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A B S T R A C T  

Let V C PR n be an algebraic variety, such that its complexification Vc C 
pn is irreducible of codimension m > 1. We use a sut~icient condition 
on a linear space L C PR n of dimension m + 2r to have a nonempty 
intersection with V, to show that any six dimensional subspace of 5 × 5 
real symmetric matrices contains a nonzero matrix of rank at most 3. 

1. I n t r o d u c t i o n  

Let p ( x )  -- x k + a l x  k-1  + . . .  + ak C ]R[x]. T h e n  the odd degree theorem states 
tha t  p ( x )  has a real root if k is odd. Let PR n and P~: -- PC ~ be the real 
and the complex projective space of d imension n, respectively. For F = IR, C we 
view a linear space L C pli~ of d imension m as an element of the Gras smann ian  
manifold G r ( m  + 1, n + 1, F). Let V C PR n be an algebraic variety, such tha t  
its complexification Vc C pn is irreducible and has codimension m _> 1. If d -- 
deg Vc is odd then  for any linear space L C PR n of d imension m the intersection 
V N L ~ 0. Indeed, we have B ( V )  = V ,  where B: p a _+ p,~ is the involut ion 
z ~+ 5. For generic L, the set Vc n Lc consists of exactly d points.  As this set is 
invariant  under  the involut ion B, we deduce tha t  there exists z G t ~  A L c  such 
tha t  B ( z )  = z ~ z E PR ~. The cont inui ty  a rgument  yields tha t  V N L ~ 0 for 
any L E G r ( m +  1 , n +  1,R). 

Consider now the case when d is even. Then  it is not  difficult to find nontr iv ia l  
examples where V N L I = 0 for some L ~ C G r ( m  + 1, n + 1, R). We are interested 
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in this paper in cases when V is a determinantal variety, i.e., finding nonzero real 
matrices of rank at nmst k in linear families. The examples such that for any 
integer k e [0, p) there exists L' e Gr(m + k 4- 1, n + 1, R) satisfying V N L' = O, 
while V N L % 0 for any L E Gr(m + p + 1, n + 1,R), can be found among 
determinantal varieties (see §2). 

Let Sn (F) be the space of n x n symmetric matrices with entries in F = JR, C. 
Let Vk,~ (F) be the variety of all matrices in S~ (F) of rank k or less. Then the 
projectivization PVk,~ (F) is an irreducible variety of codimension ( ' - 2  k+l) in the 
projective space PSn (F). Note that Vk-Ln(F) is the variety of the singular points 
of Vk,n(F) (e.g., [3, II]). Let d(n, k,F) be the smallest integer C such that every 
dimensional subspace of S~ (F) contains a nonzero matrix whose rank is at m o s t  
k. Then 

(1.1) d(n,k,C) = ( n - k  + l )  2 4-1, 

and the problem is to determine d(n, k, R). The degree of PVk,n (C) was computed 
by Harris and Tu in [9], 

(1 .2)  5k,n: = deg]~Vk, n(C)  = . 

It was shown in [5] that ~n--q,n is odd if 

(1.3) n -- +q(mod 2 [l°g~ 2q~ ). 

Then d(n, n - q, R) = d(n, n - q, C) for these values of n and q. It is conjectured 
in [5] that if (f~_q,~ is odd then (1.3) holds. 

In this paper we show that  not only the degree of complexification but also the 
Euler characteristic of the intersection of PVk,~ (C) with a generic linear space of 
dimension ("-2k+1) +2r  can be used to get additional information about d(n, k, R). 
Our estimate of d(n, k, R) from above uses the following result proved in §2. 

COROLLARY 1.1: Let V C FR n be all algebraic variety such that its ComplexlY- 
cation Vc C ?n is an irreducible variety of codimension m. Assume that deg Vc is 
even and let r be a positive integer. Suppose that the codimension of the variety 
of the singular points of Vc in Vc is at least 2r + 1. Suppose furthermore that 
for a generic L E Gr(m 4- 2r 4- 1,n 4- 1,C) the Euler characteristic of Vc N L is 
odd. Then V N L ~ 0 for any L C Gr(m 4- 2r 4- 1, n 4- 1, R). 

This corollary applies whenever one has an answer to the following problem: 
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PROBLEM 1.1: A s s u m e  that  5k,n is even. Find an integer r > 1, preferably the 
smallest  possible, such that 

(1.4) 2'r< ( n - k + 2 ) - ( n - k + l )  
2 2 ' 

and tile Euler  characteristic o f  P k ~ , n ( C ) R  L is odd for a generic 
L e Or((n-2 k+')  + 2r + 1,{  n+l~ C) 

t 2 / ~  ' 

For k = n - 1 there is no r which satisfies the conditions of  Problem 1.1, 
hence Corollaryl .1 is not  applicable. This follows from the result tha t  the Euler 
characteristic of a smooth  hypersurface of an even degree is even. Let k = n - 2. 
The smallest n of interest is n = 5 [5]. In §6 we show tha t  the minimal solution 
to Problem 1.1 is r = 1. Hence d(5, 3, R) _< 6. Numerical  evidence supports  the 
conjecture tha t  d(5, 3, R) = 6 [5]. 

The contents of the paper are as follows. In §2 we give a generalization 
of the odd degree theorem. It  is a s traightforward consequence of the Lef- 
schetz fixed point theorem, the Hodge decomposit ion and the Poincar~ dual- 
ity. We also recall the exact value of the gap d(n, n - 1, ~) - d(n, n - 1, C). 
In §3, we recall some known results about  the projectivized complex bundles 
and the corresponding Chern classes of their tangent  bundles. Next, we dis- 
cuss a resolution of  the singularities of 1/~.,~,(C) and PVk,~(C). Let r , ~  --+ 
G r ( k , n , C )  be the tautological k-bundle and its quotient bundle respectively. 
Then  Sym 2 r, Sym 2 ~ are resolutions of ~ , ,  (C), g~-k,n (C) respectively. The pro- 
jectivized bundle l?(Sym 2 r) ,  P (Sym 2 t~) are resolutions of I?Vk,n (C), Plea-k,,, (C) 
respectively. In §4 we discuss P(Sym 9 r)  for k = 1. In §5 we discuss IP'(Sym 2 r) 
tbr k = 2 and most ly  for n = 4. In §6 we discuss P (Sym 2n) for k = 2, n = 5 
modulo 2. 

2. General izat ions  of the  odd degree theorem 

LEMMA 2.1 : Let W C P]R" be an algebraic variety such that  its complexif ication 
W e  C ]?" is a smooth  irreducible variety o f  (complex)  dimension m >_ 1. Then 
for any  nonnegative integer r 

t race(B*[H2r+l (Wc,  R)) = 0, 

(2.1) trace(B* [g2r (Wc,  R)) = trace(B* IHr ' " (Wc))  

= ( -  1) m trace(B* IH m-~'''-'(wc)), 
where B is conjugation in pn. 
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Proo~ Since B*(HP'q(Wc)) = Hq,P(Wc)  we have, for p # q, 

trace( B*lHP'q(Wc) ~ Hq'P(Wc) ) = O. 

The Hodge decomposition of Hk(Wc,  R) yields the claim, since B* reverses the 
orientation of We if m is odd and preserves the orientation of We if m is even. 
| 

COROLLARY 2.1: Let the assumptions of Lemma 2.1 hold. Then the Lefschetz 
number A(Wc) of B: Wc -+ Wc is given by 

A(Wc) = O, i f  m is odd, 
( m - 2 ) / 2  

(2.2) A(Wc) = trace(B*lH'~(Wc)) + 2 ~ trace(B'l i l le '(We)) E Z, 
r=0  

if  m is even. 

IfA(Wc) ¢ 0 then W n ?N n ¢ O. 

Proo~ This is a consequence of the last lemma and the Lefschetz fixed point 
theorem. I 

COROLLARY 2.2: Let W be as in Lemma 2.1. Suppose that m is even and 
bm(Wc) (equivMently the Euler characteristic x(Wc))  is odd. Then W A P R  n # O. 

Proo~ Since the eigenvalues of B*IHm(Wc)  are +1 we have that bm(Wc) = 
A(Wc) mod 2. I 

THEOREM 2.1: Let V C PR n be an algebraic variety such that its complexifi- 
cation Vc C F n is an irreducible variety of codimension m. Suppose that the 
codimension of the variety of the singular points of Vc in Vc is at least k. Then 
for a generic L E Gr(m + k, n + 1, R) A(Vc n Lc) is equal to zero if  k is even 
and is equal to bk-l(Vc n Lc) rood2 i f k  is odd. In particular, i f k  = 2r + 1 and 
b2r(Vc n Lc) is odd, or more generally A(Vc n Lc) ¢ 0, then V n L ¢ 0 for any 
L C G r ( m +  2 r +  1 , n +  1, R). 

Proof: For k = 1, Vc N Lc consists of deg Vc distinct points for a generic L and 
the theorem follows. Assume that k > 1. Let W = V N L, Wc = I/~ n Lc. The 
assumptions of the theorem yield that for a generic L, Wc is a smooth irreducible 
variety. Hence A(B]Wc) is given by Corollary 2.1. Other claims of the theorem 
follow from Corollaries 2.1 and 2.2. I 
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Clearly, Corol lary 1.1 follows f rom Theorem 2.1. The  values of d(n, n - 1, R) 
were computed  by Adams,  Lax and Phillips in [2] using the work of Adams  [1] on 
the max ima l  number  of linearly independent  vector  fields on the n -  1 dimensional  
sphere S n-1. Write n = (2a + 1)2 c+4~, where a and d are nonnegat ive integers, 
and c E {0, 1, 2, 3}. Then  p(n) = 2 c + 8d is the Radon  Hurwi tz  number .  Let 
p(x) = 0 if x is not a posit ive integer. 

Then  
- 1 ,  = + 2 .  

Let 

(2.3) p: = d(n, n - 1, R) - d(n, n - 1, C) = p(n/2).  

Note tha t  either p is even or p = 1. Assume tha t  n is even. Let  V = ]~Yn_l,n(R). 
Then  Vc = PV~_ 1,~ (C). The  eodimension of the variety of singular points  of Vc in 
Vc is 2. Then  for any k < p there exists a linear space L '  G G r ( 2 + k ,  (n+l) ,  N) such 
tha t  V A L '  = 0. I t  is shown in [2] tha t  V N L  ¢ 0 for any L ~ G r ( 2 + p ,  (2~+t),R)" 

Let us consider d ( n , k , R )  for k = 1. We have FVI,n(C) C ]PSi(C) ~ P ( n ~ l ) - I  

The  variety IPVI,~(C) is biholomorphic  to F ~-1. Indeed, identify I? n-1 with the 
lines in C ~ spanned by the nonzero column vectors x ~ C '~. Then  

(2.4) q: ~n-1 __+ i ~ V l , n ( C ) ,  q(x) = xx  T 

is a b iholomorphism.  
In [6] the linear subspace L0 C PSn(C) (of codimension 1) of matr ices  of trace 

0 was considered. Clearly I?1/~,, (IR) n L0 = 0. Hence [6] 

d ( n ' l ' N ) =  ( n + l )  " 2  

Corol lary 1.1 yields tha t  for any generic complex linear subspace L C PSn(C) of 
codimension m, 1 <_ m _< n - 1 the middle Bet t i  number  of L n PVI,n (C) is even. 
(Since L A Fl/],,, (C) is billolomort)hic to a nonsingular  quadrie this Bet t i  number  
is ei ther 0 or 2 depending on par i ty  of n.) Similarly for n > 1, ?Vj,,, (R) N L0 = 0 
yields tha t  deg PVI,n(C) is even. (This fact follows also fi'om the formula  (1.2).) 

Since for an odd n the middle Bet t i  number  of 1?I~,,~ (C) is 1, we see that. the 
par i ty  of the Euler characterist ic  of smoo th  variety in I?" is independent  of the 
par i ty  of its degree, though a complete  intersection of even degree has an even 
Euler  characterist ic.  
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3. Chern classes for desingularizat ions of  determinantal  varieties 

In this section we shall collect the formulas for the Chern classes of projectiviza- 
tions of certain bundles. The main reference is [7]. We also specify how such 
projectivizations come up as desingularizations of determinantal varieties. 

Let E be an g-bundle over smooth complex manifold M with the Chern classes 
Cl (E) , . . . ,  ce(E). Let ui, i = 1 . . . . .  ¢ be the roots of the Chern polynomial 

c(E, t) = Z cj (E)t  j 
j=O 

of E, i.e., 

(3.2) 

Let 

e 
c(E, t) = H ( 1  + uit). 

i----1 

We have (cf. [4, §4.20]) 

(3.1) c(Sym 2 E, t) = H (1 + ('ui + uj)t).  
l<i<_j<_t 

Let P(E) be the projectivization of E. (As a set it consists of the pairs (x, Iv]), 
where x E M and Iv] is a line in E over x spanned by a nonzero point v C E 
over x.) Let /~ be the tautological line bundle over P(E) (given by the line Iv] 
over the point (x, Iv])). Let E* be the pull back of E to P(E) induced by the 
projection zq: P(E) -+ M. /~ is a subbundle of E* (cf. [7, B.5.5]). 

LEMMA 3.1: Let M be a complex manifold of dimension n. Let E --+ hi  be a 
complex vector bundle vector of rank e >_ 1 and zr: P(E) -+ M be its projec- 
tivization. Let ~2 be the tautological line bundle over P(E), and q = Cl ( E) be its 
first C'hern class (resp., h = - q  is the first Chern class of Ff , which is the dual 
to E). Then the cohomology ring H*(P(E), C) is H*(M, C)[q] together with the 
relation 

qe + E ( _ l ) i c i ( E ) q e - i  = O. 
i = l  

n 

C(TM,t) = E ei(TM)ti' co(TM) = 1 
i=O 

be the Chern polynomial of the tangent bundle of M.  Then the Chern polynomial 
of the tangent bundle of P(E) is given by 

(3.3) c(Tp(E),t) =C(TM, t ) ( j~_oCj (E) tJ (1 -q t )e -J  ) 



Vol. 136, 2003 THE ODD DEGREE THEOREM 359 

Proo~ For the proof  of (3.2) see [10], [8, §4.6, pp. 606] or [4, §4.20]. Oil the other  
hand, for the relative tangent  bundle Tp(E)/M, which fits into exact sequence 

0 -+ Tp(E)IM --+ TF(E) -+ 7r*(TM) -+ O, 

we have 

(3.4) Tp(E)/M = E ~ Q, 

where Q is the universal quotient, bundle: E * / E  (cf. [7, B.5.8]). This  yields (3.3). 
l 

For example, if E is trivial and has rank m then P(E)  = M x pro-1 and (3.3) 
b e c o m e s  

(3.5) c(T~(E)) = c(TM)(1 -- qt) m, qm --_ O. 

In the next  sections the following si tuation will arise: 

LEMMA 3.2: Let M be a complex manifold of dimension n and E -+ fll be a 
trivial complex vector bundle vector of rank m >_ 2. Denote by E~ the dual to 
the tautological bundle E. Let [7 C P(E) be a connected complex submanifold 
of dimension d. Consider hypersm'faces !:Ii i = 1 . . . . .  k in P(E) each being the 
zero set era  generic section of  E' .  Let W = U N~{==k 1 Hi and t be the embedding 
IV in U. Then 

(3.6) c(Tw,  t) = ~*c(Tulw, t){1 - tq) -k ,  

and 

(3.7) \ ( W )  = hdc(Ttr)(1 - tq)-k[U], 

where [[7] is the f~mdamental class of U and h is the restriction on U of the first 
Chern class c1(/) ') .  

Proof: (3.6) is a consequence of the exact, sequence 

k 

i=1 

{3.7) is similar to [10, 9.3]. | 
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Let E --+ M a tr ivial  m-bundle ,  and F --4 M is an e-subbundle of E.  As above 
qE (resp., qF) is the first Chern  class of the tautological  b u n d l e / ~  ( resp . , /~)  on 
P(E)  (resp., F (F ) ) .  Then  P (F )  C P(E) ,  and if t is the embedding then 

(3.8) qF = t* qE. 

We describe now a smoo th  resolutions of Vk,~ (C) and ?Vk, n (C) for 1 < k < 
n - 1. This  construct ion is similar to the one described in [3, II]. We have the 
following exact  sequence of three bundles over Gr(k,  n, C): 

(3.9) O ~ r ~ C n ~ O .  

Here r is the tautological  k-bundle,  C u is the n-tr ivial  bundle and n: = C n / 7  
the n - k quotient  bundle. 

LEMMA 3.3: Let 1 <_ k < n. Then the bundles Sym 2 7 and Sym 2 n are smooth 
resolutions of Vk,,(C) and Vn-k,n(C), respectively. Furthermore, the projec- 
tivized bundles P(Sym 2 v) and P(Sym 2 ~) are smooth resolutions of PVk,n(C ) 
and PV~-k , , (C) ,  respectively. 

Proo£" Viewing A as a linear opera to r  A: C n --+ C a yields the two linear sub- 
spaces: Range A and Ker A of C n, which are the range and kernel of the op- 
era tor  A, respectively. Note tha t  if a • C* then Range A = Range aA and 
Ker  A = Ker  aA. Let 

X:  = Sn(C ) x G r ( k , n , C ) ,  .f~': = PSn(C) × G r ( k , n , C ) ,  

(3.10) 

Y: = { (A,V)  e X:  

]?: = {(A, V) C X:  

z :  = {(B, V) e X: 
2 :  = {(B, V) • 2: 

Range A c V}, 

Range A C V}, 

Kernel B D V}, 

Kernel B D V}. 

Let 7~1: X ~ Sn(C), 7r2: X ~ G r ( k , n , C )  be the project ions on the first and 
second coordinates,  respectively. Clearly 

71-1(r) =- Vk,n(C), 7r2(Y) ---- G r ( k , n , C ) ,  

~ l (Z )  = Vn-k, , (C) ,  ~2(Z) = G r ( k , n , C ) .  

The  m a p  7rl is a resolution. Indeed, it is bira t ional  of degree one since it is 
1 - 1  on 

7r l l ( yk ,n (C) \Yk- l ,n (C) )  C Y a n d  7r l l ( yn_k ,n (C) \Yn -k - l , n (C) )  C Z. 
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A similar situation takes place for ~'1: ~ ---> ~Sn(C) .  
Finally, the fiber of the projection of Y on Gr(k, n, C) over V can be identified 

with the space of symmetric transformations of V which yields the identification 
of Y with Sym 2 T. Similarly, Z can be identified with Sym 2 ~. Hence P(Sym ~ v) 
and P(Sym 2 to) are smooth resolutions of PVk,n (C) and PVn-k,n (C), respectively. 
| 

We review now some known facts about the cohomology of Grassmannians used 
in the rest of the paper. Let c h . . . ,  ck and sl . . . .  ,8n_ k be the Chern classes of 
~- and t~, respectively. Denote by c0-, t), c(~, t) the Chern polynomials 

oo oo 

cO-,t ) = I + E  citi' c ( n , t ) = l + E s j  tj '  
i = 1  j = l  

where c i = sj = 0 for i > k, j > n -  k. Recall that  

(3.11) c(T , t )c (n , t )=  1. 

Then the cohomotogy ring of Gr(k ,n ,C)  has the following representation, 
[7, Ex. 14.6.6] or [4, §4.23], 

(3.12) H*(Gr(k, n, C), C) = C[Cl . . . . .  Ck]/(Bn-k+l . . . . .  8n). 

Here we use the formula 

(3.13) c(t~,t) = 1 + c~t + . . .  + ckt k" 

With the help of these formulas we can compute the Chern classes of 

Sym 2 r, Sym 2 ~ C E 

as polynomials in C l , . . . ,  ck and sl . . . . .  8n_k, respectively. Here 

(3.14) E --+ Gr(k, n, C) is a trivial bundle with the fiber Sn (C) = Sym 2 C ~ . 

Then F(E)  is identified with PSi(C)  × Gr (k ,n ,C) .  Furthermore, q = - h  is the 
first Chern class of the tautological line bundle over P(E).  Thus 

(3.15) H*(PSn(C) × Gr(k, n, C), C) = H*(Gr(k,n,C),C)[q], q(~+l) = O. 

From the proof of Lemma 3.3 it follows that  P(Sym 2 r) ,  P(Sym 2 ~) are sub- 
varieties of F(E),  which can be identified with the smooth subvarieties ]~:, z~ C 
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PSn(C) x Gr(k,n) .  Then on ~', 2 the generator q satisfies the corresponding 
relation 

(3.16) q(k+,) + E (-1)ici(Sym2 v)q(k+~')-i = O, 
i = l  

[n--k-'}-l\ • q("-2+') + E (-1)Jcj(Sym2 g)qt 2 )-3 = O. 
j=l 

To find the Chern classes of the tangent bundles of T?, T 2 we use Lemma 3.1. 
To find the Chern class of the tangent bundle of Gr(k, n, C) recall the following 
identity (cf. [7, §B.6]): 

(3.17) Tar(k,~,C) " ~@ T'. 

Then 

(3.18) 

k k 

c(r ' ,  t) = 1 + E ( - 1 ) i c i ( r ) t  i = H ( 1  + ait) ,  
i----1 i----1 

n - k  n - k  

c(n,t) = 1 + E sJ tj = H (1 + fljt), 
j = l  j = l  

k , n - k  

c ( n ® r ' , t ) =  H ( l + ( a i + f l j ) t ) = l +  
i , j = l  

k ( n - k )  

E vet e. 
e=l  

4. Gr(1, n, C) 

As an illustration of the above formulas, in particular (3.3), let us consider the 
case Gr(1, n, (2) = pn-1. The Chern class of the tautological line bundle r of 
Gr(1, n, (2) is cl. The basic relation is c~ = 0. Note that - c l  is the dual class of 
the hyperplane section. So c(r, t) = 1 + clt. The Chern polynomial of T?,-~ is 
(1 - c,t) n, e.g., [8, §3.3]. Let E = Sym 2 r.  Then 

c(Sym 2 r , t ) = l + w l t ,  w1=2cl.  

Let q = - h  be the first Chern class of the tautological line bundle of P(E)  (cf. 
Lemma 3.1). Then - h  = q = wl = 2cl. The equality (3.3) yields the obvious 
equality 

c(T~v~,~(c)) = (1 - clt)n((1 - tq) + wit) = (1 - clt) n, 
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as FVI,,~(C) ,'~ 1~-1.  We now compute  the degree of PVI,n(C). I t  is equal to the 
self intersection index of the hyperplane section 

h,~-i = (_q),~-i  = (_2c l )n -1  = 2n--l(_c1)n--1. 

Since -Cl  is the class of the hyperplane section in F '~-1 it follows tha t  deg 
PVI,n(C) = 2 '~-t,  which agrees with the formula (1.2). We now compute  the 
Euler characteristic of the intersection of PVI,~ ((2) with a generic linear subspace 
of codinaension k >_ 1. Let [; = F (Sym 2 v). Then  by (3.6) 

c(Tw, t) = (1 - q t ) ' z (1  - 2clt) -a. 

Hence 

C n _ l _ k ( T w )  = ( - -C l )  " - k - 1  

(3.6) yields 

n - l - k  

j=O 

n - l - k  

~(w)  : 2 ~ F_, 
j=O 

( ~ ) ( n _ l - _ k k _ j ) 2  n - l - k - j .  

For k = n - 2, W is a smooth  curve with the Euler characteristic 

~(W) = 2n-2(4 - n). 

5. Gr(2, 4, C) 

We now consider Gr(2, n, C) for n _> 3. Then  

(5.1) 

c(r,  t) = 1 + clt + c2t 2, 
c(T', t) = 1 - clt + c2 t2 = (1 + a l t ) (1  + a2t), 
O~1 + O~2 = --CI~ OqO/2 = C2~ 

oo n--2 

c(~,t) : 1 + ~ 8jt~ = l ]  (1 +/3jt) 
j = l  j = l  

p 
__~~ oli o:P - i  

$P = A...~ 1 2 
i=0 

1 1 
l + c l t + c 2 t  2 ( 1 - a l t ) ( 1 - a 2 t ) '  

p = l ,  . . . .  



364 S. F R I E D L A N D  A N D  A. S. L I B G O B E R  Isr. J .  M a t h .  

A straightforward calculation shows (cf. [10]) 

( 5 . 2 )  8 1 ~- - -51 ,  8 2 = 5 2 - -  e2,  8 3 : - - c  3 --~ 2CLC2, 

s4 = c 4 - 3c~c2 + c~, s5 : -c~ + 4e~c2 - 3elc~. 

Thus 

(5.3) H*(Gr(2, 4, C), C) : C[cl, c2]/(-c~ + 2clc2, c 4 - 3c~c2 + c~), 

H*(Gr(2, 5, C), C) -- C[O, e2]/(e 4 - 3c~c2 + c 2 2, -c~ + 4c~c2 - 3cle~). 

We now compute the four Chern classes Vl, v2, v3, v4 of the tangent bundle of 
Gr(2,4, C) in terms of Cl,C2 using (3.18). Note that the power series corre- 
sponding to terms contributed by only a and/3 respectively correspond to the 
polynomials 

( 1  - c, t  + c2t2) ~ -= 1 - 2clt  + (e~ + 2c2)t 2 - 2clc2t 3 + c~t 4, 

(1 + + s t2) = 1 + 2s i t  + (sT + 28 )t + 2sls t + 

vl = 2 ( - 0  + sl) = -4c l ,  

v2 =e~ + 2c2 4- 85 + 2s2 + 3(al  -~- o~2)(/31 +/32) = 7Cl 2, 

v3 = - 2CLC2 -~- 2sis2 
(5.4) + (0~12 ~- 0~22 + 4o~1oz2)(~1 +/~2) + (0~1 ~- o~2)(~12 + ~22 -~ 4/~1~3) 

= - 6Cl 3 

v4 =c~ + s~ + '~1~2(~1 + ~2)(Zl + Z2) + (~1 + ~2)(Zl + &)91Z2 
-L- (O~12 -~- O~22)/~1/~2 -~- O~10~2 (/~ 2 -~- ]~2) ~_ 20~10~2~1/~2 

=c~ + 4e~ = 3c 4. 

Here we used the two identities in H* (Gr(2, 4, C), C) given in (5.3). This agrees 
with the following well-known computation of the tangent bundle of Gr(2, 4, C). 
Recall the classical result that Gr(2, 4, C) imbeds as a smooth quadric in pS. 
The tangent bundle of p5 is (1 + h) 6, while the normal bundle of the quadric is 
(1 + 2h). Hence the tangent bundle of the quadric is given by (1 + h)6/(1 + 2h). 
SO C 1 : - h .  

We now consider the 3-bundle Sym21 ". Let Wl,W2,W3 be its Chern classes. 
Then 

3 
c(Sym 2 T, t) =1 + E w f  = (1 - 2cqt)(1 - 2a2t)(1 - (ax + a2)t) 

i=1 

(5.5) =(1 + 2clt + 4c2t2)(1 + clt)  = (1 + 3clt  + (2c~ + 4c2)t 2 + 4CLC2 t3. 

Hence 
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Then the cohomology ring of P(Synl 2 w) is H*(Gr(2,4, C)[h] (h = -q )  with the 
relation 

(5.6) h 3 + 3Clh 2 + (2c~ + 4c2)h + 4 q c 2  = h a + 3cah 2 + (2c21 + 4c2)h + 2c a = O. 

U s e  (3.4)  t o  deduce that 

c(Tp(sym 2 T)/C,r(2,4,C), t) = 1 + (3h + 3cl)t + (3h 2 + 3c lh  + 2c~ + 4c2)t 2. 

Hence 

(5.7) c(Tp(sym2 ~)' t) = (1 + (3h + 3 c l ) t + ( 3 h  2 + 3Clh + 2c 2 + 4c2)t 2) 

×(1 - 4cl t  + 7c~t 2 - 6calt 3 + 3c41t4). 

Observe also that any monomial in cl, c2 of total degree greater than 4 is zero, 
since the dimension of Gr(2,4, C) is 4. Consider the intersection of FV2,4(C) 
with a linear subspace of codimension 6. This is equivalent to the class of h 6 in 
P(Sym 2 r). We want to find out the generator of the top cohomology of P(Sym 2 r)  
and the class of h a in terms of this generator. Using the equation (5.6) we can 
express h a as a quadratic polynonfial in q with polynonfial coefficients in cl,  c2: 

~ - -  - -  9 2 tl 3 3Clh 2 (~C x + 4 c 2 ) h -  2c:{, 

h 4 = - 3 c 1 ( - 3 C l  h 2  - (2( .2 -}- 4c2)h - 2c a) - (2c 2 + 4c2)h 2 - 2Cal h 

=(7c2 - 4c,)h + lo  t, + 6c 4, 
h s = ( 7 c 2  - 4 c 2 ) ( - 3 c ~ h  2 - (2c~ + 4c.,.)h - 2c a) + lOcah  " + 6c4h  

: -  5 4 h  - 1 0 c > -  lOd : -5c h mc4h, 

t, ~ = - 5 c ~ ( - 3 c , h  ~ - (2c2 + 4c. , )h - 2c?)  - lOc~It ~ 

=5c~h 2 ~ 2 = lOc~c2h = lOc~h". 

Multiply h 5 by cl, h 4 by c~ and h :~ by ci 3, respectively, to conclude the following 
relations: 

(5.8)  t '  6 = - C l h ,  5 = ( ' l h  4 = 5 c ' ~ h  2 = 10c~c2h 2 = lOc~h, u, cab a = -3c4h 2. 

Recall the result of Harris and Tu [9] that the degree of PI,~,4(C) is 10. Hence 
c~h 2 is the generator in the top cohomology of P(Sym 2 r). (This can be concluded 
directly. ) 

We now compute the Euler characteristic of the smooth curve W, obtained by 
a generic plane section of codimension 5 with PV2,4 (C). Consider the class of h '~ 
times the first Chern class a (the coefficient of t) in the product 

c(Te(sym" T I , O ( 1  + ht )  -~  
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A straightforward calculation shows a = - 2 h  - cl. Hence 

h5a = - 2 h  6 _ hScl = - h  6, 

and ?((W) = -10 .  
We now compute the Euler characteristic of the smooth surface W obtained 

by a generic plane section of codimension 4 with •V2,4(C). Consider the class of 
h 4 times the second Chern class b (the coefficient of t) in the product 

c(T~(sym 2 r), t)(1 + ht) -4. 

A straightforward calculation shows b = h 2 - 5elh - 3c~. Hence 

h4b = h 6 _ 5clh 5 - c~h 4 = 7h 6, 

and x(W) = 70. 

COROLLARY 5.1: A generic linear space of codimension 5 in PS4(C) intersects 
I?V2,4(C) at a smooth  curve o/degree 10 and Euler characteristic -10 .  A generic 

linear space of codimension 4 in ~S 4 (C) intersects PV2,4 (C) at a smooth  surface 

of  degree 10 and Euler characteristic 70. 

Hence we cannot conclude from these results that  any linear subspace L C 
S4(]R) of dimension 6 contains a nonzero matrix of rank 2 at most. In [6] we show 
(using different topological methods) the sharp result that  any linear subspace 
L C $4 (R) of dimension 5 contains a nonzero matrix of rank 2 at most. It  is of 
interest to check if the conjugation map z -+ f., described in the beginning of this 
paper, for L N PV2,4(C), where L c PS4 (C) is a generic linear space of dimension 
5, has a nonzero Lefschetz number. 

6. Gr(2, 5, C) m o d u l o  2 

THEOREM 6.1: Let L C IPS5(C) be a generic linear space o f  dimension 5. Then 
L C] ]~V3,5(C ) is a smooth  surface with an odd Euler characteristic. 

Proof: Let T, h: be the tautological and tile quotient bundles of Gr(2, 5, C). Then 
Sym 2 g --+ Gr(2, 5, C) is the subbundle of the trivial bundle E -+ Gr(2, 5, C) given 
in (3.14). By Lemma 3.3, 

2 = I?(Sym 2 •) C IP(E) = PS5(C) × Gr(2, 5, C) 

is a resolution of I?V3,5(C). Then H*(Z, C) = H*(Gr(2, 5, C), C)[q]), where q sat- 
isfied the second identity of (3.16). Recall that  the tangent bundle of Gr(2, 5, C) 
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is isomorphic to n O T'. The tangent bundle of P(Sym 2 h:) is given by the for- 
mulas (3.3). As the singular points of F~}i,5(C) comprise the variety FI/~,5(C) of 
codimension (4) = 6, it follows that L N FV2,5(C) = O. Hence L N F~,~(C) is a 
smooth surface. It then follows that 

9 

L nlW3,~(C) = 2 n  N / ~ i ,  
k=l  

where Hi, i = 1 . . . . .  9 are 9 linearly independent fiber hyperplanes in general 
position, as in Lenlma 3.2. 

Let b be the coefficient of t 2 in the product 

(6.1) c(t¢ C~ r ' ,  t)c(Tp(sym2 ~)/Gr(2,5,C), t)(1 + ht)  -9 .  

Then Lemma 3.2 yields that 

(6.2) ~(L n Fv3,5(C)) = h%[21. 
Since we are interested in the parity of ,~:(L N PV3,5(C)) we will do all the com- 
putations modulo 2. (That is, our computations are in H*(Z, Z2).) This will 
simplify our computations significantly. 

We first consider H*(Gr(2,5, C),Z2). It is generated by c l , c2  with the two 
simpler relations induced by the second part of (5.3), 

5 = CLC2. (6.3) c 4 + c'~c2 + c~ = O, c 1 

Multiply the first equality by cl and use the second identity to deduce 

(6 .4 )  c~c~ = 0 ~ ~1% = 0. 

Multiply the first equality in (6.3) by c2 and use (6.4). Multiply the second 
equality of (6.3) by cL. Then 

(6 .5)  ,.61 = ~ ~ C1C 2 = C 3. 

Hence the generator of the top cohomology in H* (Gr(2, 5, C), Z2) is any class in 
(6.5). 

Recall (5.1) for ~ = 5. The equalities (5.2) modulo 2 yield 

.~ = ~1, ~2 = ~2 + c~, ~:~ = ~3. 

We now compute the first two Chern classes of ~ Q T', which gives the first two 
Chern classes vl, v.~ of the tangent bundle of Gr(2, 5, C). Observe that the terms 
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in vl, v2, expressed either in terms of a or/3,  are coming from either c(7', t) 3 or 
c(~, t)2: 

c(r ' ,  t) 3 =(1 - clt + c2t2) 3 = 1 - 3clt + 3(c2 + c~)t 2 + higher order terms, 

c(r¢, t) 2 = ( 1  A- s i t  -4- 82t 2 + s3t3) 2 = 1 + 2s l t  + (282 + s21)t 2 

+ higher order terms. 

Using the equalities in (5.2) we obtain 

Vl = - 3Cl + 2sl = -5Cl ,  

v2 =3(c~ + c~) + (2s~ + 821) + 5(~,  + a2)(~l  +/32 +/33) = c2 + c 2. 

The  coefficient 5 in the product  of o2s and /3's is obtained as follows. Consider 
the product  c~1/31. It comes twice from the terms (cq +/31)(Ctl +/3/), i = 2, 3 and 
three times from the terms (cq +/3i)((~2 +/31), i = 1, 2, 3. 

Modulo 2 we get 

(6.6) V l = C l ,  v 2 = c 2 + c l  2. 

We next  compute  the Chern polynomial  of Sym 2 ~ modulo 2. Then  

c ( S y m 2 t ~ ' t ) =  H ( l+( /3 i+ /3 j ) t )=c ( t~ ,2 t )  H ( l+( /3 i+/3 j ) t ) .  
l(_i<j<_3 l<i<j_<3 

Hence modulo 2 

c (Syn l  2 N, t) = H ( 1 +  (/3i + /3 j ) t )  -- 1+ wit  + w2t 2 + w3t 3. 
1(_i<j(_3 

Then  modulo 2 

3 
Wl = 2 E / 3 i  = O, 

i=1 

w2 =(/3~ +/32)(/31 +/33 +/32 +/33) + (/31 +/3z)(/3~ +/33) 
=/3~ +/322 + / ~  + ~2 = 81 ~ - 82 = ~ ,  

w3 = ( 8 1  - ~ ) ( 8 ,  - ~ ) ( 8  - ~,~) = d - 8 , d  + ~.~81 - ~ = ~ .  

Use (3.4) modulo 2 to get 

c(T~,(Sym~ ~)/c,'(2,5), t) =(1 + ht) 6 + c.2t2(1 + ht) 4 + C2Clt3(1 + ht) 3 

=1 + (c2 + h2)t 2 + higher order terms. 
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Then  the coefficient b of t 2 in (6.1) is equal modulo  2 to the coefficient of t 2 in 
the p roduc t  

( 1 +  c, t  + (c2 + c'~)t 2 + ' " ) ( 1 +  (c2 + h2)t 2 + " ' ) ( 1 +  ht + h2t: + . . . )  

=1 + (cl + h)t  + (c~ + Clh)t 2 + . . .  

Hence modulo  2 

(6.7) b = c 2 + clh.  

We now consider the second identi ty of (3.16) for q = - h  modulo  2, 

(6.8) h 6 = c2 h4 + c2clh 3. 

Mult iply  by h, h 2, h a, h 4, h 5 the above equality, use (6.3)-(6.5) and the fact tha t  
any form in cl,  c2 of degree greater  than  6 equals 0, to obta in  

h 7 =c2h 5 + C2Cl h4, 

h s =c2h 6 + C2Clh 5 = c2(c2h 4 + C2Clh 3) + C2Clh 5 

=c2clh 5 + c~h 4 + c~clh 3, 

(6.9) h 9 =c2clb 6 + c2h 5 + C2Cl h4 = C2Cl(C2h 4 -[- C2Clh 3) -]- c2h 5 -1- c~c,h 4 
2 5  2 2 3  =c2h + c2clh , 

2 2,4 C22(C2 h4 + C2Clh3) Jr- C2Clrt = O, hlO =c~h 6 + C2Cl n = 2 2,4 

h 1' =0.  

The  equali ty h u = 0 (rood 2) means tha t  hu [Z]  is an even number .  By Harris  Tu 
this number ,  the degree of PV3,5(C), is equal to 20. We claim tha t  the generator  
of the top cohomology of H*(Z,  Z2) is 

(6.10) c6h 5 = c21c~h 5 = c3h 5. 

First ,  consider all the monomials  in h, Cl, c2 of degree 6 in h and to ta l  degree 11, 

6, c%h6= 0, c 4h 6 

We used here (6.4). Mult iply (6.8) by c~ and ClC~ respect ively to deduce 

c~h, 6 = c3c2h 6 = ClC'~h 6 -- O. 

Second, consider all the monomia ls  in h, cl,  c2 of degree 7 in h and to ta l  degree 
11, 

c4h 4h 
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Multiply h 7 in (6.9) by an appropriate monomial of cl, c2 to get 

7 = o, e c2h = cle  2 2 .5 ,  = c h5 

Isr. J. Math .  

Hence all the nonzero terms are equal to the terms in (6.10). Third, consider all 
the monomial in h, cl, c2 of degree 8 in h and total  degree 11, 

c3h 8, clc2 hS. 

Multiply h S in (6.9) by an appropriate monomial of cl, c2 to get 

c3h S O, clc2h s 2 2,5 = ClC2gt . 

Thus the nonzero term is equal to the terms in (6.10). Fourth, consider all the 
monomials in h, cl, c2 of degree 9 in h and total degree 11, 

c~h 9, c2h 9. 

Multiply h s in (6.9) by an appropriate monomial of c 2 and c2 to get 

C21 h9 = c2c2h512 , C2 h9 = c3h5. 

Hence all the terms are equal to the terms in (6.10). As h 1° = 0 we deduce that  
c2h 9 is the generator of the top cohomology in H*(Z, Z2). Clearly, rood 2 

h9b = c21 h9 + clh TM _-- c2h 9. 

Hence ~((L N PV3,5(C)) is odd. | 

COROLLARY 6.1: d(5,3, R) _< 6. That  is, every six dimensional real subspace 
L r C $5(~) contains a nonzero matr ix  of rank 3 or less. 

In [5] the authors give an example of five dimensional subspace L1 C S5(R), 
for which numerical evidence suggests that  every nonzero matrix is of rank 4 at  
least. Hence the above Corollary suggests that  d(5, 3, R) = 6. 
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