in such a way that the local braid B; will have the simplest possible form. For example if
the singularity of C corresponding to p; is given locally by x2+y* then the
corresponding local braid is Y* where Y is the half-twist about the segment connecting
p: 1 and p; ,. For the points p; corresponding to tangents to C the local braid is Y.

A trivialization of the locally trivial bundle C?>—C — & restricted to s; defines
diffcomorphisms &;: (L,, L,, n C)— (Lo, Lo N C). Let us consider the diffeomorphism
@B, of (Ly, Lo C). We shall write it as ®,¢,¢; 1 B;0,(9;¢;)"! and put Q;=d,¢;
and B;=o; ' B;¢;, Q:, B;€ B(Ly, Lo~ C). Summarizing the situation, for any choice of
paths s;, a system of diffeomorphisms ¢;, ?;(i=1,..., n), and a compatiable system of
segments in L., one constructs elements Q,$,0;'€B (Lo, LonC) (cf. [M]). The

N
homomorphism =, (,? -U pi) — B(Ly, Lo n C) sending the i-th generator to Q;8,0; !
i=1
is called the braid monodromy (cf. [M]). Note that [] Q,8,0: " =4* where 4? is the
i=1
generator of the center of B(L,, Ly N C) (cf. [M], [Ch]).

Now we are in position to formulate the main result.

Theorem. The two-dimensional complex associated with the presentation of
7ty (C* — C) with generators e, ..., e, and the relation

Qi(Bie)=Qiley), j=1,...,m—1L i=1,...,N
has the homotopy type of C*—C.

Proof. We shall construct a series of retractions, the composition of which gives
the retraction of C?— C onto the 2-complex defined in the statement of the theorem.
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N
First we retract C?—C onto n~* ( U siuD,-). The retraction is induced by the
i=1

N
retraction of L=C onto () s;uD;. It retracts the locally trivial fibration

N

=1
N N
n'l(C—-U (s,-uD,-))—-»C——U (s;uD,) onto 7t‘1<U s,-uaD,) and leaves fixed
i=1 i=1

N i=1
1t_1<U SiUDi).
i=1

Second, about the i-th singular point of C relative to the chosen pencil, we fix a
small polydisk D; in C? which projects onto D;. Now we shall consider retractions of
n ' (D, onto D,UL, (i=1,...,N). They exist provided D, is chosen so small that
n~1(D;)—D;— D, is a trivial fibration.

Third, we make a retraction of D,—Conto 8D,—C (i=1, ..., N). (Recall C n D; is
a cone over dD;nC.)

Fourth, it follows from lemma 2 that there is a retraction of each of 6D, — C onto
a 2-complex which has 1-cells in 0D; n L,, and 2-cells e;; attached according to the maps
corresponding to the relations pB;(e;)=e; (i=1,...,(m—1), i=1,...,N) where
e;(j=1,...,d,i=1,..., N) are certain generators of =, (L, — C).

Finally using the trivialization of C*— C|,, from which the ¢,’s were constructed
we retract ' (s;) U e;; onto Lo — C (with 2-cells attached). Then we retract L, — C onto
the union of cells represented by the generators e;(j=1, ..., d). The former retraction
takes e;; to Q;(e) and f;(e;) to Q;(B;(e;)). Hence the two-complex obtained is the one
described in the theorem. Q.E.D.

3. Change of homotopy type under degenerations and an example

For simplicity in this section we shall consider only degenerations in families of
plane curves in which the only singularities of generic and special fibres are ordinary
cusps or nodes (i.e. given respectively locally by x?=y* and x2=y?).

Let = be a pencil of lines defining a projection n: C2 — C.

Proposition. Let C, be a family of curves which are in general position relative to
the line in infinity for any t sufficiently close to zero. Assume that C, has either

a) a node obtained as a limit of two tangency points of the pencil n or

b) a cusp obtained as limit of a node of C, and a tangency point of the pencil n.

If m, (C?*— C,) is isomorphic to n,(C? — C,) then C* — C, is homotopy equivalent to

(Cz-Co) \ Sz.

Proof. Without loss of generality we can replace the disks D; in the definition of
braid monodromy by any small contractible regions and in particular we can assume
that the point gq; € dD; does not change while C, is deformed into C,. Therefore the
regeneration (operation opposite to degeneration) C, — C, changes the braid mono-

dromy by replacing the factor Qx#Q ™! by the product of Qx;Q ! and Qx,;Q ™! in case
a) (resp. replacing the factor @x3Q~! by the product of @x?Q;! and Q,x;Q;" in case
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b). This implies the following change in the presentation of =, (C?— C,) constructed in
section 2. The relation r,: Q(e,) Q(e;)=Q(e,) Q(e,) is replaced by two copies of the
relation r,: Q(e;)=Q(e,). In the case b) the relation r;:

Q(ey) Qlezx) Qle;)=0(e;) Q(ey) Qler)

is replaced by two relations r; and r,.

Now we recall that any two finite presentations of a finitely generated group are
related by a sequence of Tietze transformations (cf. [D]) of the following types:

(I) Adding (deleting) a generator and a relation which represents this generator
in terms of other generators.

's~1w where s is another

(IT) Replacing a relation r by relation rw™!sw or rw™
relation and w any word.

(IIT) Adding (deleting) the relation 1=1.

The transformations of type (I) or (II) do not change the homotopy type of a
2-complex associated to a presentation of a group, while (III) amounts to the taking a
wedge with S2 (resp. splitting off §2). Note that transformations (I) were used in the
proof of lemma 2.

The relation r, can be obtained from relation r, using the following transfor-
mation of type (II):

Q(er) Qlez) " — Qles) Qle;) " Qlez) (Q(e) Qles) ™)1 Qler) ™!
=Q(e;) Qle;) Qle)) 1 Qey) 7t

Now assume that we are in the case a). Then C? — C, has the homotopy type of a
2-complex corresponding the the presentation of n, (C2— C,) with relations R,, ..., R,
corresponding to singularities not affected by the degeneration under consideration and
two identical relations r,. On the other hand C?— C, has the homotopy type of a 2-
complex corresponding to the presentation with relations R, i=1,...,] and one
relation r;. Now the Tietze transformation of type (I) transforms the set of relations
(Ry, ..., R,, 5, 1), into the set of relations (R,, ..., R, ry, r,). Because n,(C*—C,) is
isomorphic to =n,(C*-—C,), the relation r, belongs to the normal closure of
Ry, ..., R, ry. It can be replaced using a transformation of type (II) by the relation
1=1. The deleting of this relation produces the 2-complex homotopy equivalent to
C?—C,. The arguments in the case b) are completely similar.

Example. Let C be an affine portion of the branching curve of generic projection
on C/P? of a non-singular cubic surface in C/P3. The C is a curve of degree 6 with 6
cusps and no nodes. In [M] B.Moishezon computed the braid monodromy for this
curve which gives the following presentation of the generator of the center:

(*) A*=[Z242Z13Z562Z35234236)" Z34Z13Z50 255

where Z;; denote the braid which is the half-twist about the segment z;; connecting
points i and j or in terms of X,, i=1,...,d—1,

Zy=X; 1 Xi Xi(Xjo X )7l
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To write down the presentation of n, (C2?— C) for which the associated 2-complex has
the homotopy type of C? — C we should rewrite each factor in the presentation (*) of 42
in the form Qx3Q~'. The relation corresponding to this factor is Q (X5 e,)=Q/(e,). If Q;;
satisfies Z;;=Q,;X, Q' then Q;;(e,)=e¢; and Q;;(e,) =e;. Hence the relation correspond-
ing to Z;; (resp. Z7) is e;=e; (resp. e;e;e;=e;e;e;). Using this remark one obtains that
C?*—C is homotopy equivalent to the 2-complex given by generators ey, ..., es and
relations e, =¢,, e, =e;, es=¢e,, e3=es (each counted 3 times) and e, e,e, =e¢,e;e,,
ese e3=¢e,e5€,, €seses=egeses (each counted 2 times). The associated 2-complex is
clearly homotopy equivalent to the 2-complex associated with the presentation
{(eyey)le e,e, =e,e,e,} wedged with S? thirteen times. Hence

C? — C=(83— {trefoil knot}) v 1352

We conclude with the following question. Do two curves in C? exist whose
complements have the same fundamental group and Euler characteristic but are not
homotopy equivalent? Note that an example of two 2-complexes with fundamental
group isomorphic to the group of trefoil knot and with Euler characteristic equal to 1
which are not homotopy equivalent was constructed by Dunwoody [D]. It is not clear
however whether these two complexes can be realized as the complements to algebraic
curves. The proposition above suggests a topological obstruction for degeneration of a
curve without change of the fundamental group, namely an obstruction to decompose
C*—C into a wedge of a two dimensional complex and an appropriate number of
copies of S2. Can this obstruction be non-trivial?
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