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THETA CHARACTERISTICS ON SINGULAR CURVES,
SPIN STRUCTURES AND ROHLIN THEOREM

By A. LIBGOBER

A theta characteristic on a (possibly singular) algebraic curve is a line bundle whose
square is isomorphic to the dualizing sheaf of the curve (i. e. the cotangent bundle in a
non-singular case). A theta characteristic L is called even (respectively odd) if dim H°(L)
is even (respectively odd). J. Harris [H] computed the number of even and odd theta
characteristics on a curve with Gorenstein singularities in terms of a local invariant of
singularities introduced by him. He raised the question of relating this invariant to
more standard invariants of singularities. The purpose of this paper is to show that in
the case in which the curve belongs to a non-singular surface, the Harris invariant
coincides with the Robertello invariant [R] of the link of singularity. The latter invariant
is defined for the proper links, i. e. for the links with the property that the linking number
of each component with the union of other components is even. The Robertello invariant
also can be described as the Arf invariant of the Z,-quadratic form x — V (x, x) mod 2,
where V( , ) is the Seifert form of the link (c¢f. [R]). For a knot (i.e. in the case of a
singularity with one branch) the Robertello invariant is just the Legendre symbol
(2/A(—1)) where A(t) is the Alexander polynomial.

The paper is organized as follows. Section 1 contains a description of the relationship
between quadratic forms associated by D. Johnson [J] to a Spin structure on a closed 2-
manifold and the theta forms, the relevant linear algebra and reviews the Robertello
invariant of links. In the section 2 we show that if an algebraic curve belongs to an
algebraic surface where this curve is dual to the second Steifel Whitney class of the
surface then this embedding induces the theta characteristic on the curve with the property
that the associated theta form coincides with a Z,-quadratic form topologically defined
in these circumstances by Rohlin [Ro]. In the section 3 we consider the behavior of
theta characteristics in families of curves on an algebraic surface. In the section 4 we
derive the main result described above and point out how one can obtain by analytic
means the Rohlin theorem (claiming that the Arf invariant of the Z,-quadratic form
associated with a 2-submanifold X in a 4-manifold M with X dual to w, (M) is equal to
(o (M)—X?)/8 (mod 2)) in the case when X is an algebraic curve and M is an algebraic
surface. Finally in the last section we show how mod 2 Seifert form is related in the
case of 1-dimensional unibranched complex singularity to the geometry of the Hodge
structure defined by J. Steenbrink on the vanishing cohomology and discuss a possible
generalization of some of results of this paper to higher dimensions.
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1. Preliminaries

A. Z,-QuaDraTic FORMS. — Let H be a finite dimensional vector space over Z, and
let B be a bilinear form on H. A quadratic form associated with B is a map q: H - Z,
such that

(1 q(x+y)=q(x)+q ) +B(x, y).

Let R={xeH | B(x, v)=0 for any v in H} be the radical of the bilinear form B. If
q(x)|g # 0 then there is only one isomorphism class of quadratic forms associated
with B. In this case gq(x) takes the values 0 and 1 equal number of times. On the
other hand there are two isomorphism classes of the forms such that g(x) |R=0. If
dimR=r and dimH=2h+r then the zero value is taken either 2**""1(2"+1) or
2h*r=1(2k_1) times. If the bilinear form on H is written as

h

B(X1, «vos Xonam Vis oo o5 Voner)= Z X2iY2i+1+X2i+1)2i
i=1

then these isomorphism classes are represented by the forms

h

GF (Xgs oo X Xpptts + o os Xgpar) = Z X2i—1X2
i=1
2 and

h

- _ 2, .2
G (Xgs oos Xt Xapats « v o5 Xppap)= Z Xpi—1Xy;+X1+X3
i=1

respectively. The Arf invariant of a form isomorphic to q* (resp. ¢~) is defined to be
+1 (resp. —1) (¢f. [B], ch. 3, sect. 1).

In B below we will need to show that two families of quadratic forms (on H,; of a
closed surface) parametrized by an affine space (the set of Spin-structures) consist of
identical (rather than isomorphic) forms. The rest of this paragraph describes the linear
algebra which we will need for this purpose.

Let V be an affine space over a vector space H i.e. a set with a transitive action of
H:v—->v+h (veV, heH) without fixed points. An affine quadratic form associated
with a bilinear form B on H is a map ¢: V — Z, such that

3 QW+h +hy)—0W+h)—@v+hy)+e©)=B(hy, hy)
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»

for any v in V and hy, h, in H. If ¢ takes values 0 and 1 unequal number of
times we say that the Arf invariant of ¢ is O (resp. 1) provided
#{veV | o®=0} > # {veV | ¢ (v)=1} (resp. one has opposite inequality). We shall
denote the space of affine quadratic forms on V with a fixed associated bilinear form B
by AQ(V).

Let V, (resp. V,) be an affine space over H, (resp. H,). A map ¢: V, -V, is called
an affine map if the induced map L,: H, - H, which takes h; eH, into h,eH, such
that @ (v+h,)=@ () +h, is linear. The set of quadratic forms on a vector space H
associated with a fixed non degenerate bilinear form B can be given a structure of an
affine space by defining the action of H as

4) h(g(x)=q(x+m)—q(h).

We will denote this affine space by Q(H). One can also view Q(H) as an affine
space over the dual space H* to H with the action g — g+ A (Ae H*).

Now let Aff,(V, Q(H)) be the space of affine maps from V into the affine space
Q(H) having the identity as the associated linear map. If v > @, is such a map then
v — Arf @, is an affine quadratic function. Indeed the condition on v — ¢, implies that
QOpin(x)=0,(x+h)—0,(h). The relation (3) for Arfep, follows from Arf
0, n=Arf@,+0¢,(h) [the latter is obvious if ¢,(h)=0 and follows by counting the
numbers of times ¢, ., and @, take value 0 or 1 if ¢,(h)=1]. Let us consider the map
® from Aff,,(V, Q(H)) to AQ(H) which takes (v — ¢,) into the quadratic function
v—> Arfo,. On the other hand the correspondence ¢ — @,=@ (v+x)— ¢ (v) defines the
map ¥ : AQ(H) — Aff,(V, Q(H)). '

ProrosITION 1.1. — (a) The following identities take place:
Q¥ (p) )= @)+Arfpeoly

(1 V is the function on V taking the value 1 everywhere) and ¥ - ® =id.
(b) The map @ is injective and ¥ (¢,)="¥ (@,) iff ¢, — @, is constant.
Proof. — The formula for ® ¥ amounts to the identity

Q) Arf{x - @ (v+x)— 0 ()} +Arf o= (v)

which can be easily verified by counting the number of vectors x on which the form
takes values 1 or 0 for various values of Arf @ and ¢ (v). This formula implies the second
part of (b). Now the space AQ(V) of affine quadratic functions contains 2o 24mV
elements [use for example that the difference of two elements in AQ(V) is an affine
linear function on V] while Aff,;(V, Q(H)) has 2%™V elements because each element in
it is determined by a value of a map in a single element of V and Q(H) contains 24V
elements. Hence ¥ is onto.

COROLLARY 1.2. — Let o be an affine quadratic function. Let
@, () =0a(v+x)—a(v).
Then o (v)=Arf o, ,—Arf @, +Arfa.
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626 A. LIBGOBER

B. THETA FORMS AND SPIN STRUCTURES. — Let X be an algebraic curve, Pic(X) be the
group holomorphic line bundles on X and ®, (resp. 0,) be the dualizing sheaf (resp. trivial
line bundle) of X. Let S(X)={LePic(X) | L2=q,} be the set of theta characteristics on
X. For any LeS(X) and any bundle & of order 2 (§*=0,) L®E is again a theta
characteristic. Therefore S(X) is naturally an affine space over the Z,-space of points
of order 2 in Pic(X). If X is non singular and Pic(X) is identified with
H® ' (X)*/H, (X, Z) (cf. for example [ACGH] ch. 1) then the space of points of order 2
in Pi¢(X) can be identified with H, (X, Z,)=H, (X, (1/2) Z)/H,(X, Z). The theta form
associated with L e S(X) is the Z,-quadratic form on H, (X, Z,) defined by (¢f- [ACGH]
ch. 6 app. B)

(6) oL (§)=dimH®(X, L ® §) —dim H(X, L).

Next recall (cf. [M1]) that the Spin structure on a manifold X of a dimension d is a
double cover of the principal SO(d)-bundle P associated with the tangent bundle Ty of
X such that the restriction of this cover on each fibre is isomorphic to the standard
cover Spin(d) > SO(d). In the case when X is a non singular algebraic curve the
squaring map L™ ! > L ! ® L ' =w4-1=Ty defines the double cover of the principal
S!-bundle associated with Ty i. e. a Spin structure on X. We shall denote it by ;. Vice
versa a double cover of the unit tangent bundle is a circle bundle for which the
associated R?-bundle has natural complex structure with which it becomes a theta
characteristic. Hence the correspondence L — {unit bundle of L*} defines a 1-1 corres-
pondence between S(X) and the set of Spin structures. The action of H, (X, Z,) on
S(X) defines the action of H* (X, Z,) on the set of Spin structures which can be described
explicitly as follows. Let us consider the Gysin sequence corresponding to principal
bundle S* bundle P associated with Ty:

(7) 0 H! (X, Z,) —» H! (P, Z,) » H' (S, Z,) »0.

The set of Spin structures can be identified with the non trivial coset of H!(P, Z,) of
the subgroup H' (X, Z,) and the natural structure of the affine space on this coset over
H! (X, Z,) corresponds to aforementioned structure of affine space on S (X).

In [J] D. Johnson defined the Z,-quadratic form associated with a Spin structure as
follows. Any simple closed curve o on X defines the curve o in P (the latter we identify
with the unit tangent bundle) consisting of unit tangent vectors to a. A different choice
of an orientation of o produces the path in P belonging to the same mod 2 homology
class in P. On the other hand any homology class x in H, (X, Z,) can be represented
by a union of mutually disjoint curves a,, ..., o, and the homology class in P of the

m

cycle x= Y, o;+mz, where z is the class of the fibre, depends only on the homology

i=1
class of x (¢f. [J]). Given EeH' (P, Z,) one defines ¢, (x)=<§, x). It turns out that
@ (x) is a quadratic form having the intersection form as the associated bilinear form

Jl:
(8) O (X1 +X2) =@ (x1) + @ (x,) + (x4, X5).
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Vice versa any quadratic form associated with the intersection form corresponds to a
unique Spin structure.

ProprosITION 1.3. — For any theta characteristic LeS(X) and any x in H, (X, Z,) one
has @ (x) =@, (x).

Proof. — Both functions ®;: L—-¢, and ®,:L-—¢@, are affine maps
S(X) - Q(H, (X, Z,)) of the space of theta characteristics into the affine space of
quadratic forms associated with the intersection form. Both ®; and @, have the identity
as the associated linear map. According to 1.1(b) it is enough to check that
Arf o =Arf@, for any L. Arfo, is zero iff dimH°(X, L) is even [ACGH] and
according to [A], prop. 4.1, the latter occurs iff § is a Spin boundary. So it is
enough to check that Arf@,=0 iff  is a Spin boundary. First note that Arf ¢, is a
Spin cobordism invariant. Indeed if M is a 3-manifold with a Spin structure and
oM =X, UX, thenthe exact sequence of the pair (M, 6M) implies that rk
Ker(H, (M) -» H; (M))=rk H, (6M)/2 (cf. [B], p. 57) and for aeH, (M) the path lifts
to a connected path in the covering defined by the Spin structure iff the restriction of
the Spin structure on « is the trivial element in H, (o, Z,). Combining this with the
fact that the Spin structure on a which bounds is the non-trivial element in H, (o, Z,)
(cf- [M1]) we see that the quadratic form on H,(0M, Z,) is trivial on
Ker(H, (M) —>H,(M)) ie on at least half elements of H,(0M). Therefore
0=Arf O |u, @y =A1f Q¢ |, x,)+Arf O |, x,- Secondly the group of Spin cobordisms
in dimension 2 is Z, (cf. [M1]). Hence the vanishing of the Arf invariant for cobordant
to zero Spin structures can be verified by checking two examples of Spin non-cobordant
structures on torus which is obvious.

Remark. — Another topological interpretation of the theta form is due to
Thurston. Let D be a divisor on a curve X corresponding to a theta
characteristic L. Let ® be a meromorphic 1-form having 2D as its divisor. Let
Y(@®) (0 =t £1) be a path on X representing

xeH, (X, Z,)=H, (X, (1/2) Z)/H, (X, Z).

Then @ (x)=(1/ni) dlog < vy’ (t), y(t) > mod2. Indeed the double cover of the principal
bundle P — X associated with TX defined by the Spin structure corresponding to O (D)
coincides, outside of n~* (D) with the covering of P branched over n~ ! (D) defined by the
cohomology class dual to n~*(D) in H! (P, Z,) =Hom (H, (P, Z)/H, (P, 2Z), Z,). This

1

class is represented by the form 1/4 7t iJ d{v, o(t () )/{v, ®(® (), veP. (The func-
V]

tion v — (v, ®(n(v)) ) on P has zero or a pole of order 2 along each component of

n~1(D).) Hence from the proposition 1.3 we can see that the theta form on
1

H, (X, Z,)=H, (X, (1/2) Z)/H, (X, Z) is equal to l/nif dlog vy’ (t), y(¢) ) mod 2.
(1]
C. ROBERTELLO INVARIANT. — Let N be a link in S3 and F be a Seifert surface for N
i.e. an oriented surface in S* with the boundary N. For a fixed side of F (i.e. a unit
normal field to F) and a cycle o on F let us denote by i, () the cycle in S*—F obtained
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628 A. LIBGOBER

by pushing o outside of F using chosen normal vector field. The Seifert form is a
bilinear form S on H, (F, Z) defined by S (x,, x,)=1k (a,, i, (®,)) where o; and o, are
the circles on F representing the homology classes of x, and x, and lk( , ) is the linking
number of cycles in S3.  One can show that S(x, y)—S(y, x)=(x, y) where ( , ) is the
intersection form on F (c¢f. [L]). In particular S(x, x) mod2 has the intersection form
as the associated bilinear form.

A link is called proper if the linking number of each component with the union of
remaining components is even. This is equivalent to the fact that the restriction of the
form x — S(x, x) mod2 on the radical of the intersection form is trivial. Indeed the
radical fo the intersection form on H, (F, Z,) is generated by the classes of connected
components of the boundary N of the Seifert surface F. Let us denote these components
oy, ..., o, Clearlyo,+...+a,=0. Hence

e

S(ap ) =S (o 3 a,.—a,.)=zk<a,., » aj—cxi>

j=1 ji=1

is zero mod 2 iff the link is proper.

To define the Robertello invariant first let us assume that the link N has only one
component, say K. Let M be a 4-manifold and T be a 2-sphere embedded topologically
in M in such a way that it has a single singularity with the link K. 1i.e. for some ball
B* in M one has dB* "\ T=K. We also assume that T is such that the homology class
of T in M is dual to the second Stiefel Whitney class of M (this always can be arranged
cf. [R]). Then the Robertello invariant of K is defined as (o (M)—T>T)/8 mod 2, where
o (M) is the signature of the intersection form o on H,(M, R). If N is an arbitrary
proper link in a 3-sphere S* and a knot K so that there exist a surface Y of genus zero
between these two spheres such that the boundary of Y is N{UK. The Robertello
invariant of N is defined as the Robertello invariant of the knot K. A proof of the
following proposition is given in [R] in the case of knots.

ProposiTION 1.4. — The Robertello invariant of a proper link is equal to the Arf
invariant of the Seifert form.

Proof. — In notations of the last paragraph one can assume that S* containing N
belongs to M. Then T'=FUY U(T—TNB) is homologous to T in M. By the
Rohlin theorem [Ro] (6(M)—T"°T’)/8 mod 2 is the Arf invariant of the Rohlin form on
T! (cf. the definition in the next section). This implies that the Arf invariant of the
Rohlin form on T! is the Arf invariant of the restriction of the Rohlin form on the
Seifert surface F. To conclude to proof of 1.4 it is enough to show that this restriction
coincides with the Seifert form. Let o be a circle in the Seifert surface, i, a be o “pushed”
in S3, D% be a disk inside B* bounded by o. Then D% does not intersect F. Hence the
value of the Rohlin form is just the obstruction to extending the vector field normal to
o inside the Seifert surface to the vector field normal to D%. If we shall interpret this
obstruction as the number of intersectin points of D4 with “perturbed” D% with the
boundary kept on the Seifert surface and notice that the linking number of « and i, o can
be found as the number intersectin points of “perturbed” D% and the union of the
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cylinder connecting o and i, o with DS then we see that this obstruction is just the value
of the Seifert form. QED.

Finally note that for the links with one and two components the Robertello invariant
can be found in terms of the Alexander polynomial (cf. [L], [Mul], [Mu2]).

2. Theta characteristics on submanifolds

Let M be a 4-manifold, which for simplicity we shall assume to be simply connected,
and let T be a surface in M which is dual to the second Stiefel-Whitney class w, (M)
of M. In this circumstances there is the canonical Spin structure on T which can be
defined as follows. Let gq(x)(xeH,(T, Z,)) be the Rohlin form. Recall its
definition. Let x be represented by an embedded closed curve o and let D, be an
embedded disk in M which has a as the boundary and which is transversal to T. Then
g(x) is mod2 sum of the number of intersections of T and D, outside o and the
obstruction to extending the field of normals to a in T to a non-vanishing normal to D,
in M vector field. The latter obstruction is an element in 7, (SO(2))=Z and can be
described as the number of intersections of D, with a disk D, obtained from D, by a
perturbation keeping the boundary fixed. ¢q(x) is a Z,-quadratic form having the
intersection form of T as the associated bilinear form. Now the canonical Spin structure
on T corresponding to the embedding into M is the element & in H* (P, Z,) (P is the
principal S'-bundle associated with the tangent bundle to T) defined by (&, x >=q(x)
and £(z)=1 (as in section 1B, x is an element from H, (T, Z,), denotes the canonical
lifting into P and z is the fibre of P; it follows from (7) that H!(P, Z,) is generated by
classes x (xe H! (T, Z,) and z).

In the case when M is an algebraic surface and T is an algebraic curve one can define
the theta characteristic corresponding to this Spin structure as follows. The assumption
that T is dual to w, (M) implies that there exist a divisor D such that K+T=2D where
K is the canonical class of M. Therefore Oy(2D)|;=0y(K+T)|;=0%(T)=Q1
i.e. O;(D) is a theta characteristic on T. This is the only theta characteristic on T which
is a restriction of a bundle on M.

PrOPOSITION 2.1. — The Spin structure on T corresponding to O1(D) coincide with the
Spin structure corresponding to the Rohlin form.

Proof. — We are going to construct for any simple closed curve o on T certain 2-
chain in the unit bundle associated to QZ(T) such that
(a) its boundary is the union of simple closed curves o', oy, . .., oy.

(b) In the double cover Oy (—D) ® Oy(—D) - Q4 (T)* each o, lifts into a connected
curve.

(¢) a is homologous to a+z Here a and z are considered as elements of QZ(T) I}‘
which was identified with the tangent bundle to T.

(d) Moreover N is equal to the sum of the number of intersections with T of certain
2-disk D, in M with boundary o and the obstruction to extending the normal vector
field to a in T to a non-vanishing normal field to this 2-disks. This would imply that
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630 A. LIBGOBER

the value on o of the quadratic form associated to the Spin structure corresponding to
01(D) is the same as the value of the Rohlin form because the value of the former
quadratic form on o’ is the sum of the values on a;’s according to the definition from B
of section 1 and its value on a; is 1 according to (b).

Let v (resp. v) be a non vanishing tangent vector field (resp. a normal vector field)
to D, We shall assume that v|, is tangent to T. Then (v, v) defines the section of
Q% (T)|§, as follows. Let o” be a germ of a section of Qf which does not need to be
holomorphic. Let s; ,(®*) =w?(v, v). This section vanishes only at the zeroes of v, the
intersection points D, N T and also along a. The latter occurs because a form regular
near T defines a vanishing along T section of the bundle Q%(T). If U,(i=1, ..., N)
be small circles in D, about the zeroes of v and the intersection points of D, and T then
55 ,(D,— U U,) can be viewed as a 2-chain in the space of non-zero vectors of the total
space of Q% (T)*. Each loop s; ,(dU)) lifts into a connected path because the covering
on each fibre is just the squaring z — z? which gives the claim (b) above. On the other
hand the space of unit vectors in QZ(T) restricted to dU; is homeomorphic to S x S*
where the factors are represented by the class of s;,(0U;) and the class z of the
fibre. The tangent vector field in this identification with S! xS* is in the homology
class of the sum of the factors which gives (¢) and proves the proposition.

Remark. — If one assumes that T is an ample divisor on M then one can give a very
simple proof of 2.1 as follows. Both the theta form of the canonical theta characteristic
on T coming from the embedding of T in M and the Rohlin form are invariant under
the monodromy of a generic pencil in which T moves. The monodromy about a singular
member of the pencil is the Picard-Lefshetz transformation which is just the transvection
x — x—(x, 8)d corresponding to the vanishing cycle 8. The invariance of a quadratic
form under this transvection implies that the value of this quadratic form on dis 1. On
the other hand the Lefshetz theorem on hyperplane sections implies that H* (T, Z,) is
generated by the vanishing cycles. Hence the Rohlin form and the theta form which
are the same on the vanishing cycles are equal everywhere. Hence we obtain 2.1.

3. Theta characteristics and the degenerations

Let y: M — P! be a pencil on an algebraic surface M and let M, be an element of y
corresponding to teP!. Let Sing = P! be the collection of the points corresponding to
the singular fibres of y. The correspondence relating to any e Sing the set of theta
characteristics on M, defines the unbranched covering © of P! —Sing which is equivalent
to the covering which relates to any t e P! —Sing the set of order 2 points on the Jacobian
of M,. Let us consider a small perturbation y: M — P! of the pencil y in which the
singular fibre M,  is replaced by several fibres each of which has only ordinary double
point as a singularity. We shall consider the subgroup GeAut(H,(M,, Z,)) (teP'-
Sing) generated by the monodromy transformations about the singular fibres in which
M,, splits. The group G acts as well on the set of theta characteristics on M,. Let a
(resp. @) be a small loop in the base of the pencil y (resp. y) about t, (resp. union of
points in which ¢, splits). Let A (resp. A) be the disk bounded by o (resp. ).
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THETA CHARACTERISTICS ON SINGULAR CURVES 631

ProrosiTION 3.1. — (a) The set of theta characteristics on M, can be identified with
the set of theta characteristics on M, (te A—Sing?) invariant under the monodromy group
G obtained by splitting M, into fibres with nodes as the only singularities.

(b) If M, has only unibranched singularities then invariance under G can be replaced by
the invariance under the monodromy transformation induced by o.

(¢) For any theta characteristic L, on M, there exist a bundle L over Y~ 1(A), such
that for any t, L|y, is a theta characteristic on M, and L |M!0=L,0.

(d) The number of theta characteristics on M,, is equal to 2°1™qo where
by (M,)=rk H, (M,, Z).

Remark. — In [H] slightly different way for finding the total number of theta character-
istics is outlined. For example if a curve has one singularity then according to [H],
p. 620 this number is equal to 2g+b—1 where g is the genus of the normalization and b
is the number of branches at the singular point. Using for example additivity of Euler
characteristic one easily verifies that this is equivalent to (d).

to’

Proof of 3.1. — Let Qlpt|z be the relative dualizing sheaf for Y|z and let
L?=Qyp1. Then & |M: is a G-invariant theta characteristic on M,. For any space X
let Picg(X) be the Picard group of real rank 1 bundle on X (cf. [4]). The classifying
space for such bundles is RP®*=K(Z,, 1) and hence Picg(X)=H"' (X, Z,). Any real
rank 1 bundle satisfies £2=id. Moreover the bundle .¥ IM, ®¢E& has the natural complex
structure because the transition functions on & can be chosen to be constant. Hence
it is a theta characteristic on M,. Any theta characteristic on M, has such form
(cf: [A). Clearly Picg (M)=H"'(M,, Z,)¢=H"'(M,, Z,) =Picg(M,,) (where X® denotes
the invariants of X). Therefore £ »£® & lM’ can be interpreted as the 1-1 correspon-
dence between the homology classes on M, and the G-invariant theta characteristics on
M, This proves (a), (c) and (d). (b) follows from the fact that in unibranched case
the monodromy about singular fibre does not have vectors with eigenvalue 1 as one can
see from the Wang sequence corresponding to the Milnor fibration (c¢f. [M2] th. 8.5).

4. The main theorem

Now we are in position to prove the following

THEOREM 4.1. — Let C be a reduced curve on a non-singular algebraic surface V. Let
g denotes the genus of the normalization of C and k be the rank of the group of line
bundles on C which pull back on normalization is trivial. If at least one of the links of
singularities of C is not proper then the number of even and the number of odd theta
characteristics on C are equal. If the links of all singularities of C are proper and if
R (P,) is the Robertello invariant of the link of singularity P, of C (i=1, ..., N) then the

N
number of even (resp. odd) theta characteristics on C is equal to 29%*1 <2g+ IT R(Pi)>
] N i=1
[resp. 20+k-1 (29 —I1 R(P,-))i].

i=1
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Before we shall proceed to the proof let us recall that J. Harris computed the number
of even and odd theta characteristics on a curve with Gorenstein singularities as
follows. Let P; be a singular point of C. Let Ip, be the adjoint ideal i. e. the annihilator
of mp,, @a,l_/(OC where T, : Cpi — C is the normalization at P;. Let divisor Dy, be defined
by ng, Ip,= @api (—Dp). Then the number of even and the number of odd theta character-
istics on C are equal if at least for one singular point P; the divisor Dy, is not even i.e.
not all multiplicities in D, of the points in Supp Dy, are even. On the other hand if
Dp,=2E,, with Supp Dp,=Supp Ep, and if €(P,)=dimI'(Oc/') where I’ is the ideal of
functions which pullback to Cpi isin Og, (—Ep) then the number of even theta characteris-
tics is 29+~ (294+(—1)**®)). We are going to show that the Harris invariant £(P))
and the Robertello invariants R (P,) in the case of curves on a surface are defined in the
same circumstances and that R (P)=(—1)*®?,

Using the lemmas 10.6 and 10.7 from [M2] we can assume that singularity P, is
equivalent to a singularity P such that P is a single singular point of a plane curve C, of
degree d which is congruent to +1mod8. Let us fix a pencil containing C, such that
the generic curve C, in it is non-singular. Any element in this pencil represents a
homology class dual to w,(CP?) because the degree of C, is odd. Then we have the
following

PROPOSITION 4.2. — In the situation as above let qc, and qc, be the theta forms cor-
responding to the canonical theta characteristic on the curves C, and C, respectively. Let
Ip be the Seifert form of the link of the singularity P of Co. Then qc,=qc,+lp.

Proof. — Let us consider the blow up V of CP? at the base points of the chosen
pencil. The pullback of Ocp2((d—3))/2 to V restricted to C, (| ¢| small) is the canonical
theta characteristic L. According proposition 3.1 for any order 2 bundle & over C, there
is a bundle L, over the union of the curves C, (|t|asabove) such that
L, |C0=¥;®L|C0. Theorem 1.10 from [H] implies that the theta form g, restricted to
the invariant part of H, (C,, Z,) is isomorphic to the form g.,. On the other hand
Ker(H, (C,, Z,) » H,(C,, Z,)) is the subgroup of the vanishing cycles which in turn is
isomorphic to H,; of the Seifert surface of the link of singularity of C, obtained by
pushing of the part of C, inside a small ball D* about the singularity of C, into the
boundary of this ball (this always can be done according to [M2] sect. 5). Now according
to proposition 2.1 the Rohlin form on H, (C,, Z,) can be identified with the theta form
of the theta characteristic (O (d —3)/2) |C‘. On the other hand the Rohlin form restricted
to the first homology group of the Seifert surface obtained from C, N\ D* as above
coincide with the Seifert form. Indeed one can make calculation of the Rohlin form on
C, which is obtained from C, by replacing C, "\ D* by the Seifert surface. The Rohlin
forms on C, and C, are the same because the surfaces are isotopic and the result follows
from proposition 1.4.

To conclude the proof notice that theorem 1.11 and lemma 5.6 from [H] combined
with the fact that the intersection number of two algebraic curves is the linking number
of links of these curves at the intersection point implies that the Harris invariant for a
curve on the surface is defined if and only if the link of the singularity is proper. Next
the Harris invariant of the singularity of C, is the Arf invariant of gc, as one can see
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for example by considering the number of times g, takes value zero or one and using
the fact that the canonical theta characteristic on C, is even (d= +1mod8) (e. g. if the
Harris invariant is 0 then the number of even theta characteristics on C, is bigger then
the number of odd ones, i.e. gc,=dimH°(§ ® L)—dim H®(L) =dim H°(L ® &) mod 2
(here L is the canonical theta characteristic which is even) takes more even values i. e.
Arf g, is zero). On the other hand the Arf invariant of g is the Arf invariant of the
Seifert form i. e. the Robertello invariant of the link and the theorem follows.

Example. — Let P be an ordinary singularity i.e. locally given by
x"=y" Corresponding link consists of n circles such that the linking number of any
two circles is equal to 1 (it can be also described as the union of n fibres of the Hopf
fibration S® —» S?). Hence the Robertello invariant is defined if and only if nis odd. Let
n=2m+1. In CP? the curve given by x" =" has the self intersection (2m +1)2. Hence
using definition from sect. 1 the Robertello invariant is determined by (1—n2%)/8 mod 2
and is equal to (—1)™™* V72 (¢f. [H]).

One can easily work out the Robertello invariant in unibranched case using the
formula with Legendre symbol mentioned in the introduction via the value of the
Alexander polynomial at —1. For example for singularity x2=y" (n odd)

AQ=t""1—""2+... +1.

Therefore the Robertello invariant is (2/A(—1))=(—1)"*"18  In the case of two
branches one can use the Murasugi formula [Mu2].

Remark. — According to proposition 2.1 the Arf invariant of the Rohlin form for a
non-singular algebraic curve S on an algebraic surface V such that S+ K=2D (K is the
canonical class of V) is equal to dimH°(S, 05(D)) mod2. Hence the Rohlin theorem
claims that

(9) dim HO (S, 0g(D))=(0(V)—S?)/8mod 2.

One may wounder about algebro-geometric proof of this statement. Indeed the
Riemann Roch theorem for the bundle Oy (D) on V gives that the right hand side of (9)
is equal to % (0y(D)). Hence the Rohlin theorem would follow (in analytic case) from
the congruence dim H° (S, 0g(D)) =% (0Oy(D)). This is a special case of the theorem of
Atiyah and Rees ([AR], th. 7.4).

5. Steenbrink Jacobian and the Seifert form

Let f(x, y) be a germ of a reduced curve having singularity at the origin which we
shall assume in this section has a single branch. J. Steenbrink [S] put the mixed Hodge
structure on the cohomology of the Milnor fibre B, of f which with our assumptions is
in fact pure of weight 1 because the monodromy operator is semisimple in this case. Let
F!' « H'(B,, C) be the corresponding element of the Hodge filtration. Then the torus
J(B)=(F)*/H,(B;, Z) will be called the Steenbrink Jacobian of the
singularity B,. Moreover in the unibranched case the intersection form is unimodular,
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the Riemann relations are satisfied and therefore J(By) is in fact a principally polarized
abelian variety. We shall denote by © (B/) the theta divisor of J(B,).

Next we are going to construct a certain base element in J(B,) which we shall call the
canonical theta characteristicc. To do this recall that the mixed Hodge structure on
H' (B,) is constructed in such a way that the exact sequence

(10) 0-H'(C) »H'(C,) > H'(By) >0

is a sequence of the mixed Hodge structures in which C_ is the fibre product Cx A

A*
where C is the restriction of the pencil C, considered in the last section on A¥,
A*={t, 0 <|t| <e}=A—0and A - A* is the exponential mapo — exp(®). The Hodge
filtration on H'(C,) is the limit when ¢ tends to 0 of the Hodge filtration on H'(C,,,,)
(the filtration is independent of the value of logt because the action of semisimple
monodromy preserves the Hodge filtration and the limit exist by the Schmid nilpotent
orbit theorem). Because H, (C,, Z)=H, (B,, Z) @ H, (C,, Z) the sequence of Jacobians
corresponding to (10) splitts and hence J(B,) @ J(Cy)=J(C,). The canonical theta
characteristic on each C, in limit produces the element k (c0) in J(C,) projection of
which on J(By) [resp. on J(C,)] we denote by k(By) [resp. by k (Cy)].

THEOREM 5.1. — Let © be the theta divisor of J(B,) and K (By) be its canonical theta
characteristic. Then for o€ H' (B, Z,) the multiplicity of ® at K (B,) +a is equal mod 2
to I(o, o) where 1 is the Seifert form of B, considered as a surface in S°.

Proof. — According to the last section the theta form of canonical theta characteristic
is the Rohlin form and the former can be identified with multiplicity mod 2 of the theta
divisor. Hence in the limit one obtains the same relationship in J(C_) because the mult
mod 2 of the theta divisor in a point which is a theta characteristic is invariant
in holomorphic deformations as is aparent from interpretation the theta divisor as
the zero of the theta function with corresponding theta characteristic
(cf. [ACGH] p. 292). Obviously

multy () +4+5(Coo) =multy o) 44 (Co) +multy g+ (By).

Hence taking ao=0 we obtain that the function relating to a homology class the multiplic-
ity of the theta divisor mod2 is the restriction of the Rohlin form which by 1.4 is the
Seifert form.

Q.ED.

Remark. — S. Oshanine [O] introduced a Kervaire invariant of Spin cobordism of
(8 k +2) dimensional Spin manifold S by embedding it into a (8 k +4)-dimensional Spin©
manifold M where S is dual to w,(M) and by letting k(S)=(c(M)—(S°S))/8 mod 2
(o denotes the signature and SoS is a transversal self-intersection inside M). On the
other hand one has the invariant a(S) introduced by Atiyah [A] which is the mod 2
dimension of the space of harmonic spinors on S which is independent of a choice of a
metric and which depends only on the Spin cobordism class of S. The results of this
paper show that a(S) =k (S) for Spin manifolds of dimension 2. It turns out this relation
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fails in higher dimensions as show the calculations with hypersurfaces in CP". We would
like to know if there is a natural homomorphism Q¥i® , — Z, [¢q] such that the Atiyah
and Kervaire invariants are the specializations of thsi homomorphism in two values of g
in a way as elliptic genus of Landweber-Stong-Oshanine-Witten for oriented cobordisms
specializes into L- and A- genera.
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