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1. Introduction 

Recently new remarkable polynomial invariants of knots in 3-sphere were intro- 
duced using some representations of the braid groups which were shown to 
be effective in distinguishing knots ([-J], [-FYHLMO]). The purpose of this 
note is to introduce, using representation of the braid groups, an invariant 
of continuous equisingular families of plane algebraic curves. 

A pleasant feature is that this invariant is defined for any representation 
of the braid group (no coherence of representations for different number of 
strings is required), though for many representations this invariant is trivial. 
In the case of the reduced Burau representation, this invariant essentially coin- 
cides with the Alexander polynomial of plane curves introduced in [-L 1]. This 
fact is the counterpart of the well-known relation between the Alexander polyno- 
mial of closed braids and the reduced Burau representation. 

The definition of this invariant depends on braid monodromy associated 
with the curve ([M]).  In particular we obtain a direct (not involving calculations 
of the fundamental group, though computationally cumbersome) method of 
computation of the Alexander polynomial via braid monodromy. In the next 
section we shall recall the background on continuous equisingular families of 
plane algebraic curves and their braid monodromies. In the Sect. 3 we introduce 
the invariant and in the last section we consider the case of reduced Burau 
representations. 
I would like to thank P. Deligne for his comments  on this work which allowed substantial simplifica- 
tion of the arguments and the NSF for its support. 

2. Preliminaries 

We shall be concerned with the equisingular families of plane curves of a fixed 
degree, i.e. such that for any two curves in a family there is a 1 - 1 correspondence 
between the singularities of these curves so that the corresponding singularities 
are topologically equivalent. The typical and the most interesting case is the 
case of the families of curves of degree d which have a fixed number 6 of nodes 
(i.e. the singularities having x2=y2 a s  the local equation) and a fixed number 
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of cusps (i.e. the singularities having x2=y3 as the local equation). Denote 
such a family by C(d, 6, K). J. Harris showed ( [H] )  that the irreducible curves 
in C(d, 6, 0) form a single connected component. If ~c#0 then C(d, 6, ~c) has 
in general several connected components. The first example of disconnected 
families of irreducible curves in C(d, 6, ~c) is due to O. Zariski. He showed 
that the fundamental group of the complement to the curve of degree 6 with 
six cusps (which lie on the conic) given by (x 2 + y2)3 + 
(y3+z3)Z=0 is PSL 2 (7/). On the other hand, he constructed an irreducible 
sextic with six cusps (not on a conic) for which the fundamental group of the 
complement is Z/6 7Z. These two sextics belong to different connected compo- 
nents of C(6, 0, 6) because the fundamental group is unchanged in a continuous 
equisingular family. The Alexander polynomial (cf. [L 1]) does distinguish the 
connected components of C(6,0,6) as well. This work was motivated by an 
attempt to find other invariants which distinguish the connected components 
of equisingular families. 

Fundamental groups of the complements can be found from a more subtle 
object associated with plane curves, namely, from their braid monodromy (cf. 
[M]).  Recall its definition. Let cg be a curve in IEIP 2 transversal to the line 
in infinity. Let p: 112 2 ~ be a linear projection of the affine portion of l12a? 2 
from a point in infinity such that a) the fibers of p are transversal to c~ except 
for a finite set Cr((g): P1 . . . .  , PN; b) fibers over Cr(~) have simple tangency with 
cg or pass through the singularities of W so that these fibers are transversal 
to the tangent cones of singularities of ~;  c) the center of projection p (on 
the line in infinity) does not belong to (g. A projection satisfying a), b), c) we 
call a generic projection. A choice of a base point PoeC--Cr(W) and trivializa- 
tions of the restrictions of p - l ( q ; - C r ( ~ ) )  over loops in l l2 -Cr(~)  based in 
Po, defines the map 0 of rcl(IE-Cr(~) ,  Po) into the group of the isotopy classes 
of homeomorphisms of p-  1 (Po) preserving the set of d = deg (~) points p-  1 (P0) e <g. 
These homomorphisms can be chosen to preserve a circle of a sufficiently large 
radius. Therefore in fact one has a homomorphism 0 from rq ( tE-Cr (~) )  into 
the braid group on d strings Be. This homomorphism is the braid monodromy 
of c~. 

It is convenient to describe a braid monodromy by its values on paths 
from "ordered good"  system of generators of ~l((~-Cr(Cg, Po) (cf. [M]). The 
latter can be obtained by fixing a small circle ~i (counterclockwise oriented) 
about each point P~, ..., PN from Cr(~), a system of non intersecting paths /}i 
in (E-Ucq connecting Po and 8 ~  and by letting ?~=/~i -~ ~ifli. Recall that if 
<g is in general position relative to the line in infinity then (product is taken 

N 
in the natural ordering of ?~'s) 1-[ V~= A 2 where A 2 is the generator of the center 

i = 1  

of Ba and that one can obtain any ordered good system of generators from 
any other by a sequence of the following moves: 

(~,1, . . . ,  ~N) --, ( ~  ~ ' - '  . . . . .  ~, , ,  ~-  ~) (1) 

(71 . . . . .  ?,, ?,+, . . . . .  7N) ~ (71 . . . . .  7, 7,+1 ?(  1,7, ,- . . ,  7N) (2) 

cf. [M], [L2]). 
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Lemma. Let ~ and ~z be two curves belonging to the same connected component 
of an equisingutar family of plane curves and Pi (i = i, 2) be two generic linear 
projection of ~2--~i ( i =  1, 2). Then there is a homeomorphism j: 

t~ - Cr (c(1) --. II; - Cr(%) 
such that the following diagram commutes: 

7r I (1~ - -  Cr(C~l  )) \ 

,.~ / ~  B d (3) 
nl (11~-- Cr ((82)) 

Proof Let O~ be the center of projection p~ (i= 1, 2). By abuse of notation we 
denote by p~ also the corresponding projection of the projective plane. The 
target of any linear projection can be identified with the uniquely determined 
by the center of projection line in the dual plane. Let I be the set of pairs 
(0, cg) where 0 is a point in the plane and ~ is a curve from the irreducible 
component, say F, of an equisingular family of curves in question such that 
projection of c6 from 0 is generic. I is a Zariski open set in an irreducible 
variety F x (II;Pz) * and hence is connected. The projection of a path in I connect- 
ing O~ and 02 on the first factor of I defines an isotopy of the targets of projec- 
tions Pi inducing the vertical isomorphism in (3). 

Finally note that according to the van Kampen theorem n~(ffi2-eg) has 
the following presentation: 

rt~ (112 2 - ~ ) =  {et . . . . .  e al O(7i) e j= e j, i= 1,. . . ,  N, j  = 1, ..., d} (4) 

where the action of the braid group is the standard action of the braid group 
on the free group (cf. [B]). The braid monodromy seems to carry, however, 
more information, e.g. the homotopy type of the complement is determined 
by it ([L 3]), and it is unlikely that the object from the next section will depend 
only on nl.  

3. The invariant 

Let p be an n dimensional linear representation of B d over the ring A of Laurant 
polynomials • [t, t -  ~]. We shall consider M = H o(n~ (1I;--Cr ((g), p (0)) as a mod- 

l 
ule over A. Let M = @ A g O  @ A / 2 i  be its cyclic decomposition. We shall denote 

i--1 
its order H2i, which is a Laurant  polynomial defined up to a unit in A, by 
p(cg, p). This homology group is the largest quotient of A" on which nx(tE 
-Cr(<g)) acts trivially via the composition of the braid monodromy and chosen 
representation. In down to earth terms, p(cg, p) can be described as the greatest 
common divisor of the minors of the order n in the N-n by n matrix of the 
map @(p(0(7i) ) - Id) which takes (A") N into A". 

The lemma above implies that p(cg, p) depends only on c~ and not on the 
choices on which the definition of the braid monodromy depends and moreover 
this polynomial is the same for all cg in a connected component of an equisingular 
family. 
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4. Alexander polynomial of plane curves and Burau representations 

Now we shall calculate p(cg, p) where p is the reduced Burau representation. 
Recall first that the Alexander polynomial of cg can be defined as follows ([L 1]). 
If (69E~ 2 is an algebraic curve, then the map which assigns to any loop from 
7Za(~2-W) its linking number with qr defines a surjective map ~ of zr~(~2-cg) 
onto 2~. The first homology group of the infinite cyclic cover of (U 2 - ~  corre- 
sponding to the kernel of this homomorphism is a torsion A = Q It, t -1]  module 
( [L 1]). Its order as an A-module is the Alexander polynomial of c~. 

The Alexander polynomial of cg can be found in terms of Fox derivatives 
in a way similar to the well-known procedure from the knot theory. Namely 
if rq (~2 __(~9) has el . . . . .  ea as generators and R 1 = 1 . . . .  , RN= 1 are relators then 
the Alexander polynomial is equal to the g.c.d, of the minors of the order d -  1 
in the matrix (~(ORi/Oej)), i=  1 . . . . .  N , j =  1 . . . . .  d where by abuse of notation 
we denote by ~ the homomorphism of the group rings induced by the homomor- 
phism ~, above ([L 1]). 

Finally recall that the Burau representation of B a can be described as the 
Z [t, t -  1] representation which maps the standard generators as follows: 

/1 ". \ 

1 

""1 /  

~q--* 0 1 

0 

, O'i --~ 

1 0 0 
t - t  1 
0 0 1 
0 0 1 

1 

i-th row (5) 
2 < i < d - 1 .  

The reduced Burau representation is the quotient of this representation by 
the obvious 1-dimensional invariant subspace. If one views Bd as the automor- 
phism group of a free group with generators e~, ..., ea acting by the formulas: 

l ej j # : i , i + l  
cri(ej) = eiei+le: ,  1 j = l  

t e l  j = i +  1 

(6) 

and if g i = e l . . . e i ,  then the Burau representation is just ~(~)=O(Ocr(gl)/gj), i, 
j = 1 . . . . .  d where ~b (el) = t. 

Theorem. I f  ~ is the reduced Burau representation then p(cg, ~) is equal to the 
Alexander polynomial o f  ~ multiplied by (1 + t + . . .  + t a- 1). 
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P r o o f  F rom the fact that  (4) is a presentat ion of nl ( ~ 2 _ ~ )  it follows that  

{g~ . . . . .  gd 10(7,) gj = gi, i =  1 . . . . .  N , j  = 1 . . . . .  d} 

is a presentat ion of ga ( t122 _cg,~ as well. Therefore  

(7) 

N 
@((~ 0(73 gk/O g,)- I) (8) 
i=1 

is a matr ix  of the Fox derivatives of n l (lI22- W). Hence the Alexander  polynomial  
of (U2-%F is the g.c.d, of the minors of the order  ( d -  1) in (8). 

It follows from the facts about  Burau representat ions reviewed above that  
(8) is the same as 

N 
@ O z ( O ( T i ) - -  I)). (9) 
i=1 

Let A} '~"- '  denote  the minor  of the matr ix  (9) obtained by delecting column 
j and containing rows il . . . . .  i d - i  ( l < i k < N d )  and let A g ...... ~" ' be the g.c.d. 
of A} ...... g" ' for./ '= 1 .. . .  , d. F r o m  the " fundamenta l  formula of the free calculus" 
( [CF],  Ch. 7, (2, 1 1)) Y,j(c?R~/~gj)(t j -  1)=0  we obtain 

t j -  1 t k -  1 

Therefore Aid ...... i~ , = A  i ...... id(1 + t  + ...  + t  a -  ') and our  theorem follows. 

E x a m p l e  9  Let cf be a non-singular  cubic curve. Then the braid m o n o d r o m y  
can be writ ten as A 2 = a l  c;2 al  or2 at  0 2 (cf. [M] Th. 1 p. 120). We have 77(61) 

_ / = ( - t - 1 0  10)' 7~(~ - t - 1 0  ). The  g.c.d, of the minors  of order  2 in 

the matrix (ti 0) 
 9 - t - 1  

0 

is equal to 1 + t +  t 2. Hence the Alexander  polynomial  is 1. Of course in the 
this case n l (IU 2 -)Y) is just 2~. 
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