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TOPOLOGICAL INVARIANTS OF AFFINE
HYPERSURFACES: CONNECTIVITY, ENDS,

AND SIGNATURE

ANATOLY LIBGOBER

1. Introduction. Let Vo be a hypersurface in C"+1 given by a polynomial equa-
tion P(zl,..., z,+l) 0. Suppose that Vo has an isolated singularity at a point. In
this situation the topology of the part V, of a perturbed hypersurface P (for
small t) inside of a ball B of radius e about the singular point is well understood.
In particular, V, is an (n 1)-connected parallelizable 2n-manifold which comes
with a monodromy action on the middle-dimensional homology arising when
varies around a small circle about zero in a t-plane. Along these lines, one obtains
a beautiful construction ofexotic spheres [Br] and rational homology spheres which
appear as the boundaries O V,, of V,. The invariants determining the type of O V,,,
such as the above mentioned monodromy or the signature of the intersection form
on the middle-dimensional homology of V,, can be obtained in some cases directly
from the equation P. In particular for the signature, in the case when P is weighted
homogeneous, one obtains a combinatorial formula [Br] related to the Dedekind
sums [HZ].
The purpose of this paper is to study another situation associated with a poly-

nomial of several variables which exhibits a similar behavior. To be more precise,
under certain conditions the affine hypersurface P(zl,..., z,+l) for Itl > N is an
(n 1)-connected 2n-manifold for which the essential part ofits topology is encoded
in the intersection form and in the monodromy action on the n-dimensional homo-
logy which is induced by going around a circle of a large radius in the t-plane
(monodromy at infinity). In particular, one obtains a construction ofhomology and
homotopy spheres as the ends of affine polynomial hypersurfaces.
The topology of affine hypersurfaces was studied recently by Broughton [Brt]

who discovered a class of polynomials, which he called the tame polynomials
and for which the affine hypersurface P is an (n- 1)-connected 2n-manifold.
Previously, an estimate for the connectivity of affine hypersurfaces was obtained by
M. Kato [Ka]. Our class of polynomials is defined in terms of a resolution of the
base points of the pencil of hypersurfaces which are closures in P" of the hyper-
surfaces P(zl,..., z,+) t. Moreover, we describe a wider class of polynomials for
which the homology groups of corresponding hypersurfaces vanish in all dimen-
sions except the middle one (Section 2). The examples of polynomials for which the
end ofP is a homology and homotopy sphere are given in Section 3. The analysis
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of these examples uses calculation of the characteristic polynomial of the mono-
dromy at infinity acting on a middle-dimensional homology of the hypersurfaces
defined by commode polynomials nondegenerate for their Newton polyhedron
[LS]. Other ingredients are the fact that an end is Z/n-homology sphere if and
only if gcd (A(1), n) 1 where A(t) is the characteristic polynomial of this mono-
dromy and the parallelizability of aftine hypersurfaces. The Newton polyhedron
here means the convex hull in Rn+l of the origin and the points (d l, dn/) such
that the monomial z "n/-d/l has a nonzero coefficient in the polynomial P. Non-
degeneracy has the usual meaning due to Koushnirenko l-K]: for any face cr of
the Newton polyhedron of P the system Z(dP,/dZ) Zn+l(dP,r/tZn+l) 0
has no nonzero solutions where P, is the sum ofmonomials aal...a,/zd "Zn+l-d"/ from
P for which (d:’"dn/) tr. Note that the connectivity issue of P for P which
is nondegenerate for its Newton polyhedron has been resolved in [Brt] (see also
[Brn], [Kh]).

It should be noted that the situation considered here has an overlap with the local
situation mentioned at the beginning. More precisely, if P is a weighted homoge-
neous polynomial having an isolated singularity at the origin, then its Milnor fibre
is diffeomorphic to the affine hypersurface P for :/: 0. For the case when
P z + + ,-n+"/, E. Brieskorn calculated the signature of the Milnor fibre as
the difference of the number of integer (n + 1)-tuples (xl, xn/), 0 < Xk < ak,

’n+l ’n+lsuch that 0 < Z.ak=l (Xk/ak) mod 2 < and such that </_.k=l (Xk/ak) mod 2 < 2 (see
[Br], [HZ]). In Section 4 we generalize this calculation by finding the signature of
the affine hypersurface P (for large Itl) when P is nondegenerate for its Newton
polyhedron. To describe this formula, recall that for a polyhedron E in R with
vertices having coordinates belonging to the lattice Zn, one can define the following
sequence of integers. Let an(E) be the number of points belonging to the polyhedron
and having coordinates in (1/n)Z. Then the generating function for this sequence,
i.e.= an(E)tn, is a rational function of t. It has form Nz(t)/(1 t)dim+t (see [St])
where N.(t) is a polynomial (of degree < dim E). Let f(E) be the number of faces of
E having codimension j and

Suppose that the Newton polyhedron E ofP is simple; i.e., nonzero vectors on edges
merging into one vertex form a basis of the space spanned by E for any vertex of
E. Then the signature of P for Itl large is

2(- 1)bn_2,(X) + b(X) + (- 1)dimaN( 1)
p=O

(1.1)

where the second summation is over all faces of the Newton polyhedron E. The case
considered by E. Brieskorn corresponds to a simplex and, as we will see, is a
specialization of (1.1). The proof is obtained by considering the compactification of
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P in the toric variety corresponding to the Newton polyhedron of P. As part of
the proof of (1.1), we also obtain a formula for the ;y-characteristic of certain
hypersurfaces in toric varieties [KKMS] which generalizes a formula of Hirzebruch
and Zagier [HZ] for equivariant Zy-characteristic of the product of cyclic groups
acting diagonally on Fermat hypersurfaces. (Their formula also has Brieskorn’s
formula mentioned above as an immediate consequence.) This quotient is naturally
a hypersurface in a weighted projective space which is the toric variety correspond-
ing to the simplex, and our formula in this context coincides with Hirzebruch-
Zagier’s (see (4.2)).
We would like to point out that another approach to the calculation of

characteristic was developed in [DH] and also other recent works IN], [-NR], [HL]
treating other aspects of the behavior of polynomials at infinity.

Finally, my thanks goes to S. Sperber for bringing my attention to the study of
behavior of polynomials at infinity in connection with his and A. Adolphson’s work
on the estimates of exponential sums. My appreciation also goes to the Institute for
Advanced Study, where this work began, for its hospitality and support.

2. Vanishing of homology and homotopy groups of afline hypersurfaces below
middle dimension.

2.1. Let Pd(Z1 z,+l) be a polynomial of degree d. The projective closures of
the affine hypersurfaces Pd(z z,+)= in C"+ c P"+ form a linear pencil
which in turn defines the rational map tI),. P"+l - P. The undeterminancy points
of (I)p are the base points of the pencil or, what is the same, the intersection of the
projective closure of P 0 with the hyperplane at infinity.

According to Hironaka (I-HI, p. 141 (,) and p. 142 Main Theorem II), there exists
a triple (X, , g) consisting of a nonsingular projective variety X and the mor-
phisms (I): X--, P and g: X p.+x such that g is birational and such that the
diagram

’ pn+lX

p

commutes. Moreover, the -preimage of the hyperplane at infinity is a divisor with
normal crossings. In addition, this preimage has the natural stratification. In this
stratification the codimension-i strata are connected components of/-fold inter-
sections. Recall that those are the points near which the g-preimage can be given in
local coordinates (xl, Xn+l) by the local equation x X O. Such a map
we shall call a resolution of the base points of P.

2.2. Definition. We say that a polynomial P(zx, z.+x) has no singularities at
infinity (resp. only isolated singularities at infinity, resp. isolated singularities at
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infinity which have Q-spheres as their links) if there is a resolution of the base points
of P such that

(a) the dimension of the singular locus of the part of each fibre of in
q-l(C"/l) c X has the dimension of a singular locus at most zero;

(b) each fibre of except the fibre over the point of px at infinity intersects each
stratum of the W-preimage of the hyperplane at infinity transversely (resp.
intersections with n-dimensional strata have isolated singularities and the
intersections with strata oflower dimension are transversal, resp. intersection
with n-dimensional strata have only isolated singularities which are homology
Q-spheres).

Remark. Condition (b) implies that the only fibre of having a common
component with the q-l-preimage of the hyperplane at infinity in pn+ is the fibre
over the point ofP at infinity.

The values of for which the fibre of is either singular or is not transversal to
a stratum of the stratification of the q-preimage of the hyperplane at infinity is
called atypical (see [Brt]). We shall call a good resolution of the base points of
the pencil defined by P.

2.3. Examples.
2.3.1. Condition (b) excludes the resolution of the base points of the poly-

nomial P(x, y) x2y + x, which produces the situation mentioned in the remark
above. The projective closure of an element of the corresponding pencil is given by
x2y + xu2 tu3. The base locus consists of two points M(u 0, x 0, y 1)
and N(u 0, x 1, y 0). At N each curve of the pencil is nonsingular and the
multiplicity of intersection of any two curves is equal to 3. After one blowup at M,
the pullback of the pencil has the exceptional curve as a fixed component with
multiplicity 2. Removal of this component gives the pencil with the base point over
M such that all curves, except the one corresponding to 0, are nonsingular with
the mutual multiplicity of intersection equal to 2. The curve corresponding to 0
has a node at the base point. The resolution of the base points can be achieved by
three blowups at N (which produce exceptional curves eo, e, e) and three blowups
over M (which produce exceptional curves el, e2, e3). This leads to the resolution
of Figure 1.

Here the fibre corresponding to 0 is the union of curves el e2 (projecting into
components xy + 0 and x 0 of P 0) and e2. The fibre over is the
union of the proper preimage of u 0 and e, eo, e.

2.3.2. An example of singularity at infinity. Let P(X, Y, Z)= XYZ- X- Y.
The corresponding pencil XYZ- XU2 YU2 tU3 has as the base locus the
union of three lines ve: [U 0, X 0], e2: [U 0, Y 0]; e3: [U 0, Z 0]. All
surfaces of the pencil have the singularity of type A at the points P:(1, 0, 0, 0),
P2: (0, l, 0, 0) for any (the hessian is nonzero at these points), the singularity of
type A2 at P3: (0, 0, 1, 0) for :/: 0, and the singularity of type A3 at P3 for 0.
(The proper preimages of the surfaces of the pencil after the blowup at P3 for :/: 0
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FIGURE 1

FIGURE 2

are nonsingular and have intersection with the exceptional plane consisting of two
lines, and for 0 these preimages have ,41-singularity.) Blowing up at P1, P2, and
P3 adds to the base locus one line, el and e2, for each of the two points where the
surfaces of the pencil have A -singularity (corresponding to the tangent cone to the
surface which is independent of t) and the pair of lines e, e corresponding to ,42
singularities at P3 (see Figure 2). All surfaces of the pencil are nonsingular except
for the one corresponding to 0 which has ,4 -singularity at the intersection of
e and e. Blowing up along one of these lines, say e, produces the pencil of
nonsingular surfaces transversal for any 0 to the preimage of the hyperplane at
infinity U 0, the exceptional planes obtained from blowing up P, P2, P3, and the
exceptional set over e. For 0 the transversality to the exceptional set over e
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fails. Blowups along other components of the base locus decrease the order of
tangency of the surfaces of the pencil to each other and eventually give the pencil
which is base-point-free and where transversality to the stratum (of codimension 1)
of the preimage of U 0 fails for 0 at one point. (The intersection of the surface
with this stratum has a node at the point where transversality fails.) This point gives
the isolated singularity at infinity.

2.3.3. Example of polynomial having no singularities at infinity. Let P X2 -- ys.
The compactification of p2 of the elements of the corresponding pencil gives the
family of curves X2. Z3 + y5 tZ which has one base point at Z 0, X 1,
Y 0. All the curves ofthe pencil have at this point the singularity locally equivalent
to u3 + v5 0. The multiplicity of the intersection of any two curves of the pencil
at this point is 25. The blowup at this point gives the pencil with one base point
such that all curves of the pencil have at this point an ordinary cusp (i.e. locally are
given by u2 + v3 0) and have the multiplicity of intersection of any pair of curves
at this point equal to 12. An additional 12 blowups over the base point will produce
the pencil of curves such that any curve from it will intersect only the last of 14
exceptional curves, and these intersections will be transversal.

2.3.4. More generally, if P is any polynomial nondegenerate for its Newton
polyhedron, then P does not have singularities at infinity in the sense of 2.2. Indeed,
it is shown in [LS] that a toric desingularization of the toric variety canonically
corresponding to the Newton polyhedron of P provides the resolution of the base
locus with all added strata transversal to the hypersurfaces of the pencil (also see
Section 4 below).

2.4. THEOREM. Let P(zl,..., z,+) be a polynomial which has no singularities at
infinity (resp. only isolated singularities whose links are Q-spheres). Then for any
the hypersurface P is (n- 1)-connected (resp. has vanishin9 homology with Q-
coefficients in all dimensions except n).

Proof. First, we shall prove this for typical values of t. Let to be such a value
and a... tk be all atypical values of t. The t-plane can be retracted on a sufficiently
small regular neighborhood of a system of nonintersecting paths connecting and
t’"tk as in Figure 3.

tl

2Q
to tn

FIGURE 3
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It follows from condition (b) in 2.2 that this retraction induces retraction of Cn+l

on the space obtained by taking a disjoint union of the neighborhoods U(PI),
U(Ptk) of special fibres and identifying them along the chosen generic fibre Pro" In
the case when one does not have singularities at infinity, Ptk is obtained from Po by
collapsing to a point a complex of dimension n (because the singularity is isolated),
i.e. by attaching cells of dimension (n + 1). This does not affect the homotopy of
dimensions up to n 1. Hence 7r,i(Pto ni(Cn+l) 0 for < n 1.

In the case when links at infinity are Q-spheres, the theorem follows by induction
from the following lemma.

LEMMA. If, as above, U(Pts) is a neighborhood of the atypical fibre corresponding
to t and V is a union along Pto of several neighborhoods of atypical fibres correspond-
ing to tl ts-1, then

Hi(V U(Pts), Q)= Hi(V, Q) fori<n-1. (2.4.1)
50

The theorem follows immediately from this result, because this lemma implies
that ni(Po, Q) H(C"+1, Q) for < n 1.
On the other hand, the lemma follows from the exact sequence

50 50
(2.4.2)

the excision, and the isomorphism Hi(U(P), Po)= 0 for i< n. The latter iso-
morphism is equivalent to

(a) ni(Po) Hi(U(Pt)) is an isomorphism for < n 1;
(b) the map in (a)is surjective for n.
(a) and (b) are clearly true if tk is an atypical value corresponding to the fibre

P tk having isolated singularity in the C"+1 X. (X, as above, is a good resolution
of the base locus of the pencil.) If tk corresponds to the fibre having a singular point
at infinity (i.e., either is singular itself or is nontransversal to a codimension-1
stratum H), let Boo be the intersection of a small ball about this singular point with
C"+1 X (i.e. Boo is equivalent to (zl, z,+l) such that Iz211 / ""/lz.+x12 <0,
z 0). We have the homotopy equivalences

P,o P,o r oo - v(e,) v(e,) n
(2.4.3)

Because Po can be assumed to be transversal to cBoo, the maps Hi(Po c cBoo)
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H(U(Pt,,) n 9Boo) are isomorphisms for any i. The Mayer-Vietoris sequences

H(P, ) H(P, r oo) H(P,o oon P,o) n(P,o)

/-/_(PonB(R)) /-/_(P,o)nB @ H-(P,o-BoonP,o)

H,_(U(P,D n aB)---- H,_,(U(P,D n) @ H,-,(U(P,D U(P,D n B)
(2.4.4)

and the five lemma show that it is enough to verify that H(Pon Boo, Q)--*
H(U(P) Boo, Q) are isomorphisms for < n 1 and are surjective for n. In
fact, we show that

(c) H,(U(Pt,,) n B, Q) 0 unless 0, and H(U(Pt) n B, Q) Q; (2.4.5)
(d) H(Pto c Bo, Q) 0 for :/: n, :/: 0, and n(Pro n Bo, Q) Q;

and generators of H’s correspond to each other.
Note that U(Pt,,) n Boo H where is the closure of Pt,, in X,

and here by abuse of notation we use H for H n --. Indeed, the retraction of a
regular neighborhood ofPt insideB on Pt B preserves H. In the exact sequence

-* Hi+ (Boo n Pt, Boo n Pt H n P)
Hi(B n P, H n P,)
H,(B n P), (2.4.6)

one has H(B n P) 0 for > 0 because n is a cone. On the other hand,
H(B n P, Boo n P- ) Hi(T(H ), ) where T(H ) is a regular
neighborhood of H P inside and Ox is the relevant portion of this bound-
ary (see Figure 4) (i.e. the complement in OT(H ) to a neighborhood of
H OT(H P)).
The latter group by Poincar6 duality with Q-coefficients is isomorphic

to H2"-(T(H ), ) (where 2 OB OT(H )). Using retraction of
(T(HP), 2) on (H, ) and by applying Poincar6 duality again with
Q-coefficients, we obtain that the last group is isomorphic to Hi_z(H , Q) which
is zero unless 2 and is Q if 2. This implies (c).
To derive (d) one similarly considers the exact sequence

n+(B Po, B o H o)
n(o B n o)
n(B o). (2.4.7)
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We have

Hi+x(B Pro, B Pto H Pro) Hi+I(T(H Po), 0).

(Again, T(H Po) is the regular neighborhood of H c Po inside Po and t3: is the
portion of the boundary outside OBo.) The latter group is isomorphic to

Hz"-’-(T(H c Po), c32)(2 T(H c Po) c OBo)

H2n-i-1 (H Pro, c3(H Po)) Hi-I(H c P,o)"

This group is trivial for 0 < < n 2 because H P,o is equivalent to a bouquet
of (n 1)-spheres, which implies (d).
The vanishing of homology in dimensions below n for atypical fibres is standard

for fibres corresponding to singularities in C"/ (degeneration corresponds to the
collapsing of n-spheres) and because singularities at infinity which we allow do not
affect homology in these dimensions (as follows from (c) and (d)).

3. Homology and homotopy spheres as ends of attine hypersurfaces.

3.1. The purpose of this section is to give a condition when the intersection of
the sphere of a sufficiently large radius with a hypersurface Vo: P(zl,..., z,+) to,
where to is a typical value of P, is a homology sphere for homologies with coefficients
in Z, Z/n, Z or Q. The answer is given in terms of the monodromy at infinity, i.e.
the operator T on H,(Vo, Z) corresponding to the diffeomorphism of Vo induced
by moving around a loop 7 in a t-plane starting at to and containing inside all
atypical values tl, k (see Figure 3). For 6 7, O-x(t) (where O: X -, p1 is a good
resolution of P t) is transversal to all strata of the preimageX of the hyperplane
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at infinity. So one also has transversality to OBR for a large R because CBR is also
the boundary of the regular neighborhood of Xoo. In particular, I.-lt,BR is a
locally trivial fibration and the diffeomorphism of monodromy is well defined up
to homotopy. The characteristic polynomial of T on H,(Vo, Z) will be denoted
A(s).

3.2. THEOREM. Let V be the part of an affine hypersurface P inside the ball
Bk of a sufficiently large radius R. Assume that D has no singularities at infinity. Then
the boundary tgV is a Z/n-sphere if and only if gcd (A(1), n) 1. In particular, it is a
rational homology sphere if A(1) 4:0 and is a Z-sphere if A(1) _+ 1.

Proof. First, notice that the geometric monodromy at infinity can be chosen to
act trivially on the boundary of V. Indeed, this monodromy is a product of the local
monodromies about singular points, and it is well known that those can be chosen
to act trivially on the boundary. Hence the same is true for the monodromy at
infinity. Now using the fact that V is homotopy equivalent to a bouquet of spheres
(V is (n- 1)-connected by 2.4 and has the homotopy type of an n-dimensional
complex), one obtains the exact sequence

0 H,(OV, K) H,(V, K) H,(V, OVa, K) H,_x(OV, K) 0 (3.2.1)

where K is a ring of coefficients. The invariance of H,(OV, K) under monodromy
implies that it is a subgroup of Ker(T- Id) where T, as above, is the monodromy
operator on H,(V, K). Hence if A(1) is a unit in K then H,(0V, K) 0. Hence, by
Poincar6 duality, H,-1 (0V, K) 0 and the result follows.

3.3. Note that V is a parallelizable manifold. Indeed, it is clearly stably parallel-
izable, has homotopy type of a complex of dimension n, and hence is parallelizable
(see [Krv]).

3.4. To construct examples one should have a reasonable class of polynomials
for which one can readily calculate the monodromy at infinity. As explained in the
introduction, to get something different from the local case one needs a class wider
than weighted homogeneous polynomials. We will use the following result from
[LS] calculating the monodromy for commode polynomials nondegenerate for its
Newton polyhedron. (See Introduction. Recall that commode means that Newton
polyhedron contains points on all coordinate axes.)
THEOREM 3.4.1. Let P be a commode, nondegenerate for its Newton polyhedron.

Let trl, trN be a collection offaces of the Newton polyhedron such that the minimal
dimension of coordinate planes (i.e. given by the vanishing of several coordinates)
containing tr equals dim tr + and such that none of tr- 1,..., trN is in the origin.
Let e m be the equations with inteoer, relatively prime coefficients containing this
face. (ei is the linear form of dim tri / 1 variables.) Let vol(tri) be the volume of the
face tr relative to the lattice induced on the plane carrying tr by the integral lattice
of the space in which the Newton polyhedron of P is constructed. Then the charac-
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teristic polynomial of the monodromy at infinity is equal to

z r-lil (1 zmij(dimtri)!vol(tri)(-1)aim’r,.x (3.4.1.1)

We also will need the following corollary from the global analog of the Thom-
Sebastiani theorem [Nm].
THEOREM 3.4.2. Let P(zl, Zn+) and Q(w, Wk+) be two polynomials with

disjoint variables which do not have singularities at infinity. Then the monodromy at
infinity of P(z, Zn+l) + Q(w, Wn+l) is the tensor product of the monodromies
of P and Q.

In particular, the value at 1 of the characteristic polynomial of P + Q is a product
up to the sign of the values of one of the characteristic polynomial in the roots of
another.

3.5. Let Ak(X, y, z)= ax3 + bx2y2 -!-cy3 + dzk((k, 6)= 1) be a nondegenerate
polynomial. The characteristic polynomial of the monodromy at infinity is

(S6k 1)2 (S3 1)2 (sk 1)
(S3k 1)2 (S6 1)2 (s 1) (3.5.1)

Hence the end of A is a Z/n sphere if (n, k) 1. This Newton polygon is not
simple, however (see Figure 5). (Recall that a polyhedron is called simple if the

0, O, k)

(2,2, O)

(0, 3, O)

FIGURE 5
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minimal vectors with the integral ends on all edges containing each vertex form a
Q-basis of the ambient space.) Next is an example of a simple Newton polyhedron.

3.6. Let b, Y, c be integers such that gcd(b, e) 1, d-odd, and gcd(c 2b, Y) 1.
Let Bb,.c(x, Y, z) x2 + fly2 + yz + (xzZb + e.y’z2b with generic , fl, y, 6, e.
Theorem 3.4.1 gives the following for the characteristic polynomial of the
monodromy:

(1 S4be)3(1 S)(1 S2)(1 S2)(1 Sc)
(1 S*b)(1 S)(1 S)(1 S4b)(1 S2)2(1 S)

(1 $4b{)2(1 -[- S)
(1 s4b)(1 s2t’) (3.6.1)

In particular, A(1)= 4bY. (Note however that the case Y 1 can be analyzed
alternatively by ad hoc methods. For example, x’ x + z2, y’ y + zb reduces this
to the weighted homogeneous case.) (See Figure 6.)

3.7. The examples in the last two paragraphs give rise to polynomials of larger
number variables which have the homotopy spheres as their links at infinity. Let
us assume, for example, that 4b _= (mod 3) and Y -= 2(mod 3).
The characteristic polynomial of the monodromy for u3 is s2+ s + 1 and

Ab.,(w) Ab.,(w2) 1. Hence the remark after Theorem 3.4.2 shows that the end

(2, 2b)

2e

FIGURE 6
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of affine hypersurface given by

2X2 _. y2 d- Z -b XZ2b -[- yeZ2b -b U3 -[- V -[-"" -- V (3.7.1)

is a homotopy sphere (m-even) of dimension congruent to + 1 mod 4.
One obtains another example of homotopy spheres at infinity in the case

4be (15), (15) by taking the sum ofPb, t,c(X, Y, Z) + U3 + V5. The characteris-
tic polynomial of the monodromy of u3 + v5 is (s15- 1)(s- 1)/(s5- 1)(s3- 1), i.e.
a polynomial having as its roots the primitive roots of unity of degree 15. If ( is such
a root, then our assumptions imply Ab, r,c(() 1. Hence

2X2 _[_ y2 d- Z -b XZ2b -[- y/z2b -b U3 d- 05 -b U21 -1-"" -b U (3.7.2)

(m-even) is a homotopy sphere ofdimension congruent to mod 4. One can apply
the formulas ofthe next section to determine the differentiable types ofthese spheres.

3.8. Finally, notice that the homology spheres one obtains are the boundaries
of the plumbing of disk bundles over spheres according to a contractible graph. The
vertices of this graph correspond to those 2-dimensional orbits ofa toric desingular-
ization of the canonical toric variety corresponding to the Newton polyhedron E
of the polynomial P which do not belong to C3 containing P t (see [LS] and 4.1).
Recall that the canonical toric variety is the toric variety corresponding to the
fan composed of cones on which the support function of polyhedron (i.e. h(x)
minyz (x, y) is linear). The corresponding curves are intersections of the closure
P with each of these orbits T1,..., TN. The Euler classes of the bundles which one
needs to plumb and intersection indices can be found in terms of triple intersections
T T Tk using the fact that the closure of P is linearly equivalent to -Eh(T)T.
(Here T, by abuse of notation, denotes the vector of the fan corresponding to the
orbit T.) For example, for B1,,3 x2 + y2 -k- xz2 -+- yz2 -k- Z3 the canonical toric
variety can be described as follows. The equations of faces are x 0, y 0, z 0,
-x y z -3, -2x 2y z -4 (where signs in the equations are chosen
in such a way that the value of the left-hand side on the face will be less than the
value inside the polyhedron). The minimal vectors on the rays of the fan are
el (1, 0, 0), e2 (0, 1, 0), e3 (0, 0, 1), e4 (-- 1, 1, 1), e5 (--2, --2, 1).
A triple of vectors forms a cone from the fan if and only if the corresponding
faces define a vertex of the polyhedron. Hence the cones of the fan are C1 :(e 1, e2, Ca),
C2:(el, e2, e,), C3:(el, Ca, es), C4:(e2, e4, es), C5:(el, e4, es), C6:(e2, e3, es). The
only cone which requires a subdivision to obtain a desingularization is C6. If
e6 (- 1, 1, 0), then C6 C w C where C (e2, e3, e6) and C (e2, es, e6).
Let hi be the minimum of ei on the Newton polyhedron of B1.1.3. Then hi 0 for
1 < < 3, h4 -3, h5 -4, h6 -2. Hence the closure of B1,1, 3 in the above
desingularization of the canonical toric variety of B1,1, 3 is linearly equivalent to
3 T4 + 4T5 + 3 T6 where T is the closure of the orbit corresponding to ei. Using the
fact that T Tj Tk (i 4: j 4: k) is equal to one if corresponding faces of the polyhedron
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0 0 0
-1 -1 -4

FIGURE 7

have a vertex in common and equal zero otherwise and replacing closures of orbits
by linear combinations of different orbits, one obtains the plumbing graph in Figure
7 for the link at infinity.

4. Invariants of afline hypersurfaces nondegenerate for their Newton polyhedron.
In this section, after a brief review of toric varieties, we shall calculate the signature
of an affine hypersurface given by a polynomial nondegenerate for its Newton
polyhedron as well as the Zy-characteristic of its natural compactification.

4.1. First, we shall recall that a toric variety is an algebraic variety X, say of
dimension (n + 1), which contains a torus T (C*)"+1 as an open set and such that
the action of T on itself extends to the action on X. Let (Z"+x)chr Hom(T, C*) be
the lattice of characters, (Z"+)sgp Horn(C*, T) is dual to the lattice of 1-parameter
subgroups, and (R"+a )chr zn+l )chr () R (resp. (R"+ )sgp zn+l )sgp () R). The cate-
gory of compact toric varieties corresponding to a fixed torus T is equivalent to the
category of fans in (R")sgp.

Recall that a fan is a union of a collection of strongly convex rational polyhedral
cones (i.e. having form Xaivi, vi (Z"+l)sgp, ai 6 R, a > 0) such that every face of
each cone belongs to the fan and the intersection of any two faces belongs to the
fan. (In this correspondence, each cone cr of the fan defines an affine variety which
is SpeckIS] where S is the semigroup of characters belonging to the or. Adjacency
of the cones in the fan defines gluing of these affine sets.) To each cone of dimension
corresponds the orbit of T of codimension i. Each divisor is linearly equivalent to

the one supported on the closures of codimensional-1 orbits. Assignment of multi-
plicities along orbits of codimension one defines a function (a support function of
the divisor) on (Rn)sgp linear on each cone of the fan. Vice versa, a function of(R"+ )sgp
linear on each cone of the fan which takes integral values on the minimal vectors
on the rays of the fan, defines the divisor. Classes of linear equivalences of divisors
are in 1-to-1 correspondence with the classes of functions as above up to addition
of a linear function on (Rn+l)sgp. If E is a polyhedron in (Rn+)ehr with integral
vertices, one associates to it the fan consisting of the cones on which the support
function corresponding to E: x minvz (x, v) is linear. If E is a simple polyhedron
(see 3.5, i.e. minimal integral vectors on the edges containing each vertex form that
is a basis of (Z"+)hr (R) Q), then the corresponding toric variety is a Q-manifold
having only quotient singularities. The cones of the corresponding fan are simplicial
ones, and there is 1-to-1 correspondence in which faces of dimension correspond
to cones of codimension in the fan. The divisor corresponding to the support
function of X; defines a base-point-free linear system (see [O], Theorem 2.22). If
E(P) is the Newton polyhedron of a commode nondegenerate relative to the E(P)
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polynomial P, then the projective closures of the elements of the pencil P are
nonsingular hypersurfaces transversal to all orbits of (C*)"+1. (I.e., all strata and
the single blowup along each component of the base locus of the pencil gives a
base-point-free pencil ([LS]).

4.2. Let us describe the numerical data of a polyhedron which we shall use to
express the topological information about hypersurfaces. Let # Z(j) be the number
of faces of dimension j of a simple polyhedron. We let P(t) z..,j=oX"+ # E(j)(t 1).
Note that P(t) =o hP’P’tP where hp’p are the Hodge numbers of corresponding
toric varieties (i.e. h’ H(X,) where tip j,fl, U the nonsingular locus of
X, j: U X the natural embedding of U) (see [O] (Theorem 3.11)).
The generating function %o1t for the number I of the points in the lattice

(1/s)(Z"+1 which belong to a polyhedron A has form NA(t)/(1 t)dima+l where NA(t)
is a polynomial of degree not exceeding the dimension of A.

4.3. Finally, recall that on a manifold (or on a Q-manifold X) with a line
bundle one defines .P(X, =/_,i=o (- 1)i dim Hi(X, , (R) ’)and y(X, )
’fl X
=o Z(X, 5)Y.
THEOREM. Let SA be a generic element in the linear system L(A) on a torie variety

TA which corresponds to a simple polyhedron A. Then

Z,y(SA)-- Zy(TA)-(-y)dimA (4.3.1)

where 6 runs through all faces of A.

Proof. The proof follows from the following series of steps. As usual, T(i) will
denote the closure of the orbit corresponding to the cone i of the fan.

Step 1.

Z’(TA, C’)= (--1)cdim (n + 1cdimpcodim i i) Z(T(i)’ ’) (4.3.2)

where 5 is a line bundle on TA and summations over all cones i of the fan define
a toric variety TA.

Indeed, the Ishida complex (see [-O], p. 120) provides a resolution

where

"/’J(TA, p) Q OT(r) () AP-J((zn+l )ehr (’5 if_L)
F(j)

with a summation running over the collection F(j) of all cones in the fan having
dimension j and with i- being the subspace in (R"+)c annihilating i (R"+l)s,p.
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The right-hand side in the last equality is a free Or(,)-mode of rank

(n+l-dimtr)’Hencep-dim tr

Z(f’’ ) (--1)dim’(n + l dim tr) Z( T(tr)’
p dim a

(4.3.3)

Step 2. If 5a is the line bundle on the toric variety which corresponds to the
polyhedron A and P(i) z(T, .c,) in the Hilbert polynomial of the toric variety
corresponding to the face di of A, then

zy(TA, S) (--y)dimr(1 -t- y)codimpa(i) (4.3.4)

where tr runs over all cones of the fan.
Indeed, it follows from Step that

zP(TA’ Sia) (--1)dim(n q- l dim tr)p dim a
(4.3.5)

Hence

n+l n+l (zy(Ta, S) y’z’(Ta, S) (- 1)dim’pa(i E YP n q- 1 dim a
p=o ,=o p dim tr

n+l

E (-- 1)dimpr(i)ydim
p=dim

n + dim tr’ yp-dim
p dim a

Pa(i)(--y)dimr(1 "k y)n+l-dim"

as claimed in Step 2.
Step 3. According to Hirzebruch’s formula ([Hir], 16, (11")),

z(SA) (- Y)’(;y(Ta, SA) zy(T, S-’-))
i-O

z(T)- ( + y) (-y)%(T, S2’-1).
i=0

Using Step 2, we obtain

zs(Sa) xy(Ta) -(1 + y) (--y)dima(1 q- y)codim (_y)ip(_ 1).
i=0

(4.3.6)
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Step 4. Now let us consider the generating function =o t"P,(n) for the values
of the Hilbert polynomial of the closure of orbit corresponding to the cone a. This
is a rational function having the form N,(t)/(1 t)cdim’+l. From the combinatorial
point of view this rational function is the generating function for the number of
points of the lattice (1/n)Zdimo which belong to the face 6 of the polyhedron A,
corresponding to the cone a of the fan.
We claim that

y)’Pn( 1)
y dim Ndi(_ 1/y)

i=0 (1 -+- y)dim+l (4.3.7)

Indeed, if P(n) is an integer-valued polynomial function vanishing at zero
and Q(t)= =oP(n)t", then ,=oP(-n)t"= -Q(1/t) as follows from identities

t" t/(1 t) + Yn%0 k=o (-1)t/(1- and the fact that an

function of integer variable is a combination of()withinteger-valued integer

coefficients. Therefore, if P(n) is a polynomial as above,

( )=ydeg’N(--1/Y)(_y)ip(_i_l)= (_y)iP(_i)= 1Q
y)dege+li=o Y i=o y (1 +

The case of P with P(0) 4:0 follows from the case just considered using the last
identity for P(n)= P(n)- P(O).

Step 5. Combining the formula of Step 4 with calculations of Step 3, we obtain

zr(Sa) zr(Ta)- (1 + y) (--y)dimcr(1 + y)cdimryedimrNcr(- l/y)
(1 -I- y)codim +1

Q.E.D.

4.4. COROLLARY (Hirzebruch-Zagier [HZ]). Let S be the quotient of the hyper-
surface VN: Z + + Zs, 0 in P" by the action of G Gbo x x Gb. where Gb,
is a cyclic 9roup of order bi, (assume gcd(bo b.) 1, bilN), actin9 by multi-
plication of the ith coordinate by a primitive root of deoree bi of unity. Then
zr(VN) 7,=o(--1)k-X(1--(--1)"/k)where 7.(V1) pzP(Vs)yp with
zP(Vs)= (-1)jHi(Vs, f,N) bein9 the alternatin9 sum of G-invariant parts of
cohomology and Nk is the number of integer solutions of jobo +"" + j,b. k such
that 0 < Ji < N/bi.
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Proof. Note first that zr(VN)G is the ;(r-characteristic of the quotient of Vn by the
action of G induced from the action of P". The action outside of coordinate
hyperplanes is free. Hence fvN/G,P i.e. the direct image of the sheaf of p-forms on the
quotient of this complement, is the sheaf of G-invariant forms i.e. (f,N). The
standard spectral sequence gives 7.r(Vn) 7.y(V/G).
On the other hand, Vn/G is the hypersurface in the weighted projective space

(i.e. the quotient of P" by the mentioned action of G). This hypersurface can be
described as the hypersurface in toric variety corresponding to the polyhedron in
the hyperplane in 11"+1 given by boxo +... + b,y, N consisting of points in this
hyperplane satisfying xi > 0 (i 0, n). Recall how it comes about. The group
G Gbo x x Gb, is the subgroup of the torus T" and the action of G on P" is the
restriction of the action of T". The quotient P"/G is the toric variety for the torus
Ta T"/G. Hence for the lattices of characters, one has

0 Chr T Chr T G 0. (4.4.1)

Vice versa, this exact sequence associates with each toric variety corresponding to
the polyhedron AG in Chr Ta, the polyhedron A in Chr T, and the toric variety
corresponding to Aa in the G-quotient of the toric variety corresponding to A. Now
P" with a diagonal hypersurface of degree N in it corresponds to the polyhedron
given by )i > 0 (i 0, n) inside hyperplane ,’=o )i N. The map9 bxi gives
the sequence

O-’* Lbo b.’- L1 GO (4.4.2)

where Lo , is the intersection of integer lattice in R"+1 with the hyperplane
bxi 0. The description of weighted projective space as a toric variety now

follows.
The formula ofTheorem 4.3 in the present case, i.e. the case when the polyhedron

is a simplex can be simplified. Indeed, No(t) <. N’(t) where N’(t) for a simplex
which is a convex hull of points Xo xa has as a coefficient of the cardinality

dof integer vectors i=o2Xi, E2i s, 0 < 2 < (see IBM], Lemma 3). Hence
a(- 1)moN(- 1/y) N*(- 1/y)(>(- 1)m). On the other hand,

Z (-- 1)dim6 (-- 1)dimA " is whole simplex A (4.4.3)

0 otherwise.

Also zy(Ta)= ,=o(-y)k because hP(Ta, fq), as follows from computation of
these numbers for any toric variety (see [O]), depends only on the numerology of
faces, i.e. is the same for Ta as for P". Hence using N*(t) t"/lN*(1/t) (see IBM]),
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we obtain

(_y)k-1 1
k=l (_y-----(-- 1)"N,(-- y)

(--Y)k-l(1 --(--
k=l

because the coefficient of k in N*(t) has interpretation as the number of the integer
lattice points of the form (..., 2(N/b),...) with E2 s, 0 < 2i < 1.

4.5. THEOREM. Let Va be a generic hypersurface given by a polynomial commode
and nondegenerate for its Newton polyhedron A and having odd number of variables
(i.e. n dima Va -= 0(mod 4)). Let Pa(t) bit be the polynomial corresponding to
A (see 4.2). Then the signature of Va is given by

(n- )/2
z(Va) 2 1)b,_ 2i + b, 1)dim aNa 1) (4.5.1)

i=1

where summation is over all the faces of A.

Proof. Let Sa be the generic element of the linear system on toric variety Ta
corresponding to toric variety defined by A. We have Vzx c Sa.

Step 1. The group H"(Sa, Va) coincides with the subgroups of H"(Sa) which is
the image of the map H"(TA) H"(Sa) induced by inclusion.
The fact that H"(Sa, Va) is a subgroup of H"(Sa) follows from the exact sequence

of the pair and H"-I(Va) 0 (the latter is because Va is (n 1)-connected). More-
over, the image of H"(Ta) H"(Sa) belongs to the subgroup of invariant cycles (of
the pencil defined by the polynomial in question) and because all cycles in H"(Va)
are vanishing Im H"(Ta) c Im H"(Sa, Va). Our claim will follow from equality of
the ranks of these groups.

Let Too T C"+1, Soo Sa Va be the parts at infinity. Then Soo, Too are unions
of transversally intersecting divisors and H"(Sa, Va)-H,(S) (Lefshetz duality
and retraction), H"(Ta)= H,+z(Too). We deduce the required equality of ranks:
rk H"(Soo) rk H"+2(Too) from the Mayer-Vietoris spectral sequences

E’(S) HP(S) = H"(Soo),

E’(T) HP(Tt) = H"(Too),
(4.5.2)

where S (resp. Tq]) denotes the disjoint union of (q + 1)-fold intersections of
irreducible components of Soo (resp. Too). Moreover, the El-terms of these sequences
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are related by the Gysin maps HP(S) Hp+2(T[q]) which by Poincar6 duality
correspond to H2n_p_2q_2(S]) -’- H2n_p_2_2q(T[q]) which are isomorphisms for
2n p 2q 2 < n- q 1; i.e., p + q > n- and surjective for p + q n- 1.
The diagram

/

d HP(T") HP(T[q+l])

(4.5.3)

commutes and induces isomorphisms on Et’q for p + q > n. The rest of the differen-
tials are trivial (see [GS]) which implies isomorphism H(So) H(Too) for s > n.

Step 2. The restriction of the intersection form in H"(Sa) on the image of H"(Ta)
coincides with the form (x, y) (x c y c [SA]) [Ta]. ([Sa] H2(Ta) is the cohomo-
logy class dual to Sa, and [Ta] is the fundamental class of Ta.) The primitive
decomposition gives H"(Ta) (Pi w IS]"/2-i where Pi’s are the primitive cohomo-
logy of dimension i. The form (x, y) x c y c IS]n-2i+2 is definite having signature
(- 1)t"-/2. (All classes in Hi(Ta) are algebraic and hence have Hodge type (i/2, i/2).)
One has dim Pi b(T)- bi_z(Yx where bi(T)is the ith Betti number of Ta
coinciding with the ith coefficient of the polynomial Pa(t). Hence the signature of
the intersection form on H"(Sa, V/)is b, 2b,_2 + 2b,_..’.

Step 3. Now Sa Va w So, and the theorem follows from the fact that the
signature of Sa is gl (Sa) (see [Hir]) and the additivity of the signature.

4.6. COROLLARY (Brieskorn [Br]). The signature of the hypersurface z’ + +
z+ is equal to the difference between the number of integer vectors (jl J,+l)
such that 0 < Ji < ai (i 1,.. n + 1) for which [’"=1i= Ji/ai] =- 0(mod 2) and those
for which ["i ji/ai] (mod 2). (Here [ ] denotes the integer part.)

Proof. The Newton polyhedron of the polynomial in the left-hand side is
simplex (x/ai) < 1, xi > O. It is equivalent to the simplex which is the convex hull
E ofthe point in R"+ 2 with coordinates (0, ai, 0) 1, n + 1, (0 k) where
k is the least common multiple of a’s. For simplex bzi and as in 4.4,

The coefficient of has an interpretation as # of2’s such that 2a j,=x k)
Z,+2 and ] 2 S. Letting j 2iai, we obtain the corollary.

[Br]

[Brn]
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