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Abstract: This note outlines a relationship between the fundamental groups of the
complements to reducible plane curves and certain geometric invariants (polytopes of quasi-
adjuntion) depending on the local type and configuration in the plane of singularities of the
curves. This generalizes the relationship between the Alexander polynomial of plane curves
and the position of singularities (cf. [Z],[L1],[LV]). Complete details will appear elsewhere.

A relationship between the homology of cyclic covers of CP2 branched over a singular
plane curve and the position of singularities was discovered by Zariski. In [L1] it was
described how a certain portion of the fundamental group of an irreducible curve depends
on the degree, the local type and the position of singularities. One associates to a curve
C its Alexander module A(C) which can be described as

A(C) = H1(Mf ,Q) (1)

where Mf is the Milnor fiber of the (non-isolated if C is singular) singularity f(x, y, z) = 0
at the origin where f is the defining equation of C. A(C) has the structure of a Q[t, t−1]-
module where t acts on H1(Mf ,Q) as the monodromy operator of the singularity. Alter-
natively

A(C) = G′/G′′ ⊗Q (2)

where G = π1(CP 2 − C), G′ = [G,G] is the commutator of G,G′′ = [G′, G′] is the second
commutator, and t acts as the generator of Z/(degC)Z = G/G′ with G/G′ acting on
G′/G′′ in the standard way. It turns out that A(C)⊗C also can be described as follows.
There exist a collection of rational numbers (constants of quasiadjunction) κ1, κ2, ..., κN
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depending on the local type of the singularities of C such that inequality A(C) ≠ 0 is
possible only if degC · κi ∈ Z for all i (these constants of quasiadjunction κi were related
to the Arnold-Steenbrink spectrum [A],[S] of singularities in [LV]). Moreover with the
array κi is associated a collection of sheafs of ideals Jκ1

, ....,JκN
such that for each κi the

quotient OCP 2/Jκi
is supported at the union of singular points of C such that

A(C)⊗C = ⊕κi

(
C[t, t−1]/(t− e2πiκi)(t− e−2πiκi)

)dimH1(CP 2,J (d−3−d·κi)) (3)

For example if d = degC and C has nodes and ordinary cusps as the only singularities then
A(C) = 0 if 6 does not divide d and A(C) = ⊕sC[t, t−1]

/
(t2−t+1) where s is the difference

between the dimension of the space of curves of degree d−3− d
6 passing through the cusps

of C and the expected dimension of this space (i.e. 1
2 (d−2− d

6 )(d−1− d
6 )). (In particular

if degC = 6 and the number of cusps is 6, then A(C) is either zero or Q[t, t−1]
/
(t2− t+1)

depending on whether the cusps belong to a curve of degree 6− 1− 6
1 = 2 or not.

In the case when C is reducible, one still can define a Q[t, t−1]-module Aℓ(C) similarly
to (1) or to (2) (and Aℓ(C) can be related to the position of singularities ([LV])), which
depends on the complement and on the homomorphism ℓ : G = π1(CP 2−C) → Z/(deg)Z)·
Z given by the linking number with C. This linking number of a loop α ∈ π1(CP 2 − C)
is equal to the intersection number of a 2-chain σ such that ∂σ = α with C which is well
defined as an integer modulo d: if σ1 is another cochain with ∂σ = α then (σ−σ1, C) ≡ 0(
mod d). In this case Z/dZ acts on K/K ′ where K = ker ℓ : G → Z/dZ. In particular
Aℓ(C) is an invariant of the pair (G, ℓ : G → Z/(deg d)Z) rather than an invariant of the
fundamental group alone.

To obtain an invariant of the fundamental group it is convenient to look at the com-
plement to C in an affine plane C2 where the line at infinity is transversal to C. Then
π1(CP2 − C) and π1(C2 − C) are related via the central extension (cf. [L5]):

1 → Z → π1(C
2 − C) → π1(CP 2 − C) → 1. (4)

Moreover, we have the isomorphism

π1(C
2 − C)

/
π1(C

2 − C)′ = Zn (5)

where n is the number of irreducible components of C. Identification (5) with Zn is
obtained by assigning to an element in π1(C2 − C) the collection of its linking numbers
with the components of C. If G = π1(C2 − C) then one defines A(C) as a group by (2)
but views A(C) is a module over the ring R = Q[G/G′] = Q[Zn].

Since the structure of such modules for n ≥ 1 is rather complicated even after extend-
ing the field from Q to C we consider only certain invariants of A(C). Let Ei(A(C)) ⊂
Q[Zn] be the determinantal ideal generated by (N − i) × (N − i) minors of the matrix of
the map Φ : RM → RN where A(C) = Coker (Φ). Then each Ei(A(C)) defines a subva-
riety V (Ei(A(C)) of Spec (Q[Zn]) which is the torus Tn. Let Chari(C) (cf. [L3]) be the
support of V (Ei(A(C))) which is the reduced subvariety of Tn with the same set of zeros
as V (Ei(A(C))).
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According to the Sarnak-Laurent theorem ([AS],[Lau]) points of finite order on any
algebraic subvariety X of a torus belong to a finite union of translated subgroups embedded
in this subvariety X (a translated subgroup in Tn is the set of solutions of a system
tα1

1 · · · tαn

1 = ωβ where α ∈ Z and ωβ is a root of degree β). These translated subgroups
are uniquely determined by X . Hence the collection of translated subgroups of Chari(C)
affording the points of finite order of the latter are the invariants of the fundamental group
of the complement and below is an explicite description of these subgroups.

The translated subgroups of charactersitic varieties can be calculated from a presen-
tation using Fox Calculus (cf. [H]). For the Alexander module of links of algebraic singu-
larities a calculation of these subgroups is contained implicitly in [Y]. Finally if N = 1 the
union of these translated subgroups coincides with Chari(C) as a consequence of the fact
that the Alexander polynomial is cyclotomic ([L2]).

In order to describe the translated subgroups of Chari(C) we shall calculate for any
homomorphism H1(C2 − C) → Z/m1 ⊕ · · · ⊕ Z/mn (which sends a loop into the collec-
tion of residues of its linking numbers with the components of C) the first Betti number

of a resolution of singularities ˜Vm1···mn
(C) of the corresponding branched abelian cover

Vm1,...,mn
(C) of CP 2. This in fact is sufficient for obtaining the collection of subgroups

we seek due to the following theorem of M.Sakuma:

Theorem 1. ([S]) Let C =
⋃i=n

i=1 Ci be an algebraic curve in C2 with n components

which is transversal to the line at infinity and Vm1,···,mn
(resp. ˜Vm1,..,mn

) be the branched
covering of CP2 (respectively its resolution) defined above. For a torsion point ω =
(ω1 · · · ωn) where ωmi

i = 1 of T let Cω be the curve formed by the components of C such
that ωi ≠ 1. Then

b1( ˜Vm1,···,mn
) =

∑

ω∈µm1
×···×µmn

max(i|ω ∈ Chari(Cω)) (6)

(Contribution of ω = (1, · · · , 1) should be taken equal to a 1, here µn is the group of roots
of unity of degree n).

Note (cf. [L3]) that the first Betti number of the corresponding unbranched cover of
C2 − C is equal to

n+
∑

ω∈µm1
×···µmn

max(i|ω ∈ ChariC) (7)

To describe the algebro-geometric calculation of b1( ˜Vm1,···,mn
(C)) we need to define

certain ideals in the local ring of a singular point of C. Let p be such a point and f1, · · · , fk
be the local equations of those irreducible components of C in a small neighborhood of p
which contain p. Let I = (i1, · · · ik|l1, · · · lk) (is, lt ∈ Z be the array of integers such that
0 ≤ ik ≤ lk.

Definition 2. The ideal of quasiadjunction (corresponding to the array I) is the ideal
Jp(I) ⊂ Op formed by germs φ ∈ Op such that zi11 · · · zikk φ belongs to the adjoint ideal of
the surface V (f1, · · · , fk|l1, · · · , lk) in Ck+2 given by

zl11 = f1(x, y), · · · , z
lk
k = fk(x, y) (8)
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We have the following:

Proposition 3. (1) Let J (f1 · · · fk) be the ideal in Op generated by

a)
Πi=k

i=1fi
fifj

· Jac(
fi, fj
x, y

), b)
f ′
ix

fi
Πi=k

i=1fi

c)
fi

′
y ·Πi=k

i=1fi
fi

, d)Πi=k
i=1fi (9)

Then Op/J (f1, · · · , fk) is an Artinian algebra and for any I the ideal quasiadjunction
corresponding to I contains J (f1, ..., fk),

(2) Let Jp(I) be the ideal of quasiadjunction corresponding to an array I. Then there
exists a polytope ∆(Jp(I)) in the unit cube U = {0 ≤ xi ≤ 1|i = 1, ..., k} (which we shall
call the local polytope of quasiadjunction) such that for any array I ′ = (i1, · · · , ik|l1, · · · , lk)
the ideal of quasiadjunction corresponding to I ′ is Jp(I) if and only if ( i1l1 , · · · ,

ik
lk
) ∈

∆. Polytopes ∆(J (I)) define the partition of the unit cube into a finite union of non-
intersecting polytopes.

In the case k = 1 the algebra Op/Jp(f) is just the Milnor algebra of the germ f ([M]),
the ideals Jp(I) are the ideals of quasiadjunction Jκ and O < κ1 < · · ·κµ/2 < 1(µ =
dimC Op/Jp(f)) are the constants of quasiadjunction mentioned earlier. We have Jκs

=
J ((i|l)) iff i, l satisfy κs−1 < i

l ≤ κs and the polytope of quasiadjunction corresponding to
Jκs

is the interval κs−1 < x ≤ κs.
In the case k = 2 generators of the ideal J (f, g) are f ·g, fg′x, fg

′
y, gf

′
x, gf

′
y, f

′
xg

′
y−g′xf

′
y.

For example if the local equation of C is y(y− x2) (tacnode), then J (f, g) is the maximal
ideal of the local ring. If the array I = (i1, i2|l1, l2) is such that i1

l1
+ i2

l2
≤ 1

2 then
the corresponding ideal J (I) of quasiadjunction is the maximal ideal. The polytopes of
quasiadjunction are {(x, y)|x+ y ≤ 1

2 , 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 and {(x, y)|x+ y ≥ 1
2 , 0 ≤ x ≤

1, 0 ≤ y ≤ 1}.
For the ordinary triple point xy(x − y) = 0 the local equations of the branches are:

f(x, y) = x, g(x, y) = y, h(x, y) = x − y. The ideal J (f, g, h) has as generators f · g ·
h, fxgh, fygh, gxfh, gyfh, hxfg, hyfg, Jac(

f,g
x,y ) · h, Jac(

g,h
x,y ) · f, Jac(

f,h
x,y ) · g. The polytopes

of quasiadjunction are given in the unit cube by x+ y + z > 1 and x+ y + z ≤ 1.
The proof of Proposition 3 is a result of making explicit the conditions for the pull

back of a form to be holomorphic on the resolution of (8) which is the normalization of

V (f1, · · · , fk|l1, · · · , lk) ×C2
˜C2(f1, · · · , fk) where ˜C2(f1, · · · , fk) is an embeded resolution

of the plane curve singularity Πfi = 0 (cf. [L4]).
Next let us consider the following partition of the unit cube URn in the space Rn

(n is the number of irreducible components of C) in which the coordinates of Rn are
labeled by the irreducible component of C. For each local polytope of quasiadjunction ∆pi,j

corresponding to the singular point pi near which the components of C labeled Ci1 , · · ·Cik

have equations f1 = · · · = fk = 0 consider the polytope ∆̄pi,j ⊂ URn which is the preimage
of ∆pi,j for projection of URn on the subspace with coordinates labeled i1, · · · ik. Let us
call two points in URn equivalent if collections of polytopes ∆̄pi,j which contain each of
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these points coincide. Each equivalence class is a polytope which we call a global polytope
of quasiadjunction. For example for n = 1 (i.e. when C is an irreducible curve) such a
polytope is an interval between two consecutive elements in the set of rational numbers
which is the union of constants of quasiadjunction corresponding to all singularities of the
curve.

To each global polytope of quasiadjunction ∆ corresponds the sheaf of ideals J∆ ⊂
OCP2 defined by the conditions:

a) SuppOCP2/J∆ is the set of singular points of C.
b) The stalk J∆,p of J∆ at p is the local ideal of quasiadjunction corresponding to

unique local polytope of quasiadjunction of the singularity p containing ∆.

Definition 4. A global polytope of quasiadjunction ∆ is called contributing if the
intersection of the hyperplane d1 · x1 + · · ·+ dn · xn = ℓ for some ℓ ∈ Z is a face δ (of any
dimension) of ∆.

We call δ the contributing face of the polytope ∆, ℓ will be called the level of ∆, the
mentioned hyperplane contaings δ will be called the supporting hyperplane of the contribut-
ing face δ (or of the global polytope of quasiadjunction ∆) and d(∆) = d1 + ...+ din will
be called the total weight of the supporting hyperplane of the global polytope of quasiad-
junction ∆.

For example in the case of irreducible C a contributing hyperplane is a point coinciding
with one of constants of quasiadjunction κ for one of singularities of C. Its level is d · κ
where d is the degree of C (in particular a singularity of C affects G′/G′′ only if for one of
its constants of quasiadjunction κ the product d·κ is an integer e.g. if the only singularities
are cusps, having 1

6 as the only constant of quasiadjunction, G′/G′′ ⊗ Q = 0 unless 6|d
which is a well known result).

Theorem 5. Let ˜Vm1,···mn
(C) be a desingularitation of the abelian cover of CP2

branched over C =
⋃i=n

i=1 Ci (Ci irreducible) and possibly the line at infinity which cor-
responds to the homomorphism H1(C2 − C) → Z/m1,⊕ · · · ⊕ Z/mn. Let Ci1,...,ik =
Ci1 ∪ · · · ∪ Cik be a curve formed by components i1, · · · , ik of C. Then the first Betti

number of ˜Vm1,···mn
(C) is equal to

2
∑

i1,···ik

∑

∆(Ci1,···,ik
)

N(mi1 , · · ·mik , δ(∆(Ci1,···,ik)))·

dimH1(CP2,J∆(Ci1,···ik
)(d(∆(Ci1,···ik)))− 3− ℓ(∆(Ci1,···,⊂k

))) (10)

where N(m1, · · · , mk, δ) is the number of points of the form
(
ii+1
m1

, · · · ik+1
mk

)
in a contribut-

ing face δ(∆) of a polytope of quasiadjunction ∆, ℓ(δ) is the level of δ and J∆ is the sheaf
of quasiadjunction corresponding to a polytope of quasiadjunction ∆. The summation is
over all global polytopes of quasiadjunction ∆ (only those admitting a contributing face
make a contribution).

We have the following:
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Corollary 6. Translated subgroups affording the points of finite order of i-th char-
acteristic variety Chari(C) are given by:

tα1

i1
(δ) · · · tαk(δ)

ik
= e2πiβ(δ), tj = 1(j ≠ i1, · · · , ik) (11)

where αi1(δ)x1 + · · ·αik(δ)xk = β(δ) is the equation of the supporting hyperplane of a
contributing face δ for which αi(δ) ∈ Z>0, g.c.d(α1(δ), ..,αk(δ)) = 1, β(δ) ∈ Q and δ is
the contributing face of a global polytope of quasiadjunction of a curve formed by the
components Ci1 , · · · , Cik of C for which dimH1(CP 2,J∆(d(∆))− 3− ℓ(δ(∆))) = i.

In particular the dimension of the cohomology group H1(CP2,J∆(d(δ) − 3 − ℓ(δ))
where ∆ is a contributing polytope is a topological invariant of the complement (since it
depends only on the fundamental group)

Example 1. Let us calculate the irregularity of the abelian cover of CP 2 branched
over the line arrangement L: xy(x − y)z = 0 and corresponding to the homomorphism
H1(CP 2 − L) = Z3 → (Z/nZ)3 (the first identification is given by the linking numbers
with lines x = 0, y = 0, x = y respectively, z = 0 is the line at infinity. The only nontrivial
ideal of quasiadjunction is the maximal ideal of the local ring of the point P : x = y = 0.
The only global ideal of quasiadjunction is the local one corresponding to the polytope cut
by x+ y + z ≤ 1. Hence the irregularity of the abelian corer is Card {(i, j)|0 < i < n, 0 <
j < n, 0 < k < n, i

n + j
n + k

n = 1} · dimH1(J (3− 3− 1)) where J = kerOCP 2 → OP . The
sheaf J has the Koszul resolution O → O(−2) → O(−1)⊕O(−1) → J → O which yields
H1(J (−1)) = H2(OCP2(−3)) = C. Now the counting points on x+ y+ z = 1 shows that

the irregularity of this abelian cover is equal to n2−3n+2
2 .

Example 2. Let us consider the arrangement of lines xi, i = 1, · · · , 6 formed by the
sides of an equilateral triangle (x1, x2, x3) and its medians (x4, x5, x6) arranged so that their
vertices are the intersection points of (x1, x2, x4), (x2, x3, x5) and (x3, x5, x6) respectively
(cf. [I]) . It has 4 triple and 3 double points. The polytopes of quasiadjunction for (the
full) arrangement are the connected components of the partition of U = {(x1, · · · , x6)|0 ≤
x1 ≤ 1, i = 1, · · ·6} by the hyperplanes:

x1 + x2 + x4 = 1, x2 + x3 + x5 = 1, x3 + x1 + x6 = 1, x4 + x5 + x6 = 1 (12)

(abusing notation we use xi as the coordinate corresponding to the line xi). The only
hyperplane of the form Hk : x1+x2+x3+x4+x5+x6 = k, k ∈ Z which contains a face of
a global polytope of quasiadjunction (of the full) arrangement is H2 (which contains the
set of solutions of the system of equations formed by all equations in (12)). Moreover the
subarrangemets formed by the components of this arrangement which have polytope of
quasiadjunction admitting contributing faces are triples of lines passing through common
point. There are 4 subarrangements of such type for which the supporting hyperplane of
a polytope of quasiadjunction is H1. The contribution into irregularity from the polytope
of the first type is equal to N · dimH1(J (6− 3− 2)) where N is the number of solutions
to (12) of the form xi =

j+1
n and J is ideal of the subvariety of CP2 form by triple points
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of the arrangement. To calculate dimH1(J (6− 3− 2)) notice that 4 triple points form a
complete intersection of two quadrics and hence J admits a resolution:

0 → O(−4) → O(−2)⊕O(−2) → J → 0 (13)

This yields H1(J (1)) = H2(O(−3)) = C. The contributions from the subarrangents of
the second type were considered in example 1. Note that (as follows from this calculation)
the translated planes forming the characteristic varieties are

t1t2t4 = 1, t2t3t5 = 1, t1t3t6 = 1 = t4t5t6 = 1 (14)

(corresponding to the global polytope of quasiadjunction of first type) and

t1t2t4 = t3 = t5 = t6 = 1, t2t3t5 = t1 = t4 = t6 = 1,

t2t3t5 = t1 = t4 = t6 = 1, t2t3t5 = t1 = t4 = t6 = 1 (15)

corresponding to 4 polytopes of the second type. The number of the points in µn× · · ·×µn

which belong to the first of four for subgroups (15) and for which t1 ≠ 1, t2 ≠ 1, t4 ≠ 1,
or, alternatively, the number of solutions to the first equation in (12) of the form

i

n
, 0 <

i

n
< 1 (16)

is equal to (n−1)(n−2)
2 . The number of solutions to the system (12) satisfying (16) is

equal to (n−1)(n−2)
2 as well since the system (12) is equivalent to x1 + x2 + x4 = 1, x3 =

x4, x5 = x1, x6 = x2. Hence for this arrangement the irregularity of ˜Vn,n,n(C) is equal to

5
˙(n−1)(n−2)
2 (in particular it is 30 for n = 5 cf. [I]).

Other two arrangements considered in [I] can be treated similarly. Note that the

theorem above also shows that the irregularity of the branched abelian cover ˜Vm1,..,mn
(C)

is a polynomial periodic function of m1, .., mn (cf. [AS],[H]).
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