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0.Introduction.

A procedure for calculation of fundamental groups for the complements to
algebraic curves in complex projective plane was found by Zariski and van
Kampen ([Z],[vK]). Their methods yielded several important calculations and
results on the fundamental groups of the complements (cf. for example [L2]
for references). However, only limited information was obtained about their
algebraic structure or what actually affects the complexity of these funda-
mental groups. This paper is a result of attempts to find alternative ways
for calculating the fundamental groups of the complements or at least some
invariants of these groups. The invariants of the fundamental groups, which
we consider here, are certain subvarieties of complex tori C∗r. They were
called characteristic varieties in [L3]. These subvarieties are unions of trans-
lated subtori, as follows from recent work [Ar]. We calculate these subtori
in terms of local type of singularities and dimensions of linear systems which
we attach to the configuration of singularities of the curve.

These characteristic varieties can be defined as follows. Let C = ∪1≤i≤rCi

be an algebraic curve in C2 and π1 = π1(C2 − C) be the fundamental group
of its complement. Then π1/π′

1 is isomorphic to Zr and acts on π′
1/π

′′
1 by

conjugation. This makes π′
1/π

′′
1 into a module over the group ring of π1/π′

1.
The latter is just the ring of Laurent polynomials Z[t1, t

−1
1 , ..., tr, t−1

r ]. After
tensoring with C, we obtain a C[π1/π′

1]-module π′
1/π

′′
1 ⊗C. The support of
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its i− th exterior power is a subvariety of the torus SpecZ[t1, t
−1
1 , ..., tr, t−1

r ]
called the i-th characteristic variety of C: Chari(C) (cf. [L3]).

This invariant of the fundamental group can be used to calculate the
homology of abelian covers ofC2−C (cf. [L3]) and covers of P2 branched over
the projective closure of C (cf. [Sa]). The above construction of characteristic
varieties can be, of course, carried out for any topological space with H1 = Zr

and several known results can be recasted using them. For example, the
modules π′

1/π
′′
1 were widely studied in the context of the complements to

links in spheres (cf. e.g. [Hil] and references there; for the case of algebraic
links cf. [Sab]). In this case, Char1 is the set of zeros of the multi-variable
Alexander polynomial. We shall see, however, that the characteristic varieties
of algebraic curves rarely have codimension equal to one and hence cannot
be described using single polynomial. The varieties Chari(C) coincide with
the cohomology support loci for local systems of rank 1 considered in [Ar].
The homology of the Milnor fiber of the function obtained by homogenizing
a defining equation of C (i.e. the Milnor fiber of the cone over the projective
closure of C) can be found from the characteristic varieties of the latter. These
Milnor fibers earlier were considered in the case when C is an arrangement
i.e. when all components of C are lines (cf. [CS]).

For an irreducible C the characteristic varieties are subsets of C∗ i.e.
collections of complex numbers. Those are the roots of the Alexander poly-
nomial of C (cf. [L1]) and the results of this paper are equivalent to the
results of [L2].

Our calculation of Chari based on the following observations. Firstly, by
Arapura’s theorem the characteristic varieties are translated tori and hence
can be described by simple discrete data. Secondly, Sakuma’s formula (cf.
(1.3.2.2)), relating the homology of abelian branched over C cover to the
characteristic varieties of C, can be used to calculate such data for essential
components (cf. 1.4.3)) of characteristic varieties completely from the infor-
mation about the homology of all abelian covers with the branching locus
C. Thirdly, these abelian covers can be realized as complete intersections
and one can use the theory of adjoints (cf. (1.5)) to calculate the homol-
ogy of these covers (generalizing the calculations in the case of hypersurfaces
cf. [Z], [L2], [L5]; complete intersections were used by Ishida (cf. [I], also
[Zu]) in similar context for calculations in the case of abelian covers of P2

branched along some arrangements). We associate with each singular point
a collection of polytopes in the unit cube U in Rr union of which is U and
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call them the local polytopes of quasiadjunction (cf. sect. 2.4.1). Moreover,
every such polytope defines the ideal in the local ring of the singular point.
The collection of local polytopes defines new partition of the unit cube which
is a refinement of partitions corresponding to all singular points of C and re-
flecting the global information about singularities of C (cf. sect. 2.6). We
call the polytopes of this partition the global polytopes of quasiadjunction.
In the set of faces of global polytopes of quasiadjnction we single out a sub-
set of contributing ones. To each contributing face δ corresponds the linear
system H0(P2,Jδ(deg C − 3 − l(δ)) where the ideal sheaf Jδ ⊂ OP2 and
the integer l(δ) are determined by the face δ. The components of ChariC
correspond to contributing faces of global polytopes of quasiadjunction for
which dimH1(P2,Jδ(deg C − 3− l(δ))) = i. The main result of the paper is
the theorem 3.1 where the equations for translated tori are given explicitly
in terms of corresponding faces of polytopes of quasiadjunction (cf. sect. 3).

The procedure for calculating the characteristic varieties, though involv-
ing possibly large calculations, is entirely algorithmic. For example, suppose
that the curve C is an arrangement of r lines. (cf. sect. 3.3 for several ex-
amples of explicite calculations for such arrangements including Ceva’s and
Hesse’s arrangements). Then any component of the characteristic variety
Chari(C), having positive dimension either belongs to a component of char-
acteristic variety of a sub-arrangement (i.e. is inessential and can be found
by applying this algorithm to a sub-arrangement) or is a connected compo-
nent of a subgroup corresponding to a collection S of vertices in arrangement
having multiplicity greater than 2 (more detailed calculation allows to pick
the component as well, cf. th.3.1). A collection S yields a component of
characteristic variety if it satisfies the following conditions.

a) Certain system of linear homogeneous equations attached to S has a
non zero solution. This system constructed as follows: The unknowns xi are
in one to one correspondence with r(S) lines of arrangement containing points
from S. The equations are in one to one correspondence with the elements
of S. Left hand side of each equation is the sum of variables corresponding
to the lines through a point of S and the right hand side is a positive integer
(not exceeding the number of lines in the arramgements).

b) The set of solutions of the system from a) belongs to a hyperplane
∑r(S)

i=1 xi = l(S).
c) Let IS be the ideal sheaf with SuppOP2/IS = S which stalk at P ∈ S is
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Mm−2−ρ(P )
P where MP is the maximal ideal of P , m is the number of lines in

S containing P and ρ(P ) is the right hand side of the equaition in the system
from a) corresponding to P . Then dimH1(P2, IS(r − 3− l(S))) = i ≠ 0.

Moreover if a)-c) are satisfied then the corresponding to S subgroup is
the set of solutions of exp(LP ) = 1 where LP = ρ(P ) are the equations of the
system mentioned in a). Selection of particular connected component follows
from more technical description in theorem 3.1

This algorithm yields complete description of characteristic tori of posi-
tive dimension (and essential torsion points). An interesting problem which
left unanswered here is the realization problem: which tori (or collections
of tori) can appear as characteristic tori of an algebraic curve with fixed
degrees of components and given local type of singularities. Some infor-
mation in this direction however is provided in section 4. Finally in the
case of line arrangements (or equivalently the case of fundamental groups of
the complements to arbitrary arrangements) the characteristic varieties give
new sufficient conditions (resonance conditions) for Aomoto complex of an
arrangement to be quasi-isomorphic to the corresponding twisted DeRham
complex (in many situations less restrictive than previously used (cf. [ESV]).
We describe in a new way the space of “resonant” Aomoto complexes on given
arrangement i.e. those with the cohomology different from the cohomology
of generic Aomoto complexes (th. 5.4.1; this space was considered in [F]).
Vice versa, this relation between the space of resonant Aomoto complexes
and characteristic varieties shows that components of characteristic varieties
which are subgroups of the group of characters are combinatorial invariants of
arrangements. Moreover, Aomoto complexes provide another algorithm for
calculating these components of characteristic varieties of the fundamental
groups of the complements to arrangements.

The announcement of these results is presented in [L6]. This work was
supported by NSF grants DMS-9803623, DMS-9872025 and Mittag Leffler In-
stitute. I am also grateful to S.Yuzvinsky for very interesting correspondence
regarding the material in section 5 and to J.Cogolludo for useful discussions
of the manuscript.

1 Preliminaries
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1.1 Setting.

Let C̄ = ∪C̄i(i = 1, ...r) be a reduced algebraic curve in P2 where C̄i(i =
1, ...r) are the irreducible components of C̄. We shall denote by di the degree
of the component C̄i. Let L∞ be a line in P2 which we shall view as the
line at infinity. We shall be concerned with the fundamental groups of the
complements to C̄ in P2 and in C2 = P2 − L∞. Let C = ∪Ci be the affine
portion of C̄. The homology of these complements are the following (cf. [L1]):

H1(C
2 − C,Z) = Zr, H1(P

2 − C̄,Z) = Zr/(d1, ...., dr) (1.1.1)

Generators of these homology groups are represented by the classes of the
loops γi, each of which is the boundary of a small 2-disk intersecting Ci (resp.
C̄i) transversally at a non singular point.

For the fundamental groups we have the exact sequence:

π1(C
2 − C) → π1(P

2 − C̄) → 1 (1.1.2)

If the line L∞ is transversal to C̄, then the kernel of the surjection (1.1.2)
is isomorphic to Z and belongs to the center of π1(C2 − C) (cf. [L4]). In
general, the fundamental group of the affine portion of the complement to
C̄ in P2 depends on position of L∞ relative to C̄. Throughout the paper we
assume that L∞ is transversal to C̄.

1.2 Characteristic varieties of algebraic curves.

1.2.1

Let R be a commutative Noetherian ring and M be a finitely generated R-
module. Let Φ : Rm → Rn be such that M = CokerΦ. Recall that the k-th
Fitting ideal of M is the ideal generated by (n− k+ 1)× (n− k+ 1) minors
of the matrix of Φ (clearly depending only on M rather than on Φ). The
k-th characteristic variety M is the reduced sub-scheme of SpecR defined by
Fk(M).

If R = C[H ] where H is a free abelian group then R can be identified with
the ring of Laurent polynomials and SpecR is a complex torus. In particular
each k-th characteristic variety of an R-module is a subvariety Vk(M) of
(C∗)rkH .
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If Ann∧k M ⊂ R is the annihilator of the k-th exterior power of M then
(cf. [BE], Cor.1.3): (Ann∧kM)t ⊆ Fk(M) ⊆ Ann∧kM for some integer t. In
particular, if Supp(M) ⊂ Spec(R) is the set of prime ideals in R containing
Ann(M) (alternatively {℘ ∈ SpecR|M ⊗ R/℘R ≠ 0}, cf. [Se] p.3), then
Supp(∧kM) = Supp(R/Fk(M)) is the k-th characteristic variety of M .

Note the following:

Lemma 1.2.1 Let 0 → M ′ → M → M ′′ → 0. Then V1(M) = V1(M ′) ∪
V1(M ′′) and for k ≥ 2: Vk(M ′′) ⊂ Vk(M) ⊂ Vk(M ′′) ∪ Vk−1(M ′′) ∩ V1(M ′).

The first equality is Prop. 4(a) in [Se]. The second follows from the first
and the exact sequence: Λk−1M ′′ ⊗ M ′ → Λk(M) → Λk(M ′′) → 0, since
Supp(A ⊗ B) = Supp(A) ∩ Supp(B) for any R-modules of finite type (cf.
[Se], Prop. 4(c)).

1.2.2

Let G be a finitely generated, finitely presented group such that H1(G,Z) =
G/G′ = Zr (for example G = π1(C2 − C) where C = ∪Ci is a plane curve as
in 1.1; another class of examples which was studied in detail is given by link
groups, cf. [Hil]). Then G′/G′′ ⊗C can be viewed as H1(X̃,C) where X is
a topological space with π1(X) = G and X̃ is the universal abelian cover of
X . The group G/G′ = H1(X,Z) acts as the group of deck transformations
on X̃ and hence G′/G′′ ⊗C has a structure of a C[G/G′]-module. We shall
denote the i-th characteristic variety of this module as Vi(G) (or Vi(C) if
G = π1(C2 − C)) and call it the i-th characteristic variety of G (resp. C).
The depth of a component V is the integer i = max{j|V ⊂ Vj(G)}. We shall
see below that if a component has depth i and dimension ϱ > 0 and contains
identity, then i = ϱ− 1, cf. footnote in 1.4.2.

1.2.2.1.

If G = Fr is a free group on r-generators then G′/G′′ = H1(
∨̃

r S1,Z), where
∨̃

r S1 is the universal abelian cover of the wedge of r circles. It fits into the
exact sequence:

0 → H1(
∨̃

r

S1,C) → C[Zr]r → I → 0

6



with I denoting the augmentation ideal of the group ring of Zr. (As an
universal abelian cover of

∨̃
r S1 one can take the subset ofRr of points having

at least r− 1 integer coordinates with the action of Zr given by translations;
unit vectors of the standard basis provide identification of 1-chains with
C[Zr]r while the module of 0-chains is identified with C[Zr]). This shows

that H1(
∨̃

r S1,C) is cokernel of the map Λ(
r
3)C[Zr]r → Λ(

r
2)C[Zr]r in the

Koszul resolution corresponding to the (x1 − 1), ..., (xr − 1). This implies

that Vi(Fr) = C∗r for 0 < i ≤ r − 1 and Vi(Fr) = (1, ..., 1) for r ≤ i ≤
(
r
2

)

(cf. also (1.4.1) below).
IfG is the fundamental group of a link in a 3-sphere S3 with r components,

then the first determinantal ideal is generated by (t1 − 1), ..., (tr − 1) and
certain principal ideal. A generator ∆(t1, ..., tr) of the latter is called the
Alexander polynomial. Alexander polynomial satisfies ∆(1, ..., 1) = 0 and
hence V1(G) is the hypersurface ∆(t1, ..., tr) = 0. Extensive calculations of
the Alexander polynomials of links can be found in [SW]. In particular, if
G is the fundamental group of the complement to the Hopf link in S3 with
r components then V1(G) is the set of zeros of t1 · t2 · · · tr − 1. Moreover
V1(G) = ... = Vr−1(G) (cf. [L4],p.165). From a presentation of G using Fox
calculus one can calculate a presentation of π′

1/π
′′
1 ⊗ C as a C([H ])-module

and hence the characteristic varieties of π1 (cf. [Hi],[CS] for examples of such
calculations).

1.2.3

Let T (L∞) be a small tubular neighborhood of L∞ in P2. If ∂T (L∞) is its
boundary then π1(∂T (L∞)−∂T (L∞)∩C) → π1(P2−L∞∪ C̄) is a surjection.
Lemma 1.2.1 implies that the characteristic variety of C is a subset of the
torus td11 · · · tdrr = 1 since C ∩ ∂T (L∞) ⊂ ∂T (L∞) = S3 is the Hopf link
with d1 + ... + dr components with di components of the link belonging to
Ci and hence corresponding to ti for each 1 ≤ i ≤ r (cf. [L3]). In fact
the characteristic varieties of an affine curve can be determined from the
projectivization as follows.

It is a corollary of (1.1.1) that Ta = SpecC[H1(C2 − C)] is the torus of
dimension r and that Tp = SpecC[H1(P2 − C̄)] is the sub-scheme of zeros of
td11 · · ·tdrr −1 in Ta. We denote by E : Tp → Ta the corresponding embedding.
On the other hand, the construction of (1.2.1) and (1.2.2) yields subvarieties
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Vi(C̄)p in Tp.

Proposition 1.2.3 The characteristic variety of projective and affine curves
satisfy:

Vi(C) = E(Vi(C̄)p) (1.2.3.1)

Proof. It follows from the isomorphism:

π′
1(P

2 − C̄)/π′′
1(P

2 − C̄) = π′
1(C

2 − C)/π′′
1(C

2 − C) (1.2.3.2)

equivariant with respect to the action of H1(C2 − C). This isomorphism is a
consequence of (1.1.2) because in the latter the left map induces isomorphism
on commutators. Indeed, the kernel of surjection (1.1.2) is isomorphic to Z
(cf. (1.1)) and does not intersect π′

1(C
2−C) because it injects into H1(C2−C)

(cf. also [L4]).

1.3 Abelian covers

1.3.1

Let m1, ..., mr be positive integers and hm1,..,mr : H1(C2 − C,Z) → Z/m1Z⊕
... ⊕ Z/mrZ be the surjection γi → γi mod mi. The kernel of the homo-
morphism π1(C2 − C) → Z/m1Z⊕ ...⊕ Z/mrZ, which is the composition of
the abelianization ab : π1(C2 − C) → H1(C2 − C) and hm1,...,mr , defines an

unbranched cover of C2 − C. We shall denote it as ˜(C2 − C)m1,...,mr . This is
a quasi-projective algebraic variety defining a birational class of projective

surfaces ˜(C2 − C)m1,...,mr . Birational invariants of surfaces in this class (in
particular the first Betti number of a non singular model) depend only on C
and the homomorphism hm1,...,mr .

If hm1,...,mr(d1γ1 + ...drγr) = 0, then the corresponding branched covering
ofC2 is a restriction of the covering of P2 unbranched over the line at infinity.
It can be easily checked that the first Betti numbers of those two branched
coverings are the same, since we assume (cf. (1.1)) that the line at infinity
is transversal to C (cf. [L1]).

A model (singular, in general) for a surface birational to ˜(C2 − C)m1,...,mr

can be constructed as follows. Let fi(u, x, y) = 0 be an equation of the
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component Ci (i = 1, ..., r). Let Vm1,...,mr be a complete intersection on Pr+2

(coordinates of which we shall denote z1, .., zr, u, x, y) given by the equations

zm1
1 = um1−d1f1(u, x, y), ..., z

mr
r = umr−drfr(u, x, y) (1.3.1.1)

Projection from the subspace given by u = x = y = 0 onto the plane
z1 = ... = zr = 0 (i.e. (z1, .., zr, u, x, y) → (u, x, y)), when restricted on the
preimage in Vm1,...,mr of C

2−C, is unbranched cover of C2−C corresponding
to Ker(hm1,...,mr ◦ ab).

1.3.2

The first Betti number of unbranched cover ˜(C2 − C)m1,...,mr can be found in
terms of the characteristic varieties of C as follows (cf. [L3]). For P ∈ C∗r

let f(P, C) = {max i|P ∈ Vi(C)}. Then

b1(
˜(C2 − C)m1,...,mr) = r + Σω

mi
i =1,(ωm1 ,...,ωmr )≠(1,...,1)f((ωm1, ..,ωmr), C)

(1.3.2.1)
The first Betti number of a resolution of branched cover of P2 (i.e. of

Vm1,...,mr) can be calculated using the characteristic varieties of curves formed
by components of C (cf. [Sa]). Let Ṽm1,..,mr be such a resolution. For a torsion
point of ω = (ω1, ...,ωr),ω

mi
i = 1 in the torus C∗r let Cω = ∪i|ωi≠1Ci. Then

the first Betti number of Ṽm1,...,mr equals:

Σωmax{i|ω ∈ Chari(Cω)} (1.3.2.2)

More precisely, if χω is the character of π1(C2 − C) such that χω(γi) = ωi

and for a character χ of the Galois group Gal(Ṽm1,...,mr/P
2) we put:

H1,χ(Ṽm1,...,mr) = {x ∈ H1(Ṽm1,...,mr)|g(x) = χ(g) ·x, ∀g ∈ Gal(Ṽm1,...,mr/P
2)}

(1.3.2.3)
then

dimH1,χω = max{i|ω ∈ Chari(Cω)} (1.3.2.4)

9



1.3.3 A bound on the growth of Betti number.

Proposition 1.3.3 Let b1(C̄, n) (resp. b1(C, n)) be the first Betti number of
the cover of P2 (resp. C2−C) branched over L∞∪ C̄ (resp. unbranched) and
corresponding to the surjection hn,...,n : π1(P2 − L∞ ∪ C̄) → (Z/nZ)r (given
by evaluation modulo n of the linking numbers of loops with the components
of C modulo n). Then b1(C̄, n) ≤ C̄1 · nr−1. (resp. b1(C, n) ≤ C1 · nr−1) for
some constants C1, C̄1 independent of n.

Proof. This follows from the Sakuma’s formula (1.3.2.2) (resp. (1.3.2.1))
and the obvious remark that the number of n-torsion points on a torus of
dimension l grows as nl since dim(Chari(π1(C2 − C)′/π1(C2 − C)′′) ≤ r − 1
by 1.2.3.

1.3.4 Characteristic varieties and the homology of Milnor fibers.

The polynomial f1(u, x, y)···fr(u, x, y) (which set of zeros in P2 is C̄) defines a
cone in C3 having a non isolated singularity, provided C is singular. The Mil-
nor fiber Mc of this singularity (cf. [CS] in the case when degfi = 1, ∀i) is dif-
feomorphic to an affine hypersurface given by the equation: f1···fr = c, c ≠ 0.
Quotient of the latter by the action of the cyclic group Z/dZ (d = Σidi, di =
degfi) acting via (u, x, y) → (ωdu,ωdx,ωdy),ωd

d = 1 is P2−C̄. In other words,
the Milnor fiber is the cyclic cover p : Mc → P2 − C̄ corresponding to the
homomorphism sending γi → 1 mod d. The exact sequence of the pair
(Mc, p−1(P2− C̄ ∪L∞)) shows that rkH1(Mc) = rkH1(p−1(P2− C̄ ∪L∞)−1,
since we assume that C̄ is transversal to L∞ (cf. [L1]). Hence it follows from
(1.3.2.1) that

rkH1(Mc) = r − 1 + Σd−1
i=1 f((ω

i
d, ..,ω

i
d), C) (1.3.4.1)

1.4 Characteristic varieties and support loci for rank
one local systems

10



1.4.1

Let again G be a group such that G/G′ = Zr. If X is a topological space
with π1(X) = G then the local systems of rank one on X correspond to the
points Hom(G,C∗) (cf. [St]). The latter has a natural identification with
H1(X,C∗). Each γi, corresponding to a component Ci of C (cf. 1.1), defines
the homomorphism ti : Hom(G,C∗) → C∗ given by ti(χ) = χ(γi),χ ∈
Hom(G,C∗). Therefore ti’s provide an identification of Hom(G,C∗) with
C∗r.

The homology groups Hi(X, ρ) of X with coefficients in a local system
corresponding to a homomorphism ρ : π1(X) → H1(X,Z) → C∗ are the
homology of the complex Ci(X̃) ⊗H1(X,Z) C where C is equipped with the
structure of Z[H1(X,Z)]-module using ρ. If ρ ≠ 1 then

H1(X̃,C)⊗C[H1(X,Z)] C = H1(X, ρ) (1.4.1.1)

This follows, for example, from the exact sequence of the low degree terms
in the spectral sequence corresponding to the action of H1(X,Z) on the uni-
versal abelian cover X̃ : Hp(H1(X,Z), Hq(X̃)ρ) ⇒ Hp+q(X, ρ) (here Hq(X̃)ρ
denotes the homology of the complex Ci(X̃)⊗ZC with the action ofH1(X,Z)
given by g(e⊗ α) = g · e⊗ ρ(g−1)α, g ∈ H1(X,Z), e ∈ Ci(X̃),α ∈ C i.e. the
usual homology Hq(X̃,C) with the action of H1(X,Z) changed by the char-
acter ρ (cf. [CE],ch. XVI,th. 8.4). This exact sequence is:

H2(X, ρ) → H2(H1(X,Z), ρ) → (H1(X̃)ρ)H1(X,Z) → H1(X, ρ) → H1(H1(X,Z), ρ) → 0

(cf. [CE], ch XVI, (4a)). Since for ρ ≠ 1 we have Hi(H1(X,Z), ρ) = 0,
we obtain (1.4.1.1). For ρ = 1, an argument similar to [L3], sect. 1 yields
that dimH1(X̃,C) ⊗C[H1(X,Z)] C is the dimension of the kernel of the map
∪X : Λ2H1(X,C) → H2(X,C) given by the cup product. From the definition
of Fitting ideals (cf. 1.2.1) it follows that for ρ ≠ 1 one has:

Vi(X) = {ρ ∈ Hom(G,C∗)|H1(X, ρ) ≥ i} (1.4.1.2)

and that ρ = 1 belongs to VdimKer∪X
(cf. [L3], Prop.1.1).

For example if G = Fr then dimH0(Fr, ρ) is 0, if ρ is non trivial, and 1
otherwise. Using e(Fr, ρ) = r − 1 we obtain that dimH1(Fr, ρ) is r − 1, if

ρ is non trivial, and otherwise is r. Since dimKer∪Fr =
(
r
2

)
we recover the

description of the characteristic varieties for Fr mentioned in (1.2.2.1).
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1.4.2 Structure of characteristic varieties.

We will need the following theorem of D.Arapura (cf. [Ar]) which generalizes
the results of C.Simpson to quasi-projective case.

Let X̄ be a Kähler manifold such that H1(X̄,C) = 0, D a divisor with
normal crossings and X = X̄ − D. Then, for each characteristic variety V ,
there exist a finite number of torsion characters ρi ∈ Hom(G,C∗), a finite
number of unitary characters ρ′j and surjective maps onto (quasiprojective)
curves fi : X → Ci such that

V (X) =
⋃

i

ρif
∗H1(Ci,C

∗) ∪
⋃
ρ′j (1.4.2.1)

A consequence of 1.4.2.1 for curves in C2 is that the components of posi-
tive dimensions of their characteristic varieties are subtori of C∗r translated
by points of finite order 1.

1.4.3 Essential for a given set of components tori.

By coordinate torus (corresponding to components Ci1 , ...Cis) we shall mean
a subtorus in C∗r given by

ti1 = ... = tis = 1. (1.4.3.1)

The inclusion Ii1,..,is : C
2−∪i=1,..,rCi → C2−∪i≠i1,...,isCi induces a surjective

map Ĩi1,..,is : π1(C2 − ∪i=1,...,rCi) → π1(C2 − ∪i≠i1,...,isCi) with restriction
Ĩ ′i1,..,is : π′

1(C
2 − ∪i=1,...rCi) → π′

1(C
2 − ∪i≠i1,..isCi) which is also surjective.

Indeed if K = Kerπ1(C2 − ∪i=1,,,rCi) → H1(C2 − ∪i≠i1,...,isCi) then K →
π′
1(C

2 − ∪Ci≠i1,..,is) is surjective. Since K ′ is a normal closure of π′
1(C

2 −
∪i=1,...rCi) and loops trivial in π1(C2 −∪i≠i1,...,isCi) (e.g. loops which consist

1though the paper [Ar] considers only the case of the first characteristic variety (i.e. in
terminology of [Ar] characters ρ such that dimH1(ρ) ≥ 1), D.Arapura communicated to
the author that the statement is true for all Vk. Moreover it follows from his argument that
the dimension of Vk, containing the identity of the group of characters, is k+1. Indeed by
(1.4.2.1) for any local system in such irreducible component of positive dimension of Vk(X)
there exist L′ on an appropriate curve C and the map f : X → C such that L = f∗L′.
Moreover it follows from Proposition 1.7 in [Ar] that for all but finitely many L one has
H1(X,L) = H1(C,L′). But π1(C) is free and if k + 1 is the number of its generators and
L′ is not trivial then dimH1(C,L′) = k (cf. 1.2.2.1).
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of paths from the base point to a point in vicinity of Ci, (i ≠ i1, .., is) and
loops bounding small disk transversal to Ci) the surjectivity of I ′i1,..,is follows.

The latter gives rise to a surjective map ofC[H1(C2−∪i=1,..,rCi)]-modules:

π′
1/π

′′
1(C

2 − ∪i=1,..,rCi) → π′
1/π

′′
1(C

2 − ∪i≠i1,...,isCi) which induces an injec-
tion of corresponding characteristic varieties:

Vk(C
2 − ∪i≠i1,...,isCi) → Vk(C

2 − ∪i=1,..,rCi) (1.4.3.2)

(cf. Lemma 1.2.1). A component of Vk(C2 −∪i=1,..,rCi) which is an image of
a component for some i1, ..., is in (1.4.3.2) is called obtained via a pull back.
A component of Vk(C2 − ∪i=1,..,rCi) is called essential if it isn’t a pull back
of component of a characteristic variety of a curve composed of irreducible
components of C.

Lemma 1.4.3 Let V be a connected component of the characteristic vari-
ety V1 of C having positive dimension and belonging to the coordinate torus
ti1 = ... = tis = 1. Then it is obtained via a pull back of a component of
characteristic variety for the union of components of ∪Ci (i ≠ i1, ..., is).

Proof. According to Arapura’s theorem (cf. [Ar],(1.4.2)) component V
defines a map f : C2 − C → C for some quasiprojective curve C such that
for some local system E ∈ Charπ1(C2 − C) one has: V = E ⊗ f ∗(CharC)
where CharC = Hom(π1(C),C∗). We claim that f factors as follows:

C2 − C
Ii1,...,is−→ C2 − ∪i≠i1,...,isCi

↘ f ↓ f̃
C

(1.4.3.3)

The lemma is a consequence of existence of f̃ . Indeed for almost all local
systems L on C we have H1(E ⊗ f ∗(L)) = H1(f∗(E) ⊗ L) (cf. proof of
Prop. 1.7 in [Ar]). Moreover H1(f∗(E) ⊗ L) = H1(f̃∗ ◦ (Ii1,..,is)∗(E)⊗ L) =
H1((Ii1,..,is)∗E ⊗ f̃ ∗L) and the latter has the same dimesnion for almost all
L again by the same argument from the proof of Prop. 1.7 in [Ar].

To show the existence of f̃ , let D = C̄ − C where C̄ is a non singular
compactification of C. Since for j = i1, .., is we have tj = 1 on a translate
(i.e. a coset) of f ∗(Hom(H1(C),C∗)) and hence tj = 1 on the latter subgroup
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of Char(π1(C2−C)) we have for any χ ∈ Char(H1(C,Z)) and j = i1, .., is the
following: χ(f∗(γj)) = f ∗(χ)(γj) = tj(f ∗(χ)) = 1. Equivalently f∗(γj) = 0.
Therefore f∗(γ) = 0 in H1(C,Z) for γ ∈ H1(C2−C,Z) if and only if γ belongs
to the subgroup generated by γi1 , ..., γis. Let us consider the pencil of curves
on P2 formed by the fibres of f . f extends to the map from the complement
to the base locus of this pencil to C̄ 2. Preimage of D in this extension is a
union of components of C and we want to show that none of these components
is Ci with i = i1, ...is. But none of the components Ci, i = i1, ..., is is taken
by this extension into D since otherwise f∗(γi) ≠ 0 for the corresponding γi.
Hence domain of this extension of f contains all points of Ci1 ∪ ... ∪ Cis not
belonging to the remaining components of C.

Note that for isolated points of characteristic varieties it can occur that
H1(C2 −∪i≠i1,..,isCi, L) ≠ H1(C2 −C, I∗i1,..,is(L)) as is shown by examples in
[CS].

1.5 Adjoints for complete intersections

1.5.1

Let F ⊂ Pn be a surface which is a complete intersection given by the
equations:

F̄1 = ... = F̄n−2 = 0 (1.5.1.1)

of degrees d1, ..., dn−2 respectively. Let (cf. [Ha] p.242)

ΩF = Extn−2(OF ,Ω
n
Pn))

be the dualizing sheaf of F . From the latter and the Koszul resolution

0 → OPn(−d1−...−dn−2) → .... → OPn(−d1)⊕...⊕OPn(−dn−2) → OPn → OF → 0
(1.5.1.2)

it follows that one can identify ΩF with OF (d1 + ...+ dn−2 − n− 1).
Let f : F̃ → F be a resolution of singularities of F and τ : f∗(ΩF̃ ) → ΩF

be the trace map (cf. [BL]). It identifies sections of f∗(ΩF̃ ) over an open set
with those meromorphic differentials on non singular part of this open set in
F which when pulled back on a resolution F̃ admit a holomorphic extension

2incidentally, since the resolution X̄ of the base locus of this pencil is simply-connected
one has C̄ = P1
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over the exceptional set of f . The adjoint ideal A′ is the annihilator of the
cokernel of τ i.e.

A′ = HomOF
(ΩF , f∗(ΩF̃ )) = f∗(ΩF̃ )(−d1 − ...− dn−2 + n + 1) (1.5.1.3)

We define the sheaf of adjoint ideals on Pn as A = π−1(A′) (also denoted
as AdjF ) where π is the most right map in (1.5.1.2). The degeneration of
Leray spectral sequence for f (due to the Grauert-Riemenschneider vanishing
theorem ([GR])) yields

H i(F̃ ,ΩF̃ ) = H i(F, f∗(ΩF̃ )) =

= H i(F,A′(d1+...+dn−2−n−1) = H i(Pn,A(d1+...+dn−2−n−1)) (1.5.1.4)

In particular the irregularity of F̃ i.e. dimH1(F̃ ,O) can be found as the
difference between the actual dimension H0(Pn,A(d1 + ... + dn−2 − n − 1))
and the “expected” dimension (i.e. χ(A(d1+ ...dn−2−n−1))) of the adjoints
(since H i(A(d1 + ...dn−2 − n− 1)) = 0 for i ≥ 2).

1.5.2 Local description of adjoint ideals.

Let
F1(w1, ...., wn) = 0, ..., Fn−2(w1, ..., wn) = 0 (1.5.2.1)

be a germ of a complete intersection of hypersurfaces inCn having an isolated
singularity at the origin O. For any two pairs 1 ≤ i, j ≤ n, i ≠ j and
1 ≤ k, l ≤ n, k ≠ l we have up to sign:

dwi ∧ dwj

∂(F1,...,Fn−2)
∂(w1,...,ŵi,..,ŵj,..,wn)

=
dwk ∧ dwl

∂(F1,...,Fn−2)
∂(w1,...,ŵk,...,ŵl,...,wn)

(1.5.2.2)

Indeed the Cramer’s rule for the solutions of the system of equations:

∂Fk

∂w1
dw1 ∧ dwi + ...+

∂Fk

∂wn

dwn ∧ dwi = 0 (k = 1, ..., n− 2)

when one views dwk ∧ dwi(k = 1, .., î, ., n− 1) as unknowns yields that up to
sign:

dwk ∧ dwi =

∂(F1,...,Fn−2)
∂(w1,...,ŵk,...,ŵi,...,wn)

dwn ∧ dwi

∂(F1,...,Fn−2)
∂(w1,...,ŵi,...,wn−1)

(1.5.2.3)
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(1.5.2.2) follows from this for any two pairs (i, j), (k, l), i ≠ j, k ≠ l.
Since F1 = .... = Fn−2 = 0 is a complete intersection with isolated sin-

gularity one of the Jacobians ∂(F1,..,Fn−2)
∂(w1,..,ŵi,...,ŵj,...,wn)

is non vanishing in a neigh-
borhood of the singularity everywhere except for the singularity itself. In
particular each side (1.5.2.2) defines a holomorphic 2-form outside of the ori-
gin for any (i, j), i ≠ j or (k, l), k ≠ l. In fact this form is just the residue of
the log-form dz1∧...∧dzn

F1···Fn−2
at non singular points (i.e. outside of the origin) of

(1.5.2.1).
The adjoint ideal AO in the local ring OO of the origin of a germ of com-

plete intersection (1.5.2.1), according to the description of the trace map 1.5.1
can be made explicit as follows. Let f : C̃n → Cn be an embedded resolution
of (1.5.1.1). Then AO consists of φ ∈ OO such that f ∗(φ · dwi∧dwj

∂(F1,...,Fn−2)

∂(w1,...ŵi,..,ŵj ,..,wn)

)

admits a holomorphic extension from f−1(Cn − O) to C̃n.
Similarly, the elements of H0(A(d1 + ... + dn−2 − n− 1) ⊂ H0(ΩPn(d1 +

... + dn−2)) can be viewed as meromorphic forms with log singularities near
non singular points of (1.5.1.1) having as residue a 2-form on a non singular
locus of F and admitting a holomorphic extension on F̃ .

2 Ideals and polytopes of quasiadjunction.

2.1 Ideals of quasiadjunction.

Let f be a germ of a reduced algebraic curve having a singularity with r irre-
ducible branches at the origin of C2 near which it is given by local equation
f = f1(x, y) · · · fr(x, y) = 0. Let O be the local ring of the origin and A be
an ideal in O.

Definition 2.1.1 An ideal A is called an ideal of quasiadjunction of f with
parameters (j1, .., jr|m1, ..., mr) (ji, mi are integers) if A = {φ ∈ O|zj11 ...zjrr φ ∈
AdjV(m1,f1),...,(mr,fr)} where V(m1,f1),,,(mr ,fr) is a germ at the origin of the com-
plete intersection in Cr+2 given by the equations:

zm1
1 = f1(x, y), ...., z

mr
r = fr(x, y). (2.1.1)

An ideal of quasiadjunction is an ideal in O which is an ideal of quasiadjunc-
tion for some system of parameters.
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2.2 Basic Ideal.

Let A(f1, ..., fr) ⊂ O be the ideal generated by

(fi)x
fi

f1·f2···fr,
(fi)y
fi

f1·f2···fr, (i = 1, .., r),
Jac( (fi,fj)(x,y) ))

fifj
f1···fr, (i, j = 1, ..., r, i ≠ j)

(2.2.1)
(we shall call it the basic ideal).

Equating all polynomials (2.2.1) to zero yields a system of equations hav-
ing (0, 0) as the only solution. Therefore O/A(f1, ..., fr) is an Artinian alge-
bra.

Moreover for any set of parameters (i1, ..., ir|m1, ..., mr) the corresponding
ideal of quasiadjuction contains A(f1, ..., fr). Indeed, if Fi = zmi

i − fi(x, y),

then up to sign ∂(F1,...,Fr)
∂(z1,...,ẑi,..,zr,x)

= zm1−1
1 · · · ˆzmi−1

i · ·zmr−1
r · (fi)x and hence

(fi)xf1 · · · f̂i · · · frdzi ∧ dy
∂(F1,...Fr)

∂(z1,..ẑi,...,zr,x)

=
(fi)xf1 · · · f̂i · · · frdzi ∧ dx

zm1−1
1 · · · ẑmi−1

i · · · zmr−1
r (fi)x

= z1···ẑi···zrdzi∧dy

(2.2.2)
which is holomorphic on Cr+2. Similarly, one sees that the 2-forms corre-
sponding to other generators of A(f1, .., fr) coincide on F1 = ... = Fr = 0
with the forms admitting a holomorphic extension to Cr+2.

In particular, there are only finitely many ideals of quasiadjunction.

2.3 Ideals of quasiadjunction and polytopes.

Let U = {(x1, .., xr) ∈ Rr|0 ≤ xi < 1} be the unit cube with coordinates
corresponding to the components of a curve C. Sometimes we shall denote
this cube as U(C). If C′ is formed by components of C then we shall view
U(C′) as the face of U(C) given by xj = 0 where j runs through indices
corresponding to components of C not belonging to C′.

By a convex polytope mean a subset of Rn 3 which is the convex hull
of a finite set of points with some faces possibly deleted. By a polytope we
mean a finite union of convex polytopes. Class of polytopes in this sense is
closed under finite unions and intersections. A complement to a polytope
within an ambient polytope is a polytope. By face of maximal dimension

3only subsets of U will occur below.
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of a polytope we mean the intersection of the polytope’s boundary with
the hyperplane for which this intersection has the dimension equal to the
dimension of the boundary. A face of a polytope is an intersection of faces
of maximal dimension. This is again a closed polytope.

Each (x1, .., xr) ∈ U defines the character χ(x1, , , , , xr) of π1(C2−C) such
that χ(x1, ..., xr)(γi) = exp(2π

√
−1xi). We shall call it the exponential map.

We also put (x1, ..., xr) = (1− x1, ..., 1 − xr) and call this conjugation since
χ(1− x1, ..., 1− xr) = χ(x1, ..., xr). This map is an involution of the interior
of U : U◦ = {(x1, ..., xr) ∈ U|xi ≠ 0, i = 1, ...r}.

Different arrays (i1, ..., ir|m1, ..., mr) may define the same ideals of quasi-
adjunction. The next proposition describes when this is the case.

Proposition 2.3.1 Let A be an ideal of quasiadjunction. Then there is a
polytope ∆̄(A), which is a open subset in U , with the following property: for
(m1, ..., mr) ∈ Zr and (j1, ..., jr) ∈ Zr, 0 ≤ ji < mi, i = 1, ..., r a holomorphic
function zj11 · · · zjrr φ belongs to the adjoint ideal of the germ of an abelian
branched cover of the type (m1, .., mr) of a neighborhood of the origin in C2

for any φ ∈ A if and only if ( j1+1
m1

, ..., jr+1
mr

) ∈ ∆̄(A).

Proof. Let ρ : Yf → C2 be an embedded resolution for the singularity f =
f1(x, y)···fr(x, y) = 0 at the origin. The complete intersection V(m1,f1),...,(mr,fr)

(cf. (2.1.1)) provides a model with an isolated singularity of a branched
abelian cover of a neighborhood of the origin inC2 with f = 0 as its branching
locus. Let π(m1,f1),...,(mr,fr) : Vm1,...,mr → C2 be the canonical projection.
If V̄(m1,f1),...,(mr,fr) is the normalization of Yf ×C2 V(m1,f1)...,(mr,fr) then the
projection ρ(m1,f1)...,(mr ,fr) : V̄(m1,f1),...,(mr,fr) → V(m1,f1)...,(mr ,fr) on the second
factor is a resolution of the singularity at the origin in the category of V -
manifolds. We have the diagram:

V̄(m1,f1),...,(mr,fr)

π̄(m1,f1),...,(mr,fr)
−→ Yf⏐⏐*ρ(m1,f1),...,(mr,fr)

⏐⏐*ρ

V(m1,f1),...,(mr,fr)

π(m1,f1),...,(mr,fr)
−→ C2

(2.3.1)

Let E = ∪kEk be the exceptional locus of ρ. The exceptional locus of
ρ(m1,f1),...,,(mr,fr) is ∪Ek,l where Ek,l is a cover of Ek.

Let ak,i = multEk
ρ∗fi(x, y), (i = 1, ..., r), ck = multEk

ρ∗(dx ∧ dy). For
φ ∈ O we put fk(φ) = multEk

ρ∗(φ). Finally let gk,i = g.c.d(mi, ak,i), (i =
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1, ..., r) and sk = g.c.d.( m1
gk,1

, ... mr

gk,r
), (i = 1, ..., r). The form dx∧dy

z
m1−1
1 ···zmr−1

r

is a

non vanishing form on

V(m1,f1),..,(mr ,fr) − SingV(m1,f1),..,(mr ,fr)

(cf. (1.5.2.2)). If A is an ideal of quasi-adjunction with parameters (j̄1, ..., j̄r|
m1, ..., mr) then the condition φ ∈ A is equivalent to the existence of a

holomorphic extension of ρ∗(m1,f1),...,(mr,fr)(
z
j̄1
1 ...z

j̄r
r φdx∧dy

z
m1−1
1 ...zmr−1

r

) over the exceptional

locus ∪Ek,l in a neighborhood of each point of ∪Ek,l not belonging toEk,l∩Ek̄,l̄

for any (k, l), (k̄, l̄). This, in turn, is equivalent to:

Σi=r
i=1(j̄i −mi + 1)multEk,l

ρ∗(m1,f1),....,(mr,fr)(zj) +multEk,l
ρ∗(m1,f1),...,(mr,fr)φ+

+multEk,l
ρ∗(m1,f1),...,(mr,fr)(dx ∧ dy)) ≥ 0 (2.3.2)

for any pair of indices (k, l). On the other hand, we have the following
equalities:

multEk,l
ρ∗(m1,f1),...,(mr,fr)(zi) =

m1 · · · m̂i · · ·mr · ak,i
gk,1 · · · gk,r · sk

, multEk,l
ρ∗(m1,f1),...,(mr,fr)(φ) =

=
fk(φ) ·m1 · · ·mr

gk,1 · · · gk,r · sk
,

multEk,l
ρ∗(m1,f1),...,(mr,fr)(dx ∧ dy) =

ck ·m1 · · ·mr

gk,1 · · · gk,r · sk
+

m1 · · ·mr

gk,1 · · · gk,r · sk
− 1

(2.3.3)
To see (2.3.3), we can select local coordinates (u, v) on Yf near a point be-
longing to a single component Ek in which the latter is given by the equation
u = 0. Then ρ∗(fi(x, y)) = uak,i · ϵi(u, v) where ϵi(u, v)(i = 1, ..., r) are units
in the corresponding local ring. The fiber product Yf ×C2 V(m1,f1),..,(mr,fr) is
a subvariety in Cr+2 ×C2 Yf given by the equations:

zm1
1 = uak,1ϵ1(u, v), ..., z

mr
r = uak,rϵr(u, v) (2.3.4)

Each branch of (2.3.4) has the following local parameterization:

u = t
m1···mr

gk,1···gk,r·sk , zi = t
m1···m̂i···mr·ak,i

gk,1···gk,r·sk , i = 1, ..., r (2.3.5)
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(exponents are chosen so that their greatest common divisor will be equal
to 1 and so that they will satisfy (2.3.4)). This yields the first equality in
(2.3.3). We have

multEk,l
ρ∗(m1,f1),...,(mr,fr)(φ) = multEk,l

π̄(m1,f1),...,(mr,fr)u
fk(φ).

Hence the second equality in (2.3.3) follows from (2.3.5).

Finally, since the map π̄(m1,f1),...,(mr,fr) is given locally by (t, v) → (t
m1···mr

gk,1···gk,r , v),
we have:

ρ∗(m1,f1),...,(mr,fr)(dx ∧ dy|V(m1,f1),...,(mr,fr)) =

= ρ∗(m1,f1),...,(mr,fr) ◦ π
∗
(m1,f1),...,(mr,fr)(dx ∧ dy|C2) =

= π̄∗
(m1,f1),...,(mr,fr)(u

ckdu ∧ dv) = t
ck·m1···mr

gk,1···gk,1·sk
+

m1···mr
gk,1···gk,r·sk

−1
dt ∧ dv

which implies the last equality in (2.3.3).
Now it follows from (2.3.2) and (2.3.5) that φ ∈ A(j̄1, ..., j̄r|m1, ..., mr) if

and only if for any k the multiplicity fk(φ) satisfies:

Σi=r
i=1(j̄i −mi + 1)

m1 · · · m̂i · · ·mr · ak,i
gk,1 · · · gk,rsk

+
m1 · · ·mr · fk(φ)
gk,1 · · · gk,r · sk

+

+
ck ·m1 · · ·mr

gk,1 · · · gk,r · sk
+

m1 · · ·mr

gk,1 · · · gk,r · sk
− 1 ≥ 0 (2.3.6)

For given k let fk(A) be the minimal integer solution, with fk(φ) considered
as unknown, for this inequality and φk be such that fk(φk) = fk(A). In other
words φ ∈ A if and only if fk(φ) ≥ fk(A). We have fk(A) = {Σi=k

i=1(ak,i−(j̄i+
1)ak,i

mi
)− ck − 1} = [(Σi=k

i=1(ak,i − j̄i+1
mi

ak,i)− ck] where {r} (resp. [r]) denotes
the smallest integer which is strictly greater than (resp. the integer part of)
r. We shall call fk(A) the multiplicity of A along Ek. This is the minimum
of multiplicities along Ek of pull backs on Yf of elements of A.

The same calculation shows that zj11 ···zjrr φ, where φ belongs to an ideal of
quasiadjunction A, is in the adjoint ideal of zm1

1 = f1(x, y), ..., zmr
r = fr(x, y)

if and only if:

Σi=r
i=1(ji −mi + 1)

m1 · · ·mrak
gk,1 · · · gk,r ·mi · sk

+
m1 · · ·mrfk(A)

gk,1 · · · gk,r · sk
+

+
ck ·m1 · · ·mr

gk,1 · · · gk,r · sk
+

m1 · · ·mr

gk,1 · · · gk,rsk
− 1 ≥ 0 (2.3.7)
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or equivalently:

Σi=r
i=1

ji + 1

mi

ak,i > Σi=r
i=1ak,i − fk(A)− ck − 1 (2.3.8)

Indeed, if (2.3.7) holds, then, since fk(φ) ≥ fk(A) for any φ ∈ A, one can
replace fk(A) in (2.3.7) by fk(φ). This converts (2.3.7) into a necessary and
sufficient condition for zj11 · · · zjrr φ to belong to the adjoint ideal of (2.1.1)
(cf. derivation of (2.3.6)). Vice versa, for φk satisfying fk(φk) = fk(A), the
condition that zj11 · · · zjrr φk is in the adjoint ideal of (2.1.1), is nothing else
but (2.3.7).

The polytope ∆̄(A) satisfying the conditions of the proposition is the set
of solutions of the inequalities:

Σi=r
i=1xiak,i > Σi=r

i=1ak,i − fk(A)− ck − 1 (2.3.9)

for all k.

2.3.1 Remarks.

1. If A1 and A2 are ideals of quasiadjunction and A1 ⊂ A2 then ∆̄(A2) ⊂
∆̄(A1)
2.The polytope corresponding the basic ideal A(f1, .., fr) (cf. 2.2) is the whole
unit cube U .
3. O is considered as improper “ideal” of quasiadjunction since A(m1 −
1, ..., mr − 1|m1, .., mr) = O.

2.4 Local polytopes of quasiadjunction and faces of
quasiadjunction.

2.4.1

Definition 2.4.1 We say that two points in the unit cube U are equivalent
if the collections of polytopes ∆̄(A) containing each of the points coincide. A
(local) polytope of quasiadjunction ∆ is an equivalence class of points with
this equivalence relation.
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Definition 2.4.2 A face of quasiadjunction is an intersection of a face (cf.
(2.3)) of a local polytope of quasiadjunction and a (different) polytope of
quasiadjunction. In particular, each face of quasiadjunction belongs to a
unique polytope of quasiadjunction.

For each face let us consider the system of equation defining the affine
subspace of Qr spanned by this face. One can normalize the system so that
all coefficients of variables and the free term are integers and the g.c.d. of
non zero minors of maximal order is equal to 1.

Definition 2.4.3 The order of a face of quasiadjunction is the g.c.d of mi-
nors of maximal order in the matrix of coefficients in the normalized system
of linear equations defining this face.

This is the order of the torsion of the quotient of Zr by the subgroup gener-
ated by the vectors having as coordinates the coefficients of variables in the
equations of the face. In particular this integer is independent of the chosen
normalized system of equations and depends only on the face of quasiadjunc-
tion.

The (local) ideal of quasiadjunction corresponding to a face of quasiad-
junction is the ideal of quasiadjunction corresponding to the polytope of
quasiadjunction containing this face. The ideal corresponding to a face of

quasiadjunction has the form A(j1, ..., jr|m1, ..., mr) where (
j1+1
m1

, ..., jr+1
mr

) be-
longs to this face.

2.5 Examples.

1. In the case of the branch with one component the ideals of quasiadjunction
correspond to the constants of quasiadjunction (cf. [L2]). Recall that for a
germ φ the rational number κφ is characterized by the property min{i|ziφ ∈
Adj(zn = f(x, y))} = [κφ · n]. The ideal of quasiadjunction corresponding
to κ consists of φ such that κφ > κ. For example for the cusp x2 + y3

the only non zero constant of quasiadjunction is 1
6 , there are two polytopes

of quasiadjunction i.e. ∆′ = {x ∈ [0, 1]|1 > x > 1
6} and ∆′′ = {x ∈

[0, 1]|16 ≥ x ≥ 0}. x = 1
6 is the face of quasiadjunction and the corresponding

ideal of quasiadjunction is the maximal ideal. For an arbitrary unibranched
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singularity we have ∆̄(Aκ) = {x|x > κ}. The order of the face x = κ is equal
to the order of the root of unity exp(2πiκ).

2. Let us consider a tacnode, locally given by the equation: y(y − x2)
(i.e. f(x, y) = y, g(x, y) = y− x2). Then the basic ideal is the maximal ideal
and hence there is only one ideal of quasiadjunction. If M is the maximal
ideal, then ∆̄(M) is the whole unit square. To determine the polytope ∆̄(O),
note that after two blowups we obtain an embedded resolution which in one
of the charts looks like: x = uv, y = u2v where u = 0 and v = 0 are the
exceptional curves. Hence for the component u = 0 we obtain a = b =
2, f(φ = 1) = 0, c = 2 and the corresponding polytope is x+ y > 1

2 . The face
of quasiadjunction is x + y = 1

2 and the corresponding ideal is the maximal
one.

3. For the ordinary singularity of multiplicity m: (α1x+ β1y) · · · (αmx+
βmy) = 0 the basic ideal is Mm−2 where M ⊂ O is the maximal ideal of
the local ring at the origin. Since the resolution can be obtained by a single
blow up, we have a1,i = 1, c1 = 1, i = 1, ..., m i.e. the polytope ∆̄(A) of an
ideal of quasiadjunction A is:

x1 + ... + xm > m− 2− f1(A) (2.5.1)

Since f1(φ) ≥ f1(A) is equivalent to φ ∈ Mf1(A) i.e. the latter is the ideal
corresponding to the polytope (2.5.1). The faces of quasiadjunction are x1+
... + xm = m− 2− f1(A) (f1(A) = 0, ..., m− 3) and the corresponding ideal
of quasiadjunction is Mf1(A)+1.

Additional examples are discussed in [L7].

2.6 Global polytopes and sheaves of quasiadjunction.

Let Rr, as in 2.3, be vector space coordinates of which are in one to one
correspondence with the components of the curve C = ∪i=r

i=1Ci. For a sin-
gular point p of C, let Cp be the collection of components of C passing
through p. Each polytope of quasiadjunction ∆p ⊂ U(Cp) of p defines
the polytope in U = {(x1, .., xr)|0 ≤ xi ≤ 1} ⊂ Rr consisting of points
{(x1, ..., xr)|(x1, .., xr) ∈ U , (xi1 , ..., xir(p)) ∈ ∆p} where (i1, ..., ir(p)) are the
coordinates corresponding to the components of Cp (i.e. passing through the
singularity p). We shall use the notation ∆p(U) for this polytope in U .
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2.6.1 Definition

A type of a point in U is the collection of polytopes ∆p(U) ⊂ U to which this
point belongs, where p runs through all p ∈ SingC.

We call two points in U equivalent if they have the same type. A (global)
polytope of quasiadjunction is an equivalence class of this equivalence relation.
Global polytopes of quasiadjunction form a partition which is a refinement

of every partitions of U defined by polytopes ∆p(U) corresponding to local
polytopes of quasiadjunction of singularities of C.

2.6.2 Definition.

We shall call a face δ of quasiadjunction contributing if it belongs to a hyper-
plane d1x1+ ...+drxr = l where d1, ...dr are the degrees of the components of
C corresponding to respective coordinates x1, ..., xr. This hyperplane is called
contributing, the integer l = l(δ) is called the level of both the contributing
hyperplane and contributing face. The order of a global face of quasiadjunc-
tion is defined as in local case (cf. 2.4.2). A polytope of quasiadjunction is
called contributing if it contains a contributing face.

A point (x1, .., xr) ∈ δ is called interior C′-point for a curve C′ formed by
components of C if xi ≠ 1 if and only if i corresponds to a component of C′

and (x1, .., xr) is in the interior of δ.

Remarks 2.6.2.1 In the case when r = 1, e.g. for an irreducible curve, an

order of a global face of quasiadjunction is the order of a root of the Alexander
polynomial. Indeed, for a constant of quasiadjunction κ, exp(2πiκ) is a root
of Alexander polynomial (cf. [LV]).
2.6.2.2. The collection of orders of faces of quasiadjunction for reducible
curves a priori cannot be determined just by the local types of all singular
points. However it is combinatorial invariant of the curve in the sense that
it depends only on local information about singularities and specification of
components which contain specified singular points, e.g. it is independent of
the geometry of the set of singular points in P2. In the case of arrangements
of lines this is combinatorial invariant in the common sense of the word.
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2.6.3 Definition.

The sheaf of idealsA(δ) ⊂ OP2 such that Supp(OP2/A) ⊂ SingC is called the
sheaf of ideals of quasiadjunction corresponding to the face of quasiadjunction
δ if the stalk Ap at each singular point p ∈ C with local ring Op is the ideal
A of quasiadjunction corresponding to the face ∆p = ∆ ∩Hp with Hp ⊂ Rr

being given by xij = 0 where ij are the coordinates corresponding to the
components of C not passing through p.

2.6.4 Examples.

1.(cf. [L2]) For an irreducible curve of degree d with nodes and the ordinary
cusps as the only singularities the global polytope of quasiadjunction coincide
with the local one of the cusp. The only face of quasiadjunction is x = 1

6 .
The contributing hyperplane is given by dx = d

6 and its level is d
6 . The sheaf

of quasiadjunction corresponding to this face of quasiadjunction is the ideal
sheaf having stalks different from the local ring only at the points of P2 where
the curve has cusps and the stalks at those points are the maximal ideals of
the corresponding local rings.
2. Let us consider C which is an arrangement of lines. For a point P let mP

denotes the multiplicity. We consider only points with mP > 2. Each global
face of quasiadjunciton is a solution of a system of equations:

LP : xi1 + ... + xim = sP (2.6.1)

where sP = 1, ..., mP − 2 (cf. example 3 in 2.5). The indices of variables
x correspond to the lines of the arrangement and xi appears in LP if and
only if it correspond to a line passing through P . Each system (2.6.1) cor-
responding to a face of quasiadjunciton singles out a collection of vertices of
the arrangement. This face is contributing if the equation

x1 + ... + xr = k, (k ∈ N) (2.6.2)

is a linear combination of equations (2.6.1). The level of such contributing
face is k. Its order is the g.c.d of minors of maximal order in system (2.6.1).
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3 The first Betti number of an abelian cover.

In this section we shall prove a formula for the irregularity of an abelian
covers of P2 branched over C in terms of the polytopes of quasiadjunction
introduced in the last section. More precisely we shall calculate the multi-
plicity of a character of the Galois group of the cover acting on the space
H1,0(Ṽm1,..,mr) of holomorphic 1-forms. We translate this into an informa-
tion about characteristic varieties of the fundamental group and consider
several examples of characteristic varieties for the fundamental groups of the
complements to arrangements of lines.

3.1 Statement of the theorem.

Let C = ∪i=r
i=1Ci be a reduced curve f(u, x, y) = f1(u, x, y) · · ·fr(u, x, y) with r

irreducible components and the degrees of components equal to d1, .., dr and
d = d1 + ... + dr be the total degree of f(u, x, y) = 0. Let L∞ be the line
u = 0 at infinity which, as above, we shall assume transversal to C (cf.1.1).

a) The irregularity of a desingularization Ṽm1,...,mr of an abelian cover of
P2 branched over C ∪ L∞ and corresponding to the surjection π1(P2 − C ∪
L∞) → Z/m1Z⊕ ...⊕ Z/mrZ is equal to

ΣC′(Σδ(C′)N(δ(C′)) · dimH1(Aδ(C′)(d− 3− l(δ(C))))) (3.1.1)

where the summations are over all curves C′ formed by the components of C
and the contributing faces of quasiadjunction δ(C′) respectively. Here l(δ(C′))
is the level of the contributing face of δ(C′) and N(δ(C′)) is the number of
interior C′-points ( i1+1

m1
, ..., ir+1

mr
) in the contributing face of δ(C′).

b) Let χj be the character of Zm1 ⊕ ... ⊕ Zmr taking on (a1, .., aj, .., ar)
value exp(2π

√
−1 aj

mj
). For a character χ of Zm1 ⊕ ...⊕ Zmr let

H1,0
χ (Ṽm1,...,mr) = {x ∈ H1,0(Ṽm1,...,mr), g ∈ Zm1 ⊕ ...⊕ Zmr |g · x = χ(g) · x}.

If ( i1+1
m1

, ..., ir+1
mr

) is an interior C-point (cf. 2.3.2) belonging to the contributing
face δ then

dimH1
χ
i1
1 ...χir

r
(Ṽm1,...,mr) = dimH1(Aδ(d− 3− l(δ))) (3.1.2)
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c) Let ti = exp(2π
√
−1xi). For each contributing face δ belonging to U◦

and its image δ̄ under the conjugation map (cf. 2.3), let Ls(x1, .., xr) = βs
be the system of equations defining it where Ls(x1, ...xr) is a linear form
with integer coefficients such that g.c.d. of the minors of maximal order in
the matrix of coefficients is equal to 1. Then the corresponding essential
component of the characteristic variety of π1(P2−C ∪L∞), which either has
a positive dimension or is a torsion point, is the intersection of cosets given
by the equations:

exp(2π
√
−1Ls) = exp(2π

√
−1βs) (3.1.3)

written in terms of ti’s. Vice versa, any essential component can be obtained
in such way.

Note that c) implies that the essential components of the characteristic
varieties are Zariski’s closures of the images of the contributing faces under
the exponential map. Indeed, since g.c.d. of minors of coefficients in Ls

is 1 the intersection of subgroups exp(2π
√
−1Ls) = 1 is connected and the

closure of the image of the face of quasiadjunction is Zariski dense in the
translation of this connected component given by (3.1.3).

3.2 Proof of the Theorem

We shall start with the case when mi ≥ di for i = 1, ..., r. Let A ⊂ OPr+2

be the sheaf of adjoint ideals of the complete intersection Vm1,...,mr ⊂ Pr+2

given by the equations (cf. (1.3.1.1)):

zm1
1 = um1−d1f1(u, x, y), ..., z

mr
r = umr−drfr(u, x, y) (3.2.1)

Vm1,...,mr provides a model of an abelian branched cover of P2 branched over
f1 · · · fr = 0 and the line at infinity. Vm1,...,mr has isolated singularities at the
points of (3.2.1) which are above the singularities of C in P2−L∞. The action
of the Galois group of the cover is induced from the action of the product of
groups of roots of unity µm1 × · · · × µmr on the Pr+2 via multiplication of
corresponding z-coordinates.

Let H be the set of common zeros of z1, ..., zr ∈ H0(Pr+2,O(1)) and
Ai1,...,ir be the subsheaf of OPr+2 germs of section product of which with
zi11 · · · zirr belongs to A. The action of µm1 × · · ·× µmr on Pr+2 induces the
action on Ai1,...,ir.
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Let JH be the ideal sheaf of the plane H ⊂ P2. We have the following
µm1 × · · ·× µmr-equivariant sequence:

0 → Ai1,...,ir((m1−i1)+...+(mr−ir)−r−3)⊗JH → Ai1,...,ir((m1−i1)+...+(mr−ir)−r−3)

→ Ai1,..,ir((m1 − i1) + ...(mr − ir)− r − 3)|H → 0 (3.2.2)

Let

F (i1, ..., ir) = dimH1(Ai1,...,ir((m1 − i1) + ...+ (mr − ir)− r − 3));

Fχ(i1, ..., ir) = dim{x ∈ H1(Ai1,...,ir((m1−i1)+...+(mr−ir)−r−3)|g·x = χ(g)x,

∀g ∈ µm1 × · · ·µmr} (3.2.3)

In particular F (0, ..., 0) is the irregularity of a nonsingular model of Vm1,...,mr .

Step 1. Degree of the curves in the linear system H0(Ai1,...,ir((m1 − i1) +
...+(mr−ir)−r−3)|H). Let us calculate the multiplicity of the line L∞ : z1 =
... = zr = u = 0 as the fixed component of the curves in the linear system cut
on H by the hypersurfaces in the linear system H0(Ai1,...,ir((m1 − i1) + ...+
(mr− ir)−r−3)). This multiplicity is the smallest k such that uk belongs to
the latter system of hypersurfaces. In appropriate coordinates (z1, ..., zr, u, v)
at a point P of this line outside of L∞ ∩ C (i.e. we have f1(P ) · · · fr(P ) ≠ 0)
the local equation of Vm1,...,mr is zm1

1 = um1−d1 , ..., zmr
r = umr−dr . Let

l = l.c.m.(
m1

m1 − d1
(m1 − d1) · · · (mr − dr), ...,

...
mr

mr − dr
(m1 − d1) · · · (mr − dr), (m1 − d1) · · · (mr − dr))

Then each branch of the normalization of Vm1,...,mr has the parameterization
(t, v) such that:

z1 = t
l(m1−d1)

m1(m1−d1)···(mr−d1) , ..., zr = t
l(mr−dr)

mr(m1−d1)···(mr−dr) , u = t
l

(m1−d1)···(mr−dr)

Therefore the pull back of the form z
i1
1 ···zirr ukdu∧dv

z
m1−1
1 ···zmr−1

r

|Vm1,...,mr
to the (t, v) chart

is regular if and only if

k > Σj=r
j=1(mj − dj − (ij + 1)) +

dj(ij + 1)

mj

− 1 (3.2.4)
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The smallest k which satisfies this inequality, i.e. the multiplicity of the line
u = 0 as the component of a generic curve from H0(Ai1,...,ir((m1 − i1) +
...(mr − ir)− r − 3)|H), is equal to

Σj(mj − dj − (ij + 1)) + [Σj

dj(ij + 1)

mj

] (3.2.5)

A consequence of this is that the degree of the moving curves in the linear
system H0(Ai1,...,ir((m1 − i1) + ...(mr − ir) − r − 3)|H) is equal to Σjdj −
3 − [Σj

dj(ij+1)
mj

] and therefore the moving curves belong to the linear system

H0(A∆((Σjdj) − 3 − [dj(ij+1)
mj

]) where ∆ is the polytope of quasiadjunction

containing ( i1+1
m1

, ..., ir+1
mr

). In fact the moving curves form a complete system

since the cone over any curve in H0(A∆(Σjdj − 3 − [Σj
dj(ij+1)

mj
]) belongs to

H0(Ai1,...,ir(Σj(mj − ij)− r − 3)).

Step 2. A recurrence relation for F (i1, ..., ir) and Fχ(i1, ..., ir). Let s(i1, ..., ir) =

dimH1(A∆(Σjdj − 3 − [Σj
dj(ij+1)

mj
]) where ∆ is the polytope of quasiad-

junction of C containing ( i1+1
m1

, ..., ir+1
mr

) and ϵχ(i1, ..., ir) = 1 (resp. 0) if

χ = χi1−m1+1
1 · · · χir−mr+1

r (resp. otherwise). We claim the following recur-
rence:

F (i1, ..., ir) = s(i1, ..., ir) + Σl=r
l=1(−1)l+1Σij1<...<ijl

F (..., ij1 + 1, ..., ijl + 1, ...);

Fχ(i1, ..., ir) = ϵχ(i1, ..., ir)s(i1, ..., ir)+

Σl=r
l=1(−1)l+1Σij1<...<ijl

Fχ(χj1 ···χjl
)−1(..., ij1 + 1, ..., ijl + 1, ...) (3.2.6)

Equivalently the first of equalities (3.2.6) can be written as

s(i1, ..., ir) = Σl=r
l=0(−1)lΣij1<...<ijl

F (..., ij1 + 1, ..., ijl + 1, ...)

and similarly for the second. This identity will be derived from the following.
For h such that 1 ≤ h ≤ r let

F (i1, ., , ir|q1, ..., qh) = dimH1(Ai1,..,ir((m1−i1)+...(mr−ir)−r−3)|Hq1∩...Hqh
)

whereHs is the hyperplane zs = 0 inPr+2 while for h = 0 we let F (i1, ..., ir|∅) =
F (i1, ..., ir). In particular s(i1, .., ir) = F (i1, ...ir|1, ..., r).
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Similarly one defines Fχ(i1, ..., ir|q1, ..., qh). We shall prove by induction
over h:

F (i1, ..., ir|q1, ..., qh) =

Σl=h
l=0(−1)lΣij1<...<ijl ,ij1 ,...,ijl⊂(q1,...,qh)F (..., ij1, ..., ijl, ...)

Fχ(i1, ..., ir|q1, ..., qh) =

Σl=h
l=0(−1)lΣij1<...<ijl ,(ij1 ,...,ijl)⊂(q1,...,qh)Fχ·χ−1

j1
···χ−1

jl

(..., ij1 + 1, ..., ijl + 1, ...)

(3.2.7)
The identity (3.2.6) is a special case of (3.2.7) when qi = i. For any
(i1, ..., ir|q1, ..., qh), (h ≥ 0) from the exact sequence (in which the left map is
the multiplication by zqh+1

):

0 → A...,iqh+1+1,...(...+ (mqh+1
− iqh+1

− 1) + ...− r − 3)|Hq1∩...∩Hqh
→

Ai1,..,ir((m1 − i1) + ...+ (mr − ir)− r − 3)|Hq1∩...∩Hqh
→

Ai1,..,ir((m1 − i1) + ... + (mr − ir)− r − 3)|Hq1,...,qh,qh+1
→ 0 (3.2.8)

we obtain

F (i1, ..., ir|q1, ..., qh, qh+1) = −F (i1, ..., iqh+1
+1, ...ir|q1, .., qh)+F (i1, ..., ir|q1, .., qh)

Fχ(i1, ..., ir|q1, ..., qh, qh+1) = −Fχ·χ−1
qh+1

(i1, ..., iqh+1+1, ..., ir|q1, ..., qh)+

Fχ(i1, ..., ir|q1, .., qh). (3.2.9)

Indeed, the map

H0(Ai1,..,ir((m1 − i1) + ...+ (mr − ir))− r − 3)|Hq1,...,qh
→

→ H0(Ai1,..,ir((m1 − i1) + ... + (mr − ir))− r − 3)|Hq1,...,qh,qh+1
(3.2.10)

is surjective because the cone in Hq1 ∩ ... ∩ Hqh over the hypersurface in
H0(Ai1,..,ir((m1−i1)+...+(mr−ir)−r−3)|Hq1,...,qh,qh+1

) belongs toH0(Ai1,..,ir((m1−
i1) + ...+ (mr − ir)− r− 3)|Hq1,...,qh

). Moreover for qi = i, i = 1, ..., r we have
Fχ(i1, ..., ir|1, ...r) = ϵχ(i1, ..., ir)s(i1, ..., ir) since to φ(x, y) ∈ H0(Ai1,...,ir)
corresponds the form ψ = zm1−i1−1

1 · · · zmr−ir−1
r π∗φ holomorphic on Ṽm1,...,mr

and satisfying: g∗(ψ) = χi1−m1+1
1 · · · χir−mr+1

r ψ. This shows that (3.2.7) is
valid for h = 1 and that validity of (3.2.7) for the array (q1, .., qh+1) provided
it is valid for all (q1, .., qh).
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Step 3. An explicit formula for F (i1, ..., ir). Let C(j1, ..., js) = Cj1∪...∪Cjs

be a curve formed by a union of the components of C and let

FC(j1,...,js)(i1, ..., is) = dimH1(A(C(j1, ..., js))i1,...,is((mj1−i1)+....+(mjs−is)+s−3).

Note that

ij = mj − 1(j ≠ j1, ...js) ⇒ F (i1, ..., ir) = FC(j1,...,js)(i1, ..., is) (3.2.11)

since the local conditions defining both sheaves coincide (indeed:

zi11 · · · zmjk
−1

jk
· ·zirr dx ∧ dy

z1m1−1...zmr−1
r

=
zi11 · · · ˆ

z
mik

−1
ik

· · · zirr dx ∧ dy

zm1−1
1 · · · ˆ

z
mjk

−1
ijk

· · · zmr−1
r

)

as well as the degrees of the curves in the corresponding linear systems.
Moreover

FC(j1,...,js)(0, ..., 0)

is the irregularity of the cover of P2 branched over C(j1, ..., js) and having
the ramification index mi over the component Ci(i = j1, ..., js).

We solve the recurrence relation (3.2.6) subject to the ”initial condition”
(3.2.11). It is convenient to view each relation (3.2.6) as the one connecting
the values of the function defined at the vertices of the integer lattice in the
parallelepiped 0 ≤ xi ≤ mi, (i = 1, ..., r). Each equation connects the values
of this function at the vertices of a parallelepiped with sides equal to 1. It is
clear that the sum of all equations (3.2.6) yields:

F (0, ..., 0) = Σ0≤is<ms−1s(i1, ..., ir) + Σl=r−1
l=1 Σ(j1<...<jl)FC(j1,...,jl)(0, ...0)

Fχ(0, ..., 0) = Σ0≤is<ms−1ϵχ(i1, .., , ir)s(i1, ..., ir)+Σl=r−1
l=1 Σ(j1<...<jl)FC(j1,...,jl)χ(0, ..., 0)

(3.2.12)
Remark. Alternative derivation of (3.2.12).

Sheaves A∆(d1 + ...+ dr − r− 2− [Σj
dj(ij+1)

mj
]) admit the following inter-

pretation also yielding (3.2.12). Let us consider the following global version
of the diagram (2.3.1):

V̄m1,...,mr

π̄
→ YC

↓ ρ̄ ↓ ρ
Vm1,...,mr

π
→ P2

(3.2.13)
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Here ρ : YC → P2 is an embedded resolution of singularities of C which are
worse than nodes, V̄m1,...,mr is the normalization of Vm1,...,mr ×P2 YC and π̄, ρ̄
are the obvious projections. Let

π̄∗(OV̄m1,...,mr
) = ⊕L−1

χ
i1
1 ···χir

r

(3.2.14)

be the decomposition by the characters of the Galois group acting on π̄∗(OV̄m1,...,mr
).

Then we have:

A∆(Σjdj − 3− [Σj
dj(ij + 1)

mj

]) = ρ∗(π̄∗(ΩV̄m1,...,mr
)⊗Lχ(m1−(i1+1),...,mr−(ir+1)))

(3.2.15)
where ∆ is the polytope of quasiadjunction containing ( i1+1

m1
, ..., ir+1

mr
). Indeed

it follows from (2.3.8) that a germ φ of a holomorphic function belongs to
the sheaf in the left side of (3.2.15) if and only if the order of φ along an

exceptional curve Ek ⊂ YC satisfies: ordEk
φ ≥ Σak,j(

mj−(ij+1)
mj

− ck) and the

sheaf on the left is a subsheaf of OP2([Σjdj(
mj−(ij+1)

mj
)]) with the quotient

having a zero-dimensional support. One readily sees that the sheaf on the
right has the same local description. This identity also implies (3.2.12) as
follows from Serre’s duality and (3.2.14).

Step 4. A vanishing result.
If ∆ is a polytope of quasiadjunction, Ξk = {(x1, ..., xr) ∈ U|k ≤ d1x1 +

...+ drxr < k + 1} and k is such that ∆ ∩ Ξk ≠ ∅ then

H1(A∆(d− r − 2− k)) = 0 (3.2.16)

unless ∆ is a contributing polytope of quasiadjunction and ∆ ∩ Ξk is a face
of quasiadjunction.

If ∆ isn’t contributing (cf. 2.6.2), then the intersection ∆ ∩ Ξk has a
positive volume. If X(n) is the number of points ( i

n
, ..., i

n
) in the latter, it

follows from (3.2.12) that we have b1(C, n) ≥ dimH1(A∆(d−r−2−k))·X(n).
We have X(n) > C · nr for some non zero constant C. Therefore we get
contradiction with Corollary (1.3.3) unless dimH1(A∆(d− r − 2− k)) = 0.

Step 5. End of the proof. Step 4 and the formula (3.2.12) give a) and b)
of the theorem in the case mi ≥ di for i = 1, .., ir.

If χ is a character of Zm1⊕...⊕Zmr acting onH0(Ω1
Ṽm1,...,mr

) = H1,0(Ṽm1,...,mr)

then χ̄ is a character with eigenspace of the same dimension for the action
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of Zm1 ⊕ ... ⊕ Zmr on H0,1(Ṽm1,..,mr). Hence part b) and Sakuma formula
(cf. 1.3.2) imply that a points (.... ij+1

mj
...) belongs to a contributing face of

∆ or its conjugate if and only if (...., exp(2π
√
−1 ij+1

mj
), ...) belongs to i-th

characteristic variety with i = dimH1(A∆(d1+ ...+dr − r−3−k(∆)). Since
a characteristic variety is a translated by a point of finite order subtorus (cf.
1.4.2) this implies c). Now the remaining cases of the formula a) follows from
Sakuma’s result (1.3.2.2).

3.3 Examples.

In 2.6.4 we did describe systems of equations for faces of quasiadjunction
in the case of arrangements of lines. To determine if a set of solutions of
the system corresponding to a face δ actually corresponds to a component of
characteristic variety one should

a) calculate the superabundance (3.1.2) of the corresponding linear system
and

b) decide the “amount of translation” i.e. to normalize the system of
equations so that the g.c.d. of minors of the left hand sides of (2.6.1) will be
equal to one.

In any event, if superabundance is not zero, then clearly the component
of characteristic variety will be a connected component of the subgroup given
by the equations: exp(LP ) = 1 with P running through all vertices singled
out by the face of quasiadjunction.

Example 1. Let us calculate the irregularity of the abelian cover of P2

branched over the arrangement L : uv(u − v)w = 0 and corresponding to
the homomorphism H1(P2 − L) = Z3 → (Z/nZ)3. The only nontrivial ideal
of quasiadjunction is the maximal ideal of the local ring with correspond-
ing polytope of quasiadjunction: x + y + z > 1. Hence the irregularity
of the abelian cover is Card{(i, j)|0 < i < n, 0 < j < n, i

n
+ j

n
+ k

n
=

1} · dimH1(J (3− 3− 1)) where J = KerO → OP where P : u = v = 0. J
has the following Koszul resolution:

0 → O(−2) → O(−1)⊕O(−1) → J → 0

which yields H1(J (−1)) = H2(O(−3)) = C. Now the counting points on
x+ y + z = 1 yields n2−3n+2

2 as the irregularity of the abelian cover.
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Example 2. Let us consider the arrangement formed by the sides of an equi-
lateral triangle (x1, x2, x3) and its medians (x4, x5, x6) arranged so that the
vertices are the intersection points of (x1, x2, x4), (x2, x3, x5) and x3, x1, x6 re-
spectively (Ceva arrangement cf. [BHH]). It has 6 lines, 4 triple and 3 double
points. The polytopes of quasiadjunction are the connected components of
the partition of U = {(x1, .., x6)|0 ≤ xi ≤ 1, i = 1, ...6} by the hyperplanes:

x1+ x2+ x4 = 1, x2+ x3+ x5 = 1, x3+ x1+ x6 = 1, x4+ x5+ x6 = 1 (3.3.1)

The only face of a polytope of quasiadjunction which belongs to a hyperplane
Hk : x1 + x2 + x3 + x4 + x5 + x6 = k, k ∈ Z is formed by set of solutions of
the system of all 4 equations (3.3.1). This face belongs to H2 and is the only
contributing face. Hence the irregularity is equal to N ·dimH1(J (6−3−2))
where N is the number of solutions (3.3.1) of the form xi =

j
n
. To calculate

dimH1(J (6−3−2)) notice that 4 triple points form a complete intersection
of two quadrics. This yields H1(J (1)) = H2(O(−3)) = C.

It follows from (3.3.1) that the only essential torus is a component of
subgroup:

t1t2t4 = 1, t2t3t5 = 1, t1t3t6 = 1, t4t5t6 = 1 (3.3.2)

This subgroup has two connected components:

(u, v, u−1v−1, u−1v−1, u, v), (−u,−v,−u−1v−1, u−1v−1, u, v), u, v ∈ C∗

(3.3.3)
The second component is a translation of the first by (1, 1, 1,−1,−1,−1), a
point of order 2. Since (3.3.1) admits an integral solution image under the
exponential map of the contributing face does contains trivial character and
hence the subgroup in (3.3.3) is the essential torus.

There are also 4 nonessential tori corresponding to each of triple points:

t1t2t3 = 1, ti = 1, i ≠ 1, 2, 3

t5t2t3 = 1, ti = 1, i ≠ 5, 2, 3

t4t6t3 = 1, ti = 1, i ≠ 4, 6, 3

t4t5t6 = 1, ti = 1, i ≠ 4, 5, 6 (3.3.3)

Let us consider the abelian cover of C2 corresponding to the homomorphism
H1(C2−C) → (Z/nZ)6/Z/nZ (embedding of the quotiented subgroup is di-
agonal). Then each of five tori contributes the same number into irregularity
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equal to n2−3n+2
2 , i.e. the irregularity of the abelian cover of CP2 is 5n2−3n+2

2
(e.g., for n = 5 the irregularity is 30, cf. [I]).

Example 3. Let us calculate the characteristic varieties of the union of 9
lines which are dual to nine inflection points on a non singular cubic curve
C ⊂ P2(C). This arrangement in P2∗(C) has 12 triple points corresponding
to 12 lines determined by the pairs of the inflection points of C. One can
view inflection points of C as the points of F2

3 (F3 is the field with 3 elements)
i.e. as the points of the affine part in a projective plane P2(F3). The triple
points of this arrangement then can be viewed as lines in P2(F3) different
from the line at infinity (i.e. the complement to the chosen affine plane). In
dual picture one identifies triple points of this arrangement with points of
the dual plane P2∗(F3) different from a fixed point P corresponding to the
line at infinity. Then the lines of this arrangement in P2∗(C) are identifies
with the lines in P2∗(F3) not passing through the fixed point P .

Each essential component corresponds to a collection of vertices S (cf.
(2.6.4), example 2). The structure of the system of equations (2.6.1) shows
that |S|

k
= r

m
= 3. Hence one has either:

a) |S| = 3, k = 1 or
b) |S| = 6, k = 2 or

c) |S| = 9, k = 3 or

d) |S| = 12, k = 4.

Cases a) and b) will not define non empty tori since in this case r2 > 9|S|
(cf. corollary 4.1).

In the case c) each collection S is determined by one of 4 choices of a line
ℓ through P and consists of 9 points in P2∗(F3) in the complement to the
chosen line. In this case the corresponding homogeneous system has rank 7
i.e. a 2-dimensional space of solutions. Moreover, dimH1(P2∗(C), I(9− 3−
3)) = 1 since the points onP2∗(C) corresponding to 9 points inP2∗(F3) in the
complement to a line p ⊂ P2∗(F3) form a complete intersection of two cubics.
These cubics formed by the unions of triples of lines in P2∗(C) corresponding
to triple of lines in P2∗(F3) passing through a point of ℓ. Indeed, for a given
P1, P2 ∈ ℓ and a point Q on P2∗(F3) outside of ℓ, there are exactly 2 lines in
P2∗(F3) intersecting at this point and passing respectively through P1 and
P2. The same incidence relation is valid on P2∗(C).

In the case d) the homogeneous system has rank 9, i.e. the corresponding
system does not define a torus.
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Non essential tori correspond to subarrangements with number of lines
divisible by m = 3 (cf. 2.6.3). There are 12 triples of lines corresponding to
each of triple points each defining a 2-torus. A collection of 6 lines should
have 4 triple points but the arrangement of this example does not contain
such subarrangements.

Therefore we have 16 2-dimensional tori. In the abelian cover of C2 which
sends each generator of H1(C2 − C) to a generator of Z/nZ contributing
tori are the essential torus of this arrangement and subtori corresponding to
subarrangements formed by triple of lines defined by the triple points. Each
torus contributes (n−1)(n−2)

2 to the Betti number i.e. the total Betti number

of this cover is 16 × (n−1)(n−2)
2 . These tori can be explicitly described as

follows. Defining equations of non essential tori are products of 3 generators
ti’s corresponding to a triple of points in F2

3 belonging to a line with the rest
of ti is 1. Each of essential tori is given by 9 equations titjtk = 1 where (i, j, k)
are the triples of points F2

3 (which interpreted as the lines of the arrangement)
which belong to lines not passing through a fixed point at infinity.

If the point at infinity is (1,−1, 0), then the lines not passing through it
are: x+ z = 0, x− z = 0, x = 0, y = 0, x− y = 0, x− y + z = 0, x− y − z =
0, y + z = 0, y − z = 0 i.e. the corresponding torus satisfies:

t20t21t22 = 1, t10t11t12 = 1, t00t01t02 = 1, t00t10t20 = 1, t00t11t22 = 1,

t01t12t20 = 1, t02t10t21 = 1, t02t12t22 = 1, t01t11t21 = 1 (3.3.4)

where the points of the complement to z = 0 (i.e. the lines in P2∗(C)) are
labeled as:

(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)

The corresponding torus can be parameterized as

t00 = t, t01 = s, t02 = t−1s−1, t10 = s, t11 = t−1s−1, t12 = t,

t20 = t−1s−1, t21 = t, t22 = s.

The equations for other essential tori, corresponding to choices of the
point at infinity as respectively: (1, 1, 0), (1, 0, 0), (0, 1, 0) can be obtained
from (3.3.4) by applying linear transformation to the indices which takes
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(1,−1, 0) to respective point. For (x, y) → (x,−y) which takes (1,−1, 0) to
(1, 1, 0) we obtain:

t20t22t21 = t10t12t11 = t00t02t01 = t00t10t20 = t00t12t21 =

t02t11t20 = t01t10t22 = t01t11t21 = t02t12t21 = 1

For (x, y) → (x, x+ y) which takes (1,−1, 0) to (1, 0, 0) we obtain:

t22t20t21 = t11t12t10 = t00t01t02 = t00t11t22 = t00t12t21 =

t01t10t20 = t02t11t20 = t02t10t21 = t01t12t20 = 1

For (x, y) → (x+ y, y) which takes (1,−1, 0) to (0, 1, 0) we have:

t20t01t12 = t10t21t02 = t00t11t22 = t00t10t20 = t00t21t12

t11t01t20 = t22t10t01 = t22t02t12 = t11t21t01.

Example 4. Let us consider the curve of degree 4 which has one ordinary
point of multiplicity 4. Faces of the polytopes of quasiadjunction are H1 :
x1 + x2 + x3 + x4 = 1 (resp. H2 : x1 + x2 + x3 + x4 = 2). The number of
points ( i1

n
, i2
n
, i3
n
, i4
n
) on H1 (resp. H2) is

(n−1)(n−2)(n−3)
6 (resp. 1

3(n− 1)(2n2 −
4n + 3)). The ideal corresponding to the polytope of quasiadjunction with
the face H1 (resp. H2) is M2 (resp. M the maximal ideal of the local
ring) and the level of the supporting face H1 (resp. H2) is 1 (resp. 2).
Moreover dimH1(P2,JM3−l(4 − 3 − l)) is 2 (resp. 1) for l = 1 (resp. for
l = 2). Hence the irregularity of the cover corresponding to homomorphism
H1(P2 − ∪i=1,2,3,4Li) → Z/nZ is equal to

2× 1

6
(n− 1)(n− 2)(n− 3) +

1

3
(n− 1)(2n2 − 4n+ 3) + 4

1

2
(n− 1)(n− 2) =

(n− 1)(n2 − n− 1). (3.3.5)

This implies that the characteristic variety in this case is just

t1t2t3t4 = 1

The latter contains (n−1)3−(n−1)(n−2) = (n−1)(n2−3n+3) points with
coordinates in µn and the Betti number of the branched cover from Sakuma’s
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formula is equal to 2(n−1)(n2−3n+3)+4(n−1)(n−2) = 2(n−1)(n2−n−1).

Example 5. Let us consider the arrangement formed by 12 lines which com-
pose 4 degenerate fibers in a Hesse pencil of cubics formed by a non singular
cubic curve and its Hessian. For example one can take the following pencil:

x3 + y3 + z3 − 3λxyz = 0

This arrangement has 9 points of multiplicity 4 (inflection points of non
singular cubic). In C∗12 there are 10 tori of dimension 3 which are defined
by 9 quadruples of lines corresponding to 9 quadruple points and one 3-
torus corresponding to the whole configuration. Contribution into the first
Betti number an abelian cover also comes from 94 tori of dimension 2: 2-tori
corresponding to triples of lines forming each of 9 quadruple points (total 36
2-tori), 2-tori corresponding to configurations of 9 lines formed by triples of
4 special fibers of the pencil (total 4 2-tori) and 54 2-tori corresponding to
configurations of 6 lines passing through 4 inflection points no three of which
belong to a line (since the choice of 4 points must be made among points
of affine space over F3 the ordered collection can be made in 9 × 8 × 6 × 3
way and 54 = 9 · 8 · 6 · 3/24). In particular, the irregularity of the cover with
the Galois group (Z/3Z)2 is equal to 154 (cf. [I]). Indeed the contribution
of each 2-torus into the first Betti number is 2 and in the case of 3-tori the
contribution is 6, since the 3-torus contains 6 points with coordinates i

3 . Since
the depth of 3-tori is 2 the first Betti number is equal to 6× 10× 2+ 94× 2.

4 The structure of characteristic varieties of
algebraic curves.

In this section we describe sufficient conditions for the vanishing of cohomol-
ogy of linear systems which appear in description of characteristic varieties
given in section 3. This, therefore, yields conditions for absence of essential
components. In the cyclic case one obtains triviality of Alexander polyno-
mial.
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4.1 Absence of characteristic varieties for curves with
small number of singularities.

4.1.1

Theorem 4.1.1 Let C be a plane curve as above. Suppose that ρ : Y → P2

is obtained by a sequence of blow ups such that the proper preimage C̃ of C in
Y has only normal intersection with the exceptional set and satisfies C̃2 > 0.
Then C has no essential characteristic subvarieties.

Corollary 4.1.2 1. Let C be an irreducible curve which has ordinary cusps
and nodes as the only singularities. If the number of cusps is less than d2

6
then the Alexander polynomial of C is equal to 1.

2. Let H be an arrangement consisting of d lines and which has N points
of multiplicity m. Let l(δ) be the level of a face of quasiadjunction for the
complement to H. If d2 > m2N then the superabundance is zero for the
system of curves of degree d − 3 − l(δ) which local equations belong to the
ideal of quasiadjunction corresponding to δ at the points of multiplicity m.

Remark. One can compare corollary 1 with Nori’s results (cf. [N]). The
latter yields that the fundamental group of the complement to a curve of
degree d with δ nodes and κ cusps is abelian if d2 > 6κ+ 2δ while a weaker
inequality d2 > 6κ yields the triviality of the Alexander polynomial. For
example, for the branching curve of a generic projection of a smooth surface
of degree N in P3 one has d2 > 6κ for N > 4 but d2 < 6κ + 2δ for N > 2.
The fundamental groups of these curves are non abelian for N > 2 and the
Alexander polynomial for N = 3, 4 is equal to t2 − t+ 1 (cf. [L2]).

Proof of the theorem. We should show that for any contributing face of
quasiadjunction δ we have dimH1(P2,Aδ(Σdi−3− l(δ))) = 0. If ρ : Y → P2

is a blow up of P2, satisfying conditions of the theorem, then we have:

Aδ(Σidi − 3− l(δ)) = ρ∗(ωY ⊗OY (γC̃)⊗OY (ΣϵkEk)) (4.1.1)

for some rational γ > 0 and 0 ≤ ϵ < 1. More precisely, γ = 1
Σidi

· Σidi(1 −
ji+1
mi

) for some choice of (..., ji+1
mi

, ...) belonging to the face δ (with ϵk a priori
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depending on this choice). Indeed, from (2.3.6) and the discussion after, the
multiplicity fk(φ) along an exceptional curve Ek of the pull back on Y of
a germ in the ideal of quasiadjunction with parameters (j1, .., jr|m1, ..., mr)
such that ( j1+1

m1
, ..., jr+1

mr
) ∈ δ satisfies:

fk(φ) ≥ [Σiak,i(1−
ji + 1

mi

)− ck] (4.1.1.1)

Hence

Aδ = ρ∗(⊗kOY ((ck − [Σiak,i − ak,i(
ji + 1

mi

)])Ek)) (4.1.1.2)

We have: l(δ) = Σidi
ji+1
mi

and OP2(Ci) = OP2(di). Therefore

Aδ(Σidi − 3− l(δ)) =

ρ∗(⊗kOY ((ck− [Σiak,i−ak,i(
ji + 1

mi

)])Ek))⊗OP2(−3)⊗OP2(ΣiCi(1−
ji + 1

mi

))

(4.1.1.3)
Since

ωY = ⊗kOY (ckEk)⊗ ρ∗(OP2(−3))

and

⊗kOY (ak,i(1−
ji + 1

mi

)Ek)⊗O(C̃)
di
Σdi = ρ∗(OP2(Ci(1−

ji + 1

mi

))) (4.1.1.4)

(because OP2(Ci) = OP2(1)di = OP2(C)
di

Σidi ), we see that (4.1.1.3) yields
(4.1.1) with ϵk = {Σiak,i(1− ji+1

mi
)} where {x} = x− [x] is the fractional part.

The Kawamata-Viehweg vanishing theorem (cf. for example [Ko]) implies
that the cohomology of the sheaf ωY ⊗ OY (γC̃) ⊗ OY (ΣϵkEk) is trivial in
positive dimensions if C̃ is big and nef. But this follows from the assumptions
of the theorem. Finally, the exact sequence 0 → E1,0

2 → H1(Y,F) of lower
degree terms in the Leray spectral sequence Hp(P2, Rqρ∗F) ⇒ Hp+q(Y,F)
for the sheaf F = ωY ⊗ OY (γC̃) ⊗ OY (ΣϵkEk) yields H1(P2,Aδ(Σidi − 3 −
l(δ))) = 0.

Proof of the Corollary. For each blow up at an ordinary point of multi-
plicity m of a curve C we have C̃2 = C2−m2 where C̃ is the proper preimage
of C. Hence O(H̃) is big if d2 > m2N . The case of ordinary cusps is similar.
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4.1.2 Dimensions of components of characteristic varieties.

This theorem imposes restrictions on the dimensions of the contributing faces
and hence on the dimensions of characteristic varieties. For example, let us
consider an arrangement of lines with at most triple points as singularities.
Then each contributing face is the intersection of hyperplanes defining the
only local polytope of an ordinary triple point. These hyperplanes are given
by the equations of the form xi + xj + xk = 1 where (i, j, k) are the indices
corresponding to the lines through the triple point. The matrix of this system
therefore has the property that in each row only 3 non zero entries are equal
to 1, any two rows have at most one non zero entry in the same column and
the number of rows is at least d2

9 (since by the corollary only in this case one
can get a contributing face with H1 ≠ 0). In particular, the number of non
zero entries in the matrix is at least d2

3 . The rank of this system is at least d
3 .

Indeed, the matrix contains a column with at least d
3 1’s. On the other hand,

if a column s contains k non zero entries in rows v1, .., vk, then these rows
are linearly independent since the left hand side of a relation Σλivi = 0 has
λi as the entry of the column different from the s-th and in which vi has a
non zero entry. In particular in the arrangement of d lines, the dimension of
characteristic variety is at most 2d

3 . For the components containing a trivial
character, the dimension is at most 2, since by [Ar] such component induces
the map onto P1 minus three point such that pull backs of rank one local
systems from the latter form the component (cf. footnote in section 1 and
[LY]).

Problem. Let m be the maximal number of components which meet at a
singular point of C. Is it true that the dimension of each component of the
characteristic variety of C is at most m− 1?

4.2 Translations of the tori forming characteristic va-
rieties and the degrees of irreducible components
of C

Theorem 4.2.1 Let aδ be g.c.d. of non zero minors of maximal order in a
system of equations with integer coefficients which set of solutions contains
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a face of quasiadjunction δ with the dimension of the set of solutions equal
to dimδ. Let di = degCi.
a) Each irreducible essential component of CharC, belongs to a coset of a
subtorus of Hom(H1(C2 − C),C∗) of order dividing aδ. In particular each
irreducible essential component belongs to a coset of order equal to the order
of the face (cf. 2.4.2 and 2.6.2).
b) Each essential component belongs to a codimension one subtorus of Hom(H1(C2−
C),C∗) translated by a point of the order dividing ϱ = g.c.d.(d1, ..., dr).

Proof. Any component of a characteristic variety is a Zariski closure of the
image under the exponential map of a contributing face δ with the equation
d1x1 + ... + drxr = l(δ). This yields b) (it also follows from Cor.3.3 from
[L3]).

It follows from theorem 3.1 c) that irreducible essential component is a
connected component of the subgroup of Hom(H1(C2 − C),C∗) belongs to a
subgroup

χ1 = ... = χr = 1 (4.2.1.1)

where χi is the character of Hom(H1(C2 − C),C∗) having form exp(Li)
where Li is the form with integer coefficients such that Li = li, li ∈ Z
are the equations defining the face of quasiadjunction. The order of the
group of cosets of the group (4.2.1.1) by its connected component of iden-
tity is the order of the torsion of its group of characters. The latter is
Char(Hom(H1(C2 − C),C∗))/(χ1, ...χr). This yields a).

4.2.2 Linear systems corresponding to different faces of quasiad-
junction.

Another byproduct of results in section 3 is equality of superabundances of
linear systems of curves defined by rather different local conditions.

Proposition 4.2.2 a) Let δ and δ′ be two faces of global polytopes quasiad-
junction such that the Zariski closures of exp(δ) and exp(δ′) coincide. Then
if δ is a contributing face then δ′ is also contributing and H1(Aδ(d−3−l(δ)) =
H1(Aδ′(d− 3− l(δ′)).
b) Let α ∈ Q is such that α · g.c.d(d1, ..., dr) is the level of a face of quasiad-
junction δ and σ ∈ Gal(Q(exp(2πiα))/Q) such that σ(exp(2πiα)) = exp(2πiβ)
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with 0 < β < 1. Then β is equal to l(δ′)
g.c.d(d1,..,dr)

for some face of quasiadjunc-

tion δ′ and H1(Aδ(Σidi − 3− l(δ))) = H1(Aδ′(d− 3− l(δ′))).

Proof. a) Since Zariski closures of exp(δ) and exp(δ′) are the same the
corresponding to δ and δ′ components of the characteristic variety are the
same. If the depth of this component of characteristic variety is i, then the
dimension of each of the cohomology group in the statement equals to i and
the result follows.
b) Since i-th characteristic variety is defined over Z the Galois groupGal(Q̄/Q)
acts on the set of its irreducible components. Since irreducible compo-
nent corresponding to δ is a translation by exp(2π

√
−1α) of a subgroup

of H1(C2 − C,C∗) defined over Z, it follows that σ takes the component
corresponding to δ into translation of the same subgroup by exp(2π

√
−1β).

This translation is a Zariski closure of exp(2π
√
−1δ′) for some face δ′. It

does satisfy the conclusions of b).

4.2.3 Remarks.

1. For irreducible curves the order of each face of quasiadjunction is a root
of a local Alexander polynomial. So the divisibility theorem from [L1] is a
special case of 4.2.1.
2. One of the consequences of 4.2.1 is a non trivial restriction on an abstract
group which is necessary to satisfy in order that the group can be realized as
the fundamental group of an arrangement. For example t1 · · · tr = −1 cannot
be a component of characteristic variety of arrangement of r lines since it is
cannot belong to an intersection of subgroups of C∗r.
3. As an illustration to 4.2.2b), let us consider an irreducible curve of degree
d with singularities locally isomorphic to singularity x2 = y5. If the linear
system consisting of curves of degree d− 3− d

10 with local equations belong-
ing to ideals of quasiadjunction of all singular points corresponding to the
constant of quasiadjunction 1

10 is superabundant, then the linear system of
curves of degree d− 3− 3d

10 with local equations in the ideals of quasiadjunc-
tion corresponding to 3

10 is also superabundant and the superabundances are
equal.

4. An example of faces of quasiadjunction with the same Zariski closure
of the images of the exponential map as in a) of the proposition is given
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by x1 + ...xm = i, x1 + .. + xm = j, 0 < i, j ≤ m − 2 which are the faces
of quasiadjunction for the complement to m lines through a point (cf. 2.5
example 3).

5 Resonance conditions for rank one local sys-
tems on complements to line arrangements.

5.1 Complexes associated with arrangements.

Let L = ∪i=1,...,rLi be an arrangement of lines in C2. We shall assume for
convenience (cf. (1.2.3)) that the line at infinity is transversal to all lines in
L. Let li(x, y) = 0 be the equation of Li and ηi =

1
2πi

dli
li
. Let Ai(i = 0, 1, 2)

be the subspace generated by the forms ηj1 ∧ ...∧ηji in the space H0(Ωi(∗L))
of meromorphic forms with poles along L. Let

ω = Σηi · si, si ∈ C (5.1.1)

The exterior product with ω defines the complex:

A•
ω : 0 → A0 → A1 → A2 → 0 (5.1.2)

If si = 0, (i = 1, ..., r), then the cohomology groups of A• are isomorphic to
the cohomology groups ofC2−L (cf. [Br]). On the other hand, the collection
s∗ = (s1, ..., sr) defines the map π1(C2 − L) → C∗ which sends γi (cf. (1.1))
to exp(2π

√
−1si) and hence the local system which we shall denote As∗ . A

theorem from [ESV] (p.558), in the case of line arrangements, asserts that

H i(As∗) = H i(A•
ω) (5.1.3)

provided the following non resonance condition is satisfied. For any point
singular point P of L of multiplicity m > 2, if the lines through P are
li1 , ..., lim, then

si1 + ... + sim ≠ n ∈ N− 0 (5.1.4)

Theorem 5.1.1 The isomorphism (5.1.3) takes place, provided

(exp(2πis1), ..., exp(2πisr)) (5.1.5)

does not belong to the characteristic variety Char1 of C2 − L.
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5.2 Remarks.

1. It is easy to construct examples of local systems for which (5.1.4) is
violated but for which (1.5.3) takes place. Indeed, the image under the
exponential map onto the torus C∗r of those (s1, ..., sr) which violate (5.1.4)
is a union of codimension 1 tori in C∗r. On the other hand, the characteristic
varieties typically have rather small dimension relative to r (cf. (3.3) and
(4.1)).
2. For arrangements of arbitrary dimension in Cn (with li denoting the
equations of hyperplanes of the arrangement, rather than lines) we have

H1(A•(L),ω) = 0, (5.2.1)

provided condition (5.1.5) of the theorem is met. Indeed, for a generic plane
H ⊂ Cn the map Ai(L) → Ai(L ∩ H) induced by inclusion is isomorphism
for i = 0, 1 and injective for i = 2. The latter follows from the Lefschetz
theorem since Ai(L) = H i(Cn − L) by [Br]. This yields the isomorphism
of cohomology of the complexes A• for L and L ∩ H and hence (5.2.1).
Therefore the theorem from (5.1) (and also from (5.4)) holds for arbitrary
arrangements.

5.3 Proof

We will derive this theorem from the following:
a)H0(A•

ω) = H1(A•
ω) = 0

b)The euler characteristics of both A•
ω and As∗ are equal to e(C2 − L).

To show b) note that the euler characteristic of A• is e(C2 − L) by [Br] and
for H i(As∗) this can be seen by looking at the cochain complex of As∗, i.e.
(here χs∗ is the character of the fundamental group defining the local system
A)

C i(( ˜C2 − L)⊗χs∗
C) = Cbi ⊗C[H1(C

2 − L)]⊗χs∗
C (5.3.1)

since the multiplicity of a representation in the regular representation of an
abelian group is 1.

On the other hand a) follows since dimH1(A•,ω) ≤ dimH1(As∗) (cf.
[LY]) and the latter group is trivial if (5.1.5) is satisfied.

Now the theorem 5.1 is a consequence of a),b) and (1.4.1.1).
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5.4 Complexes (5.1.2) with non vanishing cohomology.

Complexes A• for a fixed arrangement L are parameterized by the space
H0(P2,Ω1(log(L ∪ L∞)) = H1(C2 − L,C). Let

Vi = {ω ∈ H0(P2,Ω1(log(L ∪ L∞)))|H1(A•,ω) ≥ i} (5.4.1)

Theorem 5.4.1 Vi is a union of linear space of dimension i + 1. There is
the one to one correspondence between these linear spaces and irreducible
components of the characteristic variety Vi containing the trivial charac-
ter which have a positive dimension. For such an irreducible component
of Vi the map which assigns to a form ω the point (..., exp(2πiResLi

ω), ...)
in H1(π1(C2−L),C∗) (using identification (1.4.1)) is the universal cover of
the corresponding component of Vi.

Proof. If dimH1(A•,ω) > 0, i.e. there exist linearly independent with ω
form η such that η ∧ ω = 0, then for any form ω′ in the space spanned
by ω and η one has dimH1(A•,ω′) > 0. Let V be an irreducible compo-
nent of Vi in (5.4.1) containing ω and having dimension k ≥ 2. For the
local system Lω′ corresponding to each ω′ ∈ V we have dimH1(Lω′) > 0.
Indeed we can assume that ω′ is generic since this only decrease H1(Lω′)
(cf. [LY]). On the other hand for generic ω′, according to [ESV], we have
dimH1(A•,ω′) = dimH1(Lω′). Therefore Lω belongs to an irreducible com-
ponent, say V , of the characteristic variety of C2 −L. Since the exponential
map is a local homemorphism this component has the dimension equal to at
least k. In fact the dimension of this component is exactly k. Assume to the
contrary that this dimension is l > k and let f : C2−L → P1−∪i=k+1

i=1 pi be the
map on a curve of general type (cf. (1.4.2) and [Ar], Prop. 1.7) correspond-
ing to the component V . Then the pull back of form H0(P1,Ω1(log(∪pi)))
gives l-dimensional space of forms on C2 − L for which the wedge with ω
is zero (note that the map f ∗ is injective on H1) and we have a contradic-
tion. Let t

a1,j
1 ...t

ar,j
r = 1(j = 1, ...s) be the equations defining V (cf. 4.2).

Then ω belongs to the union of affine subspaces of H0(P2,Ω1(log(L ∪ L∞))
given by Qj = Σai,jxi = nj , nj ∈ Z, j = 1, ..., s. Since dimH1(A•,λω) =
dimH1(A•,ω),λ ∈ C∗ we see that nj = 0 for any j. Hence V is a linear
space of dimension k (and i = dimH1(A•,ω) = dimH1(Lω) = k − 1).
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5.5 Combinatorial calculation of characteristic vari-
eties.

A consequence of the theorem 5.4 is that the irreducible components of the
characteristic varieties containing the identity element of H1(C2 − L,C∗)
are determined by the cohomology of the complex (5.1.2). H1(A•,ω) is the
quotient of {η ∈ A1|η ∧ ω = 0} by the subspace spanned by ω and can be
calculated as follows.

It is easy to see that a 2-form is cohomologous to zero iff its integrals
over all 2-cycles belonging to small balls about the multiple points of the
arrangement are zeros. The group of such 2-cycles near a point which is
the intersection of the lines li1, ..., lim are generated by γij × (γi1 + .... + γim).
If (ΣAiηi) ∧ ω is cohomologous to zero in Ω2(C2 − L) then vanishing of∫
Ajηj ∧ siηi over those 2-cycles yields:

Aj(Σsi)− (ΣAj)sj = 0 (5.5.1)

Therefore we obtain
Aj = Cυsj(ifΣυ∈ljsj ≠ 0) (5.5.2)

ΣAj = 0(ifΣυ∈ljsj = 0) (5.5.3)

for vertices υ of the arrangements. If we are looking for essential components
of the characteristic variety (which we always can assume) then si ≠ 0 and
condition (5.5.2) can be replaced by

Aj

sj
=

Aj′

sj′
if Συ∈ljsj ≠ 0 (5.5.4)

Now for each subset of the set of vertices such that the system of equa-
tion (5.5.3) and supplementing it by equations (5.5.4) for vertices outside
of selected subset has a solution non proportional to (s1, .., sr) we obtain a
component V and hence corresponding component of the characteristic va-
riety. We leave as an exercise to the reader to work out calculations of the
characteristic varieties for the examples from section 3 using this method.
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