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McKay correspondence for elliptic genera

By Lev Borisov and Anatoly Libgober*

Abstract

We establish a correspondence between orbifold and singular elliptic gen-
era of a global quotient. While the former is defined in terms of the fixed point
set of the action, the latter is defined in terms of the resolution of singularities.
As a byproduct, the second quantization formula of Dijkgraaf, Moore, Verlinde
and Verlinde is extended to arbitrary Kawamata log-terminal pairs.

1. Introduction

One of the fundamental problems suggested by the intersection homology
theory is to determine which characteristic numbers can be defined for singular
varieties. Elliptic genus appears to be a key tool for a solution to this problem.
In [30] it was shown that the Chern numbers invariant in small resolutions are
determined by the elliptic genus of such a resolution. In [7] the elliptic genus
was defined for singular varieties with Q-Gorenstein, Kawamata-logterminal
singularities and its behavior in resolutions of singularities was studied. Among
other things, [7] shows that the elliptic genus is invariant in crepant, and in
particular small, resolutions, whenever they exist. Hence, the elliptic genus for
such class of singular varieties provides the complete class of Chern numbers
which is possible to define in such singular setting.

In present work, we study the elliptic genus of singular varieties which
are global quotients. We obtain generalizations for several relations between
the numerical invariants of actions of finite groups acting on algebraic varieties
and invariant of resolutions. Much of the interest in such relations comes from
works in physics and the work on Hilbert schemes (cf. [12], [18], [11], [16]) but
starts with the work of McKay [28].

The McKay correspondence was originally proposed in [28] as a relation
between minimal resolutions of quotient singularities C2/G, where G is a finite
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subgroup of SL2(C), and the representations of G. Shortly after that, L. Dixon,
J. Harvey, C. Vafa and E. Witten (cf. [12]) discovered a formula for the Euler
characteristic of certain resolutions of quotients:

e(X̃/G) =
1
|G|

∑

gh=hg

e(Xg,h)(1)

where X is a complex manifold, π∗ : X̃/G → X/G is a resolution of singularities
such that π∗KX/G = K

X̃/G
and Xg,f is the submanifold of X of points fixed

by both f and g. The right-hand side in (1) can be written as the sum over
the conjugacy classes:

∑
{g} e(Xg/C(g)), where C(g) is the centralizer of g,

which for X = C2 is the number of irreducible representations of G. At
the same time, the other side in (1) is the number of exceptional curves in a
minimal resolution plus 1 and one obtains the McKay correspondence on the
numerical level (cf. [18]). The McKay correspondence became the subject of
intense study and the term is now primarily used to indicate a relationship
between the various invariants of the actions of finite automorphism groups
on quasiprojective varieties and resolutions of the corresponding quotients by
such actions generalizing (1). We refer to the report [29] for a survey of the
evolution of ideas since original empirical observation of McKay.

One of the main results to date on the relationship between the invariants
of actions and resolutions of quotients is the description of the E-function of
a crepant resolution in terms of the invariants of the action (cf. [5], [10]). We
recall that for a quasiprojective variety M its E-function is defined as

E(M ; u, v) : =
∑

p,q

upvq
∑

n

(−1)nhp,q(Hn
c (M))

where hp,q(Hn
c (M)) are the Hodge numbers of Deligne’s mixed Hodge structure

on the compactly supported cohomology of M . The E-function incorporates
many classical numerical invariants of manifolds. For example, if M is a pro-
jective manifold and (u, v) = (y, 1) one obtains Hirzebruch’s χy-genus which
in turn has the topological and holomorphic Euler characteristics and the sig-
nature as its special values.

In [5], Batyrev extended the definition of the E-function to the case of a
global quotient of a smooth variety M by a finite group G. He defined the
orbifold E-function, Eorb(M,G; u, v) in terms of the action of a finite group
G. Moreover, he extended this definition to G-normal pairs (M,D) composed
of a smooth variety M and a simple normal crossing G-equivariant divisor D

on it. Batyrev showed that the E-function of the pair (M̃/G, D) consisting
of a resolution µ : M̃/G → M/G and the divisor defined via the discrepancy
D = K

M̃/G
−µ∗(KM/G) (with trivial group action) coincides with the orbifold

E-function. The fact that the E-function of the pair does not change under
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birational morphisms, as well as an alternative proof of the McKay correspon-
dence for E-functions are based on Kontsevich’s idea of motivic integration
(cf. [23], [5], [10], [26]).

Another generalization of Hirzebruch’s χy-genus is the (two-variable) el-
liptic genus, and this paper grew from an attempt to prove the relationship
between elliptic genera of resolutions of the quotients M/G and the elliptic
genera associated with the actions of G on M . These two versions of the ellip-
tic genus of a global quotient were introduced in our previous paper [7] where
the McKay correspondence was stated as a conjecture. The proof given below,
similarly to Batyrev’s approach, requires a generalization of the elliptic genera
considered in [7] to the elliptic genus associated with triples consisting of a
manifold, the group acting on it and the divisor with simple normal crossings.

The elliptic genus was extensively studied in recent years (cf. [25], [24],
[19], [17], [30], [6], [8] and further references in the latter). For an almost
complex compact manifold X with Chern roots xi (i.e. the total Chern class
is

∏
(1 + xi)) the elliptic genus can be defined as

Ell(X; z, τ) =
∫

X

∏

i

xi
θ( xi

2πi −z, τ)
θ( xi

2πi , τ)
(2)

where

θ(z, τ) = q
1
8 (2sinπz)

l=∞∏

l=1

(1 −ql)
l=∞∏

l=1

(1 −qly)(1 −qly−1)

is the classical theta function (cf. [9]) where y = e2πiz, q = e2πiτ .
Alternatively, the elliptic genus can be written as

Ell(X; z, τ) =
∫

X
ch(ELLz,τ )td(X)(3)

where

ELLz,τ := y−
dimX

2 ⊗n≥1

(
Λ−yqn−1 T ∗

X ⊗Λ−y−1 qnTX ⊗SqnT ∗
X ⊗SqnTX

)
.

Here TX (resp. T ∗
X) is the complex tangent (resp. cotangent) bundle and as

usual for a bundle V , Λt(V ) =
∑

i Λi(V )ti and St(V ) =
∑

i Symi(V )ti denote
generating functions for the exterior and symmetric powers of V (by Riemann-
Roch this is also the holomorphic Euler characteristic of ELLz,τ ). The elliptic
genus of a projective manifold is a holomorphic function of (z, τ) ∈ C × H.
Moreover, if c1(X) = 0 then it is a weak Jacobi form (of weight 0 and index
dimX

2 , see [6] or earlier references in [8]).
Since y−

dimX
2 χ−y(X) = limq→0 Ell(X; z, τ), Hirzebruch’s χy-genus is a spe-

cialization of the elliptic genus (and so are various one-variable versions of the
elliptic genus due to Landweber-Stong, Ochanine, Witten and Hirzebruch).
On the other hand, elliptic genus is a combination of the Chern numbers of X,
as is apparent from (2), but it cannot be expressed via the Hodge numbers
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of X (cf. [19], [6]). Therefore the information about elliptic genera of reso-
lutions of X/G cannot be derived from corresponding information about the
E-function, though it can be done for the specialization q → 0 of the elliptic
genus. Since the elliptic genus depends only on the Chern numbers, it is a
cobordism invariant. Totaro [30] found a characterization of the elliptic genus
(2) of SU-manifolds from the point of view of cobordisms as the universal genus
invariant under classical flops.

A major difference between the elliptic genus and the E-function is that
the latter is defined for quasiprojective varieties. Unfortunately, we do not
know if a useful definition of the elliptic genus can be given for arbitrary
quasiprojective manifolds. Moreover, while the E-function enjoys strong ad-
ditivity properties there appears to be no analog of them in the case of the
elliptic genus. Additivity allows one to work with E-functions not just in the
category of manifolds but in the category of of arbitrary quasiprojective va-
rieties. Nevertheless, in [7] (extending [6]) a definition of the elliptic genus
for some singular spaces was proposed as follows. Let X be a Q-Gorenstein
complex projective variety and π : Y → X be a resolution of singularities with
the simply normal crossing divisor ∪Ek, k = 1, . . . , r as its exceptional locus.
If the canonical classes of X and Y are related via

KY = π∗KX +
∑

αkEk,(4)

then

ÊllY (X; z, τ) :=
∫

Y

(∏

l

( yl

2πi)θ(
yl

2πi −z)θ′(0)
θ(−z)θ( yl

2πi)

)
×

(∏

k

θ( ek

2πi −(αk + 1)z)θ(−z)
θ( ek

2πi −z)θ(−(αk + 1)z)

)
(5)

is independent of the resolution π (here ek are the cohomology classes of the
components Ek of the exceptional divisor and yl are the Chern roots of Y ) and
depends only on X. ÊllY (X; z, τ) was called the singular elliptic genus of X.
When q → 0, the singular elliptic genus specializes to the singular χy-genus
calculated from Batyrev’s E-function. We refer the reader to [7] for further
discussion of this invariant.

On the other hand, for a finite group G of automorphisms of a manifold X,
an orbifold elliptic genus was defined in [7] in terms of the action of G on
X as follows. For a pair of commuting elements g, h ∈ G, let Xg,h be a
connected component of the fixed point set of both g and h. Let TX|Xg,h =
⊕Vλ, λ(g), λ(h) ∈ Q∩ [0, 1), be the decomposition into a direct sum, such that
g (resp. h) acts on Vλ as multiplication by e2πiλ(g) (resp. e2πiλ(h)). Then

(6) Eorb(X, G; z, τ)

=
1
|G|

∑

gh=hg

( ∏

λ(g)=λ(h)=0

xλ

) ∏

λ

θ( xλ

2πi + λ(g) −τλ(h) −z)
θ( xλ

2πi + λ(g) −τλ(h))
e2πizλ(h)z[Xg,h].
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In [7] it was conjectured that these two notions of elliptic genus coincide. More
precisely (cf. Conjecture 5.1, ibid .), let X be a nonsingular projective variety
on which a group G acts effectively by biholomorphic transformations. Let
µ : X → X/G be the quotient map, D =

∑
(νi −1)Di be the ramification

divisor, and let

∆X/G :=
∑

j

(
νj −1

νj

)
µ(Dj).

Then

Ellorb(X, G; z, τ) =
(

2πi θ(−z, τ)
θ′(0, τ)

)dimX

Êll(X/G,∆X/G; z, τ)(7)

where the elliptic genus of the pair Êll(X/G,∆X/G; z, τ) is defined by (5) but
with discrepancies αk obtained from the relation

KY = π∗(KX/G + ∆X/G) +
∑

αkEk

rather than the relation (4).
The main goal of this paper is to prove the identity (7), which we accom-

plish in Theorem 5.3. One of the ingredients of the proof is the systematic use
of the “hybrid” orbifold elliptic genus of pairs generalizing both the singular
and orbifold elliptic genera. It is defined as follows. Let (X, E) be a reso-
lution of singularities of a Kawamata log-terminal pair (cf. [22] and §2) with
E = −

∑
k δkEk. Let X support an action of a finite group G such that (X, E)

is a G-normal pair (cf. [5] and Section 3). In addition to notation used in the
above definition (6) of the orbifold elliptic genus, let εk(g), εk(h) ∈ Q ∩ [0, 1)
be defined as follows. If Ek does not contain Xg,h then they are zero and if
Xg,h ⊆ Ek then g (resp. h) acts on O(Ek) as multiplication by e2πiε(g) (resp.
e2πiε(g)). Then we define (cf. Definition 3.2):

ELLorb(X, E, G; z, τ)(8)

:=
1
|G|

∑

g,h,gh=hg

∑

Xg,h

[Xg,h]
( ∏

λ(g)=λ(h)=0

xλ

)

×
∏

λ

θ( xλ

2πi + λ(g) −τλ(h) −z)
θ( xλ

2πi + λ(g) −τλ(h))
e2πiλ(h)z

×
∏

k

θ( ek

2πi + εk(g) −εk(h)τ −(δk + 1)z)
θ( ek

2πi + εk(g) −εk(h)τ −z)
θ(−z)

θ(−(δk + 1)z)
e2πiδkεk(h)z.

If G is trivial, then this expression yields the elliptic genus (5) if E = ∅
and the version of (5) for pairs as described earlier for arbitrary E. On
the other hand, if G is nontrivial but E = ∅, then one obtains (6). More-
over Ellorb(X, E, G) for q → 0 specializes into Batyrev’s Eorb(X, E, G; y, 1)
(cf. [5]). Thus the defined orbifold elliptic genus of pairs is birationally invariant
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(cf. §3). In fact, we show that the contribution of each pair of commuting el-
ements in the above definition is invariant under the blowups with normal
crossing nonsingular G-invariant centers, which allows us to show that the
contribution of each pair (g, h) is a birational invariant.

The second main ingredient of the proof is the pushforward formula for
the class in (8) for toroidal morphisms. Finally, we use the results of [3] to
show that X → X/G can be lifted to a toroidal map Ẑ → Z so that in the
diagram

Ẑ → Z
↓ ↓
X → X/G

the vertical arrows are resolutions of singularities.
As was already pointed out, the singular (resp. orbifold) elliptic genus

specializes into some known invariants of singular varieties (resp. orbifolds).
The simplest corollary of our main theorem is obtained in the limit q = 0, y = 1.
We see that if X/G admits a crepant resolution of singularities (i.e. such that
in (4), one has αk = 0 for any k) then the topological Euler characteristic of a
crepant resolution is given by the Dixon, Harvey, Vafa and Witten formula (1).
While previous proofs of this relation were based on motivic integration (cf.
[5], [10]) the proof presented here uses only birational geometry (but depends
on [1] and [3]). Moreover, in projective case, the results in [5], [10] for E(u, 1)
also get an alternative proof, independent of motivic integration.

Another corollary is the further clarification of a remarkable formula due
to Dijkgraaf, Moore, Verlinde and Verlinde. It was shown in [7] that

∑

n≥0

pnEllorb(Xn/Σn; z, τ) =
∞∏

i=1

∏

l,m

1
(1 −piylqm)c(mi,l)

(9)

where Σn is the symmetric group acting on the product of n copies of a manifold
X such that Ell(X) =

∑
m,l c(m, l)ylqm. A formula of such type was first

proposed in [11]. The main theorem of this paper shows that the orbifold
elliptic genus in (9) can be replaced by the singular elliptic genus. While for
general X it is not clear how to construct a crepant resolution of the symmetric
product (or other kind of resolution leading to a calculation of the singular
elliptic genus) in the case dimX = 2 it is well-known that the Hilbert scheme
X(n) of subschemes of length n in X yields a crepant resolution. A corollary
of the main theorem is the the following:

Corollary 6.7. Let X be a complex projective surface and X(n) be its
nth Hilbert scheme. Let

∑
m,l c(m, l)ylqm be the elliptic genus of X. Then

∑

n≥0

pnEll(X(n); z, τ) =
∞∏

i=1

∏

l,m

1
(1 −piylqm)c(mi,l)

.
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This is a generalization of results due to Göttsche on the generating series
of χy-genera of Hilbert schemes (cf. [16]) which one obtains for q = 0. In fact
in this paper a substantial generalization of (9) is proposed. We are able to
extend the DMVV formula to symmetric powers of log-terminal varieties and,
more generally, to symmetric powers of Kawamata log-terminal pairs.

The paper is organized as follows. In Section 2 we recall the concept of
Kawamata log-terminal pairs, to the extent necessary for our purposes. Section
3 contains our main definition of the orbifold elliptic genus of a Kawamata log-
terminal pair. We prove that it is well-defined, for which we use the full force
of the machinery of [1]. In Section 4 we introduce toroidal morphisms between
pairs that consist of varieties and simple normal crossing divisors on them. Our
main result is the description of the pushforward and pullback in the Chow
rings in terms of the combinatorics of the conical polyhedral complexes. In the
process we use some combinatorial results related to toric varieties, which are
collected in the Appendix 8. In Section 5 we apply these calculations to prove
our main Theorem 5.3. In Section 6 we generalize the second quantization
formula of [11] to the case of Kawamata log-terminal pairs. Various open
questions related to our arguments are collected in Section 7.

The authors would like to thank Dan Abramovich for helpful discussions
and the proof of the important Lemma 5.4. We thank Arthur Greenspoon
for proofreading the original version of the paper. We also thank Nora Ganter
whose question focused our attention on the problem of defining orbifold elliptic
genera for pairs. Finally, we thank the referee for numerous helpful suggestions
on improving the exposition.

2. Kawamata log-terminal pairs

In this section we present the background material for Kawamata log-
terminal pairs, which are a standard tool in the minimal model program. Our
main reference is [22].

Proposition 2.1 ([22, Def. 2.25, Notation 2.26]). Let (X, D) be a pair
where X is a normal variety and D =

∑
i aiDi is a sum of distinct prime

divisors on X. We allow ai to be arbitrary rational numbers. Assume that
m(KX + D) is a Cartier divisor for some m > 0. Suppose f : Y → X is a
birational morphism from a normal variety Y . Denote by Ei the irreducible
exceptional divisors and the proper preimages of the components of D. Then
there are naturally defined rational numbers a(Ei, X, D) such that

KY = f∗(KX + D) +
∑

Ei

a(Ei, X, D)Ei.

Here the equality holds in the sense that a nonzero multiple of the difference is a
divisor of a rational function. The number a(Ei, X, D) is called the discrepancy
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of Ei with respect to (X, D) and it depends only on Ei, but not on f . By
definition a(Di, X, D) = −ai and a(F,X,D) = 0 for any divisor F ⊂ X
different from all Di.

Remark 2.2. In the notation of the above proposition, we will often call
the pair (Y,−

∑
Ei

a(Ei, X, D)Ei) the pair on Y that corresponds to (X, D) or
the pullback of (X, D) by f . It is easy to see that for any birational morphism
g : Z → Y from a normal variety Z the pullback by g of the pullback of (X, D)
by f is equal to the pullback of (X, D) by f ◦ g.

Definition 2.3. We call a morphism f : Y → X from a nonsingular variety
Y to a normal variety X a resolution of singularities of the pair (X, D) if
the exceptional locus of f is a divisor with simple normal crossings, which is
additionally simple normal crossing with the proper preimage of D. Every pair
admits a resolution; see [22, Theorem 0.2].

Definition 2.4. A pair (X, D) is called Kawamata log-terminal if there
is a resolution of singularities f : Y → X of (X, D) such that the pullback
(Y,−

∑
i αiEi) satisfies αi > −1 for all i.

Remark 2.5. It is easy to see that our definition of Kawamata log-terminal
pair coincides with [22, Definition 2.34] in view of [22, Corollary 2.31]. This
corollary also implies that any resolution of singularities of a Kawamata log-
terminal pair satisfies the condition αi > −1 for all i.

We will also need to describe the behavior of Kawamata log-terminal pairs
under finite morphisms, in particular under quotient morphisms. We will use
the following result.

Proposition 2.6 ([22, Prop. 5.20]). Let g : X ′ → X be a finite mor-
phism between normal varieties. Let D′ and D be Q-Weil divisors on X ′ and
X respectively such that

K ′
X + D′ = g∗(KX + D).

Then K ′
X + D′ is Q-Cartier if and only if KX + D is. Moreover, (X ′, D′) is

Kawamata log-terminal if and only if (X, D) is.

Definition 2.7. Let G be a finite group which acts effectively on a normal
variety X and preserves a Q-Weil divisor D. Let g : X → X/G be the quotient
morphism. Then there is a unique divisor D/G on X/G such that

g∗(KX/G + D/G) = KX + D.

The components of D/G are the images of the components of D and the images
of the ramification divisors of f . We call the pair (X/G, D/G) the quotient
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of (X, D) by G. By the above proposition, the quotient pair is Kawamata
log-terminal if and only if (X, D) is Kawamata log-terminal.

We remark that this definition is contained in [5] in the particular case
of a smooth variety X and trivial divisor D. It allows us to generalize the
definition of the pullback of a pair to the case of G-equivariant morphisms as
follows.

Definition 2.8. Let g : X ′ → X be a generically finite morphism from a
normal G-variety X ′ to a normal variety X which is birationally equivalent
to the quotient morphism f : X ′ → X ′/G. We say that a pair (X ′, D′) is a
pullback of a pair (X, D) if the pullback of (X, D) to X ′/G coincides with the
quotient of (X ′, D′) by G. Just as in the birational case, this pullback preserves
Kawamata log-terminality.

3. Orbifold elliptic genera of pairs

Definition 3.1 ([5]). Let X be a smooth manifold with the action of a
finite group G. Let E be a G-invariant divisor on X. The pair (X, E) is called
G-normal if Supp(E) has simple normal crossings and for every point x ∈ X
the action of the isotropy subgroup of x on the set of irreducible components
of Supp(E) that pass through x is trivial.

We will extensively use the theta function θ(z, τ) of [9]. By default, the
second argument will be τ . We will suppress it from the notation, unless it
is different from τ . We will implicitly assume the standard properties of θ,
namely its zeroes and transformation properties under the Jacobi group.

Definition 3.2. Let (X, E) be a Kawamata log-terminal G-normal pair
(in particular, X is smooth and E has simple normal crossings) with E =
−

∑
k δkEk. We define the orbifold elliptic class of the triple (X, E, G) as an

element of the Chow group A∗(X) by the formula

ELLorb(X, E, G; z, τ)

:=
1
|G|

∑

g,h,gh=hg

∑

Xg,h

(iXg,h)∗
( ∏

λ(g)=λ(h)=0

xλ

)

×
∏

λ

θ( xλ

2πi + λ(g) −τλ(h) −z)
θ( xλ

2πi + λ(g) −τλ(h))
e2πiλ(h)z

×
∏

k

θ( ek

2πi + εk(g) −εk(h)τ −(δk + 1)z)
θ( ek

2πi + εk(g) −εk(h)τ −z)
θ(−z)

θ(−(δk + 1)z)
e2πiδkεk(h)z.

Here Xg,h denotes an irreducible component of the fixed set of the commuting
elements g and h and iXg,h : Xg,h → X is the corresponding embedding. The
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restriction of TX to Xg,h has the splitting ⊕Vλ, λ(g), λ(h) ∈ Q ∩ [0, 1), where
g (resp. h) acts on Vλ as multiplication by e2πiλ(g) (resp. e2πiλ(h)) and xλ are
the Chern roots of Vλ; see [7]. In addition, ek = c1(Ek) and εk ∈ Q ∩ [0, 1)
is the character of O(Ek) restricted to Xg,h if Ek contains Xg,h and is zero
otherwise.

We define the orbifold elliptic genus Ellorb(X, E, G) of (X, E, G) as the
degree of the top component of the orbifold elliptic class ELLorb(X, E, G).

Remark 3.3. Throughout this section and elsewhere in the paper the
Chow groups A∗ and A∗ will always be thought of as Chow groups with com-
plex coefficients.

Remark 3.4. Notice that in the particular cases of |G| = 1 and E = 0
the above definition restricts to that of the singular elliptic genus (up to a
normalization factor) and orbifold elliptic genus; see [7]. However, the notion
of orbifold elliptic class appears to be new.

Remark 3.5. The Kawamata log-terminality assures that we never divide
by zero in the above formulas.

Our first goal is to show that the orbifold elliptic class is compatible with
blowups.

Theorem 3.6. Let (X, E) be a Kawamata log-terminal G-normal pair
and let Z be a smooth G-equivariant locus in X which is normal crossing to
Supp(E). Let f : X̂ → X denote the blowup of X along Z. We define Ê
by Ê = −

∑
k δkÊk −δExc(f) where Êk is the proper transform of Ek and

δ is determined from KX̂ + Ê = f∗(KX + E). Then (X̂, Ê) is a Kawamata
log-terminal G-normal pair and

f∗ELLorb(X̂, Ê, G; z, τ) = ELLorb(X, E, G; z, τ).

Proof. It is clear that (X̂, Ê) is Kawamata log-terminal. Because of the
normal crossing conditions on Z and Supp(E), the divisor Supp(Ê) has simple
normal crossings. The G-normality is clearly preserved since the exceptional
divisors do not intersect and any intersection of Êk on X̂ induces an intersection
of Ek on X.

We will prove the theorem by showing that for every pair (g, h) and ev-
ery connected component Xg,h the contributions to f∗ELLorb(X̂, Ê, G; z, τ) of
connected components X̂g,h such that f(X̂g,h) ⊆ Xg,h equals the contribution
of Xg,h to ELLorb(X, E, G; z, τ). So from now on g, h and Xg,h are fixed.

The set of connected components of the fixed point set of ⟨g, h⟩ that
maps inside Xg,h is described as follows. Let Zg,h denote the intersection of
Xg,h and Z. Since Z is G-equivariant, the intersection is a union of some
connected components of ⟨g, h⟩-invariant points of Z. Locally at every point
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of the intersection, Z and Xg,h intersect normally, since the normal spaces to
Zg,h inside Z and Xg,h have different characters. For simplicity, we assume
that Zg,h is connected, and we will remark later on the general case.

If Xg,h ̸= Zg,h then one of the X̂g,h will be obtained as the proper preim-
age of Xg,h under f and will be isomorphic to the blowup of X along Zg,h.
Other components will lie in the preimage of Zg,h and are described as follows.
The restriction of the normal bundle to Z in X to Zg,h splits into character
subbundles. For each character Λ the projectivization of the corresponding
bundle over Zg,h is naturally embedded into the preimage of Zg,h under f
(which is the projectivization of the whole normal bundle to Z restricted to
Zg,h).

We first concentrate on the case Xg,h ̸= Zg,h. Let N1 be the subbundle
of the normal bundle to Zg,h in X that is the image of the normal bundle of
Zg,h in Z. Let N2 be the subbundle of the normal bundle to Zg,h that is the
image of the normal bundle of Zg,h in Xg,h. Finally let N3 be the quotient of
NZg,h by the sum of N1 and N2. The transversality implies that it is also a
bundle, i.e. the rank of the fibers is constant.

Let us calculate the contribution to f∗ELLorb(X̂, Ê, G; z, τ) that comes
from X̂g,h

0 , which is the proper preimage of Xg,h, provided N2 ̸= 0. As in [7],
we make a technical assumption that all bundles we consider are restrictions
of some bundles defined on X. We will later explain why this assumption can
be dropped. The calculation follows closely those of [7]. We have

c(TX̂) = c(f∗TX)(1 + ẑ)
∏

i

(1 + f∗mi −ẑ)
(1 + f∗mi)

where ẑ is the first Chern class of the exceptional divisor of f and
∏

i
(1+mi)

is the Chern class of the bundle on X whose restriction to Z is the normal
bundle of Z in X. Similarly,

c(TX̂g,h
0 ) = c(f∗TXg,h)(1 + ẑ)

∏
i

(1 + f∗si −ẑ)
(1 + f∗si)

where ẑ and f are restrictions to Xg,h
0 (mild abuse of notation) and

∏
i
(1+si)

restricts to c(N2) on Zg,h.
Thus the Chern class of the normal bundle to X̂g,h

0 is

c(NX̂g,h
0 ) = c(f∗NXg,h)

∏
i

(1 + f∗ti −ẑ)
(1 + f∗ti)

where
∏

i
(1 + ti) restricts to c(N3 ) on Zg,h.

We will also need to know how the Ei change. For Ei that do not contain
Z we have Êi = f∗Ei, and for Ei that contain Z we have Êi = f∗Ei −Ẑ.
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As a result, the contribution of X̂g,h
0 to ELLorb(X̂, Ê, G; z, τ) is

(iXg,h
0

)∗
∏

i

xiθ( xi

2πi −z)
θ( xi

2πi)

∏

N2

(f∗ni −ẑ)θ(f∗ni−̂z
2πi −z)

θ(f∗ni−̂z
2πi )

θ(f∗ni

2πi )
(f∗ni)θ(f∗ni

2πi −z)

×
( ẑ
2πi)θ(

ẑ
2πi −z)θ′(0)

θ( ẑ
2πi)θ(−z)

×
∏

N1

θ(f∗ni

2πi + λi(g) −λi(h)τ −z)
θ(f∗ni

2πi + λi(g) −λi(h)τ)
e2πiλi(h)z

×
∏

N3

θ(f∗ni−̂z
2πi + λi(g) −λi(h)τ −z)

θ(f∗ni−̂z
2πi + λi(g) −λi(h)τ)

e2πiλi(h)z

×
∏

Ei⊃ Z

θ(f∗ei−̂z
2πi + εi(g) −εi(h)τ −(δi + 1)z)
θ(f∗ei−̂z

2πi + εi(g) −εi(h)τ −z)
θ(−z)

θ(−(δi + 1)z)
e2πiδiεi(h)z

×
∏

Ei ̸⊃ Z

θ(f∗ei

2πi + εi(g) −εi(h)τ −(δi + 1)z)
θ(f∗ei

2πi + εi(g) −εi(h)τ −z)
θ(−z)

θ(−(δi + 1)z)
e2πiδiεi(h)z

×
θ( ẑ

2πi −(δ + 1)z)
θ( ẑ

2πi −z)
θ(−z)

θ(−(δ + 1)z)
.

In the above formula the first two lines account for the tangent bundle to X̂g,h
0 ,

the next two lines account for the normal bundle to it, and the remaining three
lines account for the divisors. We use the notation

∏
Ni

to indicate the product
over the Chern roots of the corresponding bundle. Notice the normalization
factor in the second line. The symbol iXg,h

0
denotes the embedding of Xg,h

0

into X̂.
As in [7], we rewrite the above expression as a power series

∑
n Rnẑn in ẑ.

Clearly, f∗R0 is precisely the contribution of the Xg,h to ELLorb(X, E, G; z, τ).
If we denote r = rkN2, we have f∗ẑr+n = i∗(sn(i∗N2))(−1)n+r−1 where i∗ is
the pushforward from Zg,h to Xg,h. We can therefore rewrite the contribution
of f∗R>0 as

(iZg,h)∗
∑

n≥0

sn(i∗N2)(−1)n+r−1(Coeff. at ẑr+n)(above expression)

where iZg,h is the embedding on Zg,h into X. Taking into account

∑

n≥0

sn(i∗N2)(−1)nt−n =
tr∏

N2
(t −ni)

,
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we can rewrite this as

(−1)Rest=0(iZg,h)∗
θ( t

2πi −(δ + 1)z)θ′(0)
(2πi)θ( t

2πi)θ(−(δ + 1)z)

∏
TZg,h

yiθ( yi

2πi −z)
θ( yi

2πi)

×
∏

N1

θ(f∗ni

2πi + λi(g) −λi(h)τ −z)
θ(f∗ni

2πi + λi(g) −λi(h)τ)
e2πiλi(h)z

∏
N2

θ(f∗ni−t
2πi −z)

θ(f∗ni−t
2πi )

×
∏

N3

θ(f∗ni−t
2πi + λi(g) −λi(h)τ −z)

θ(f∗ni−t
2πi + λi(g) −λi(h)τ)

e2πiλi(h)z

×
∏

Ei⊃ Z

θ(f∗ei−t
2πi + εi(g) −εi(h)τ −(δi + 1)z)
θ(f∗ei−t

2πi + εi(g) −εi(h)τ −z)
θ(−z)

θ(−(δi + 1)z)
e2πiδiεi(h)z

×
∏

Ei ̸⊃ Z

θ(f∗ei

2πi + εi(g) −εi(h)τ −(δi + 1)z)
θ(f∗ei

2πi + εi(g) −εi(h)τ −z)
θ(−z)

θ(−(δi + 1)z)
e2πiδiεi(h)z.

We will denote the expression above by F (t), to be thought of as a meromorphic
function on C with values in the Chow group A∗(Zg,h).

Let us now calculate the contributions from other components X̂g,h that
map inside Xg,h. As we have discussed earlier, these components correspond
to nontrivial characters Λ that are present in N3 . We want to find the normal
and tangent bundles of Xg,h

Λ
∼= PNΛ inside X̂. The Chern class of the tangent

bundle can be described as the restriction from X̂ of
∏

NΛ
(1 + f∗ni −ẑ)

∏
TZg,h

(1 + f∗yi),

so the normal bundle has Chern class which is a restriction of

(1 + ẑ)
∏

N1
(1 + f∗ni)

∏
N2 ⊕ N3/NΛ

(1 + f∗ni −ẑ).

Therefore, the contribution of X̂g,h
Λ to ELLorb(X̂, Ê, G) is

(iXg,h
Λ

)∗
θ′(0)

2πiθ(−z)

∏
NΛ

(f∗ni −ẑ)θ( f∗ni− ẑ
2πi −z)

θ( f∗ni− ẑ
2πi )

∏
TZg,h

f∗yiθ( f∗yi

2πi −z)
θ( f∗yi

2πi )

×
θ( ẑ

2πi + Λ(g) −Λ(h)τ −z)
θ( ẑ

2πi + Λ(g) −Λ(h)τ)
e2πiΛ(h)z

×
∏

N1

θ( f∗ni

2πi + λi(g) −λi(h)τ −z)
θ( f∗ni

2πi + λi(g) −λi(h)τ)
e2πiλi(h)z

×
∏

N2 ⊕ N3 /NΛ

θ( f∗ni− ẑ
2πi + (λi −Λ)(g) −(λi −Λ)(h)τ −z)

θ( f∗ni− ẑ
2πi + (λi −Λ)(g) −(λi −Λ)(h)τ)

e2πi(λi− Λ)(h)z

×
∏

Ei⊃ Z

θ( f∗ei− ẑ
2πi + (εi −Λ)(g) −(εi −Λ)(h)τ −(δi + 1)z)θ(−z)

θ( f∗ei− ẑ
2πi + (εi −Λ)(g) −(εi −Λ)(h)τ −z)θ(−(δi + 1)z)

e2πiδi(εi− Λ)(h)z
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×
∏

Ei ̸⊃ Z

θ( f∗ei

2πi + εi(g) −εi(h)τ −(δi + 1)z)
θ( f∗ei

2πi + εi(g) −εi(h)τ −z)
θ(−z)

θ(−(δi + 1)z)
e2πiδiεi(h)z.

×
θ( ẑ

2πi + Λ(g) −Λ(h)τ −(δ + 1)z)
θ( ẑ

2πi + Λ(g) −Λ(h)τ −z)
θ(−z)

θ(−(δ + 1)z)
e2πiδΛ(h)z

where iXg,h
Λ

is the embedding of Xg,h
Λ into X̂. Here we used the fact that the

line bundle O(Ẑ) has character Λ on Xg,h
Λ . We again expand the integrand in

terms of powers of ẑ and use f∗ẑl−1+n = sn(NΛ)(−1)l−1+n where l = rk(NΛ),
to rewrite the pushforward to X of the above as

(−1)Rest=0 (iZg,h)∗
θ( t

2πi + Λ(g) −Λ(h)τ −(δ + 1)z)θ′(0)
(2πi)θ( t

2πi + Λ(g) −Λ(h)τ)θ(−(δ + 1)z)
e2πi(δ+1)Λ(h)z

×
∏

TZg,h

yiθ( yi

2πi −z)
θ( yi

2πi )

×
∏

N1

θ( f∗ni

2πi + λi(g) −λi(h)τ −z)
θ( f∗ni

2πi + λi(g) −λi(h)τ)
e2πiλi(h)z

×
∏

N2

θ( f∗ni− t
2πi + Λ(g) −Λ(h)τ −z)

θ( f∗ni− t
2πi + Λ(g) −Λ(h)τ)

e− 2πiΛ(h)z

×
∏

N3

θ( f∗ni− t
2πi + (λi −Λ)(g) −(λi −Λ)(h)τ −z)

θ( f∗ni− t
2πi + (λi −Λ)(g) −(λi −Λ)(h)τ)

e2πi(λi− Λ)(h)z

×
∏

Ei⊃ Z

θ( f∗ei− t
2πi + (εi −Λ)(g) −(εi −Λ)(h)τ −(δi + 1)z)θ(−z)

θ( f∗ei− t
2πi + (εi −Λ)(g) −(εi −Λ)(h)τ −z)θ(−(δi + 1)z)

e2πiδi(εi− Λ)(h)z

×
∏

Ei ̸⊃ Z

θ( f∗ei

2πi + εi(g) −εi(h)τ −(δi + 1)z)θ(−z)
θ( f∗ei

2πi + εi(g) −εi(h)τ −z)θ(−(δi + 1)z)
e2πiδiεi(h)z

which can be rewritten as

(−1)Rest=Λ(g)−Λ(h)τF (t)

because the additional exponential factors cancel due to δ =
∑

Ei⊃ Z δi +
rk(N2) + rk(N3 ) −1.

So in the case Xg,h ̸= Zg,h all we need is to show that

Rest=0F (t) +
∑

Λ

Rest=Λ(g)−Λ(h)τF (t) = 0.

This follows from the observation that F is periodic with respect to t → t+2πi
and t → t+2πiτ and has poles at 0 and Λ(g)−Λ(h) only. Indeed, the periodicity
is a corollary of the transformation properties of θ and the definition of δ. The
statement on poles follows from the fact that for every Ei ⊃ Z the theta
function in the denominator is precisely offset by of the theta functions in
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the numerator. Indeed, in view of the normal crossing condition on Supp(E)
and Z, each Ek gives a quotient bundle of the normal bundle to Z and the
sum over all Ek is (locally) a quotient of N2 ⊕ N3 . As a result, ek is a Chern
root of N3 or N2 depending on whether or not Ek contains Xg,h.

As in [7], we remark that we can ignore the assumption that the Ni come
from bundles on X, because the expression for F (t) makes sense without it
and deformation to the normal cone can be used in general. We also observe
that in the case when Zg,h has several connected components, the above cal-
culation shows that the contributions of the components, other than Xg,h

0 , to
f∗ELLorb(X̂, Ê, G; z, τ) cancel the f∗R>0 contributions of the connected com-
ponent Xg,h

0 . The f∗R0 contribution of Xg,h
0 is again the contribution of Xg,h

to ELLorb(X, E, G; z, τ).
The case Xg,h = Zg,h is handled similarly. This time, the contributions

to Ell(X̂, Ê, G; z, τ) equal

−
∫

Zg,h

∑

Λ

Rest=Λ(g)−Λ(h)τF (t) =
∫

Xg,h

Rest=0F (t)

which is precisely the contribution of Xg,h to Ell(X, E, G; z, τ). Indeed, since
N2 = 0, and no divisor Ei that contains Z can have ε = 0, F (t) has a simple
pole at t = 0 and the residue is easy to calculate. Similar calculation works at
the elliptic class level.

We will now use the invariance under blowups to define the orbifold elliptic
genus and orbifold elliptic class for an arbitrary G-equivariant Kawamata log-
terminal pair.

Definition 3.7. Let (Z, D) be an arbitrary G-equivariant Kawamata log-
terminal pair with no additional conditions on its singularities. Let π : X → Z
be a G-equivariant resolution of singularities of (Z, D), such that the corre-
sponding pair (X, E) is G-normal. Then the orbifold elliptic class of (Z, D) in
A∗(Z) is defined as the pushforward π∗ of the orbifold elliptic class of (X, E)
and the orbifold elliptic genus of (Z, D) is defined as the orbifold elliptic genus
of (X, E) or alternatively as the degree of the orbifold elliptic class.

Clearly, this definition does not make sense unless we can prove that it
does not depend on the resolution π.

Theorem 3.8. Definition 3.7 makes sense; that is, the pushforwards of
the orbifold elliptic classes do not depend on the resolution of singularities.

Proof. In view of Theorem 3.6, it is enough to show that any two G-normal
resolutions of singularities (X−, E−) and (X+, E+) of (Z, D) can be connected
by a sequence of equivariant blowups and blowdowns among G-normal reso-
lutions of singularities of (Z, D). This is a G-normality strengthening of the
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equivariant version of the Weak Factorization Theorem of [1]. The equivariant
version itself assures that such a sequence of blowups and blowdowns exists in
the category of simple normal crossing G-equivariant divisors E.

In order to get G-normality, observe that for every simple normal crossing
G-equivariant divisor E on smooth X there is a canonical sequence of blowups
that makes the preimage G-normal. Namely, this is the toroidal morphism that
corresponds to the barycentric subdivision of the corresponding polyhedral
complex (see Section 5.6 of [1]). In the notation of Section 4.3 of [1], we apply
this procedure in the definition of W res

i± . Then the additional sequences of
blowups ri± preserve G-normality and the statement is reduced to the case
of the toroidal birational map ϕcan

i . The group G acts by interchanging the
vertices of the polyhedral complexes ∆± of W can

i± . We apply the barycentric
subdivision blowup to both of them, and then observe that all intermediate
varieties in the toroidal version of weak factorization have G-normal divisors.
Indeed, each of them comes from a subdivision ∆ of B∆+ or B∆−, where B
stands for barycentric subdivision, and we assume the former with no loss of
generality. If a cone C in ∆ maps to itself by some group element g ∈ G, then
the same is true for the smallest cone C+ in B∆+ that contains its image.
However as observed in Section 5.6 of [1], this implies that g acts trivially on
the span of C∗, hence on C. This implies G-normality, since every fixed point
of g comes from a stratum that corresponds to some cone of ∆.

Remark 3.9. The Weak Factorization Theorem also works in the cate-
gory of G-strict divisors, defined by the condition that the translates of ev-
ery irreducible component of E are either equal or disjoint. Indeed, the
above argument works, since G-strictness is preserved under normal crossing
G-equivariant blowups with smooth centers and the barycentric subdivision
assures G-strictness, not just G-normality.

Remark 3.10. It is clear from the definition that the orbifold elliptic genus
of a log-terminal G-variety is unchanged under equivariant crepant morphisms.

Remark 3.11. The arguments of this section clearly show that the contri-
bution of each pair (g, h) of commuting elements of G to the orbifold elliptic
class and genus is well-defined. Indeed, in the proof of Theorem 3.6 each pair
was considered separately.

Remark 3.12. The orbifold elliptic genus for the product of triples
(X1, E1, G1) and (X2, E2, G2) equals the product of elliptic genera. The prod-
uct of the triples is defined as the product of the varieties, the sum of the
pullbacks of the divisors and the direct product of the group actions.

We observe that our definition of orbifold elliptic genus is compatible with
the definition of the orbifold string E-function of Eorb(X, E, G) of [5] in the
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sense that the limit of the orbifold elliptic genus as τ → i∞ recovers the orbifold
string function analog of the χy-genus. For this, we will need the following easy
lemma.

Lemma 3.13. Let X be a complete stratified G-variety with at most quo-
tient singularities such that the action of G is effective and free and preserves
the stratification. Let X1 be any stratum of X and let G1 be the subgroup of G
that maps X1 to itself. Then

χy(X1/G1) =
1

|G1|
χy(X1).

Proof. We will argue by induction on the dimension of the stratum. In
dimension zero the freeness of the action implies |G1| = 1 and χy(X1/G1) =
χy(X1) = 1. For the induction step, it is enough to assume that X1 = X and
X is connected. It is easy to see that the induction assumption allows us to
consider X1 to be a part of the nonsingular locus of X. After an equivariant
desingularization, we may assume that X is smooth and X1 is the open stra-
tum. Notice that desingularization preserves the freeness of the action, which
implies

χy(X/G) =
1
|G|χy(X).

By additivity of χy, we can split the above identity according to the contribu-
tions of the strata. Each stratum Y1 in X/G is a quotient of a stratum Y in X.
If H is the subgroup of G that fixes Y , then there are |G : H| disjoint strata
of X that map to Y1. By the induction assumption, χy(Y1) = 1

|H|χy(Y ) =
1
|G|

∑
{gY } χy(gY ) where the sum is taken over the cosets of H. Consequently,

the terms corresponding to smaller dimensional strata cancel, which finishes
the proof of the lemma. We remark that the statement generally fails for free
actions on noncomplete varieties. It is crucial that the action stays free on the
completion of the stratum.

Proposition 3.14. Let Eorb(X, E, G; u, v) be defined as in [5]. Then

lim
τ→i∞

Ellorb(X, E, G; z, τ) = y−
dimX

2 Eorb(X, E, G; y, 1)

where y = e2πiz.

Proof. From the product formula for θ, i.e.:

θ(z, τ) = q
1
8 (2sinπz)

l=∞∏

l=1

(1 −ql)
l=∞∏

l=1

(1 −qle2πiz)(1 −qle−2πiz)

(see [9]), we have

lim
τ→i∞

θ(u −β, τ)
θ(u, τ)

=
(1 −e−2πi(u−β))

(1 −e−2πiu)
e−πiβ
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and
lim

τ→i∞

θ(u −ατ −β, τ)
θ(u −ατ, τ)

= e−πiβ

for 0 < α < 1. Hence, by taking the limit in Definition 3.2,

lim
τ→i∞

Ellorb(X, E, G; z, τ)

=
1
|G|

∑

g,h,gh=hg

∑

Xg,h

∫

Xg,h

∏

λ(g)=λ(h)=0

xλ
(1 −e−xλ+2πiz)

(1 −e−xλ)

× e−πi(dimX)ze2πi(
∑

λ λ(h))z
∏

λ(h)=0,λ(g) ̸=0

(1 −e−xλ−2πiλ(g)+2πiz)
(1 −e−xλ−2πiλ(g))

× e2πi
∑

k δkεk(h)z
∏

k,εk(h)=0

(1 −e−ek−2πiεk(g)+2πi(δk+1)z)
(1 −e−ek−2πiεk(g)+2πiz)

(1 −e2πiz)
(1 −e2πi(δk+1)z)

×
∏

k,εk(h) ̸=0

(1 −e2πiz)
(1 −e2πi(δk+1)z)

=
y−

dimX
2

|G|
∑

g,h,gh=hg

∑

Xg,h

∫

Xg,h

td(Xg,h)ywt(h,Xh,E)

×
ch(Λ−yΩ1

Xh |Xg,h(g))
ch(Λ−1N∗

Xg,h ⊆ Xh(g))

∏

Ek ̸⊇ Xh

(1 −e−ek−2πiεk(g)yδk+1)
(1 −e−ek−2πiεk(g)y)

∏

Ek

(1 −y)
(1 −yδk+1)

.

Here wt(h, Xh, E) is the same weight as defined in [5] (cf. 6.1), for the irre-
ducible component Xh of the fixed point set of h that contains Xg,h. We have
also used

ch(Λ−yΩ1
Xh |Xg,h(g)) =

∏

λ(h)=0

(1 −e−xλ−2πiλ(g)+2πiz)

and
ch(Λ−1N

∗
Xg,h ⊆ Xh(g)) =

∏

λ(h)=0,λ(g) ̸=0

(1 −e−xλ−2πiλ(g)).

We use a trick to rearrange the product over Ek ̸⊇Xh as follows.

lim
τ→i∞

Ellorb(X, E, G; z, τ)

=
y−

dimX
2

|G|
∑

g,h,gh=hg

∑

Xg,h

∫

Xg,h

td(Xg,h)ywt(h,Xh,E) ch(Λ−yΩ1
Xh |Xg,h(g))

ch(Λ−1N∗
Xg,h ⊆ Xh)

×
∏

Ek ̸⊇ Xh

(
1 +

(y −yδk+1)(1 −e−ek−2πiεk(g))
(yδk+1 −1)(1 −ye−ek−2πiεk(g))

) ∏

Ek ⊇ Xh

(y −1)
(yδk+1 −1)
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=
y−

dimX
2

|G|
∑

g,h,gh=hg

∑

Xg,h

∫

Xg,h

td(Xg,h)ywt(h,Xh,E) ch(Λ−yΩ1
Xh |Xg,h(g))

ch(Λ−1N∗
Xg,h ⊆ Xh)

×
∑

J ⊆ I(Xh)

∏

k∈J

(y −yδk+1)(1 −e−ek−2πiεk(g))
(yδk+1 −1)(1 −ye−ek−2πiεk(g))

∏

Ek ⊇ Xh

(y −1)
(yδk+1 −1)

=
y−

dimX
2

|G|
∑

g,h,gh=hg

∑

Xg,h

∑

J ⊆ I(Xh)

∫

Xg,h∩EJ

td(Xg,h ∩ EJ)ywt(h,Xh,E)

×
ch(Λ−yΩ1

Xh∩EJ
)|Xg,h∩EJ

(g)
ch(Λ−1N∗

Xg,h∩EJ ⊆ Xh∩EJ
)(g)

∏

k∈J

(y −yδk+1)
(yδk+1 −1)

∏

Ek ⊇ Xh

(y −1)
(yδk+1 −1)

.

Here the set I(Xh) is defined as the set of all k such that Ek ̸⊇ Xh and
Ek ∩Xh ̸= ∅, which in particular implies that Ek is mapped to itself by h due
to G-normality. We have also used the identities

td(Xg,h ∩ EJ) = td(Xg,h)
∏

k∈J,Xg,h ̸⊆ Ek

(1 −e−ek)
ek

ch(Λ−yΩ1
Xh∩EJ

)|Xg,h∩EJ
(g) = ch(Λ−yΩ1

Xh)|Xg,h(g)
∏

k∈J

(1 −ye−ek−2πiεk(g))−1

ch(Λ−1N
∗
Xg,h∩EJ ⊆ Xh∩EJ

)(g) = ch(Λ−1N
∗
Xg,h ⊆ Xh)(g)

∏

k∈J,Xg,h ⊆ Ek

(1 −e−ek−2πiεk(g)).

Changing the order of summation, one obtains

lim
τ→i∞

Ellorb(X, E, G; z, τ)

=
y−

dimX
2

|G|
∑

h∈G

∑

Xh

ywt(h,Xh,E)
∑

J ⊆ I(Xh)

∑

g∈C(h,Xh,J)

∫

Xg,h∩EJ

td(Xg,h ∩ EJ)

×
ch(Λ−yΩ1

Xh∩EJ
)|Xg,h∩EJ

(g)
ch(Λ−1N∗

Xg,h∩EJ ⊆ Xh∩EJ
)(g)

∏

k∈J

(
y −1

yδk+1 −1
−1)

∏

Ek ⊇ Xh

(y −1)
(yδk+1 −1)

where the group C(h, Xh, J) is defined as the subgroup of the centralizer of h
that consists of group elements that map Xh to itself and preserve all elements
of J . By the equivariant Riemann-Roch theorem the above expression equals

y−
dimX

2

|G|
∑

h,Xh,J ⊆ I(Xh)

ywt(h,Xh,E)|C(h, Xh, J)|χy(Xh ∩ EJ/C(h, Xh, J))

×
∏

k∈J

(
y −1

yδk+1 −1
−1)

∏

Ek ⊇ Xh

(y −1)
(yδk+1 −1)
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=
y−

dimX
2

|G|
∑

h,Xh,J ⊆ I(Xh)

ywt(h,Xh,E)|C(h, Xh, J)|χy(Xh ∩ EJ/C(h, Xh, J))

×
∑

J1 ⊆ J

(−1)|J |−|J1 |
∏

k∈J1

(y −1)
(yδk+1 −1)

∏

Ek ⊇ Xh

(y −1)
(yδk+1 −1)

.

We observe that we can replace the group C(h, Xh, J) by a possibly bigger
group Ĉ(h, Xh, J) characterized by the condition of fixing h and Xh and
fixing J as a set. Indeed, the G-normality of E implies that the action of
Ĉ(h, Xh, J)/C(h, Xh, J) on Xh ∩ EJ/C(h, Xh, J) is free and we can rewrite
the above as

y−
dimX

2

|G|
∑

h,Xh,J ⊆ I(Xh)

ywt(h,Xh,E)|Ĉ(h, Xh, J)|χy(Xh ∩ EJ/Ĉ(h, Xh, J))

×
∑

J1 ⊆ J

(−1)|J |−|J1 |
∏

k∈J1

(y −1)
(yδk+1 −1)

∏

Ek ⊇ Xh

(y −1)
(yδk+1 −1)

.

The variety Xh is stratified by intersections with various E◦
J which induces a

stratification on Xh∩EJ/Ĉ(h, Xh, J). Every J2 ⊇J gives a stratum Xh∩E◦
J2

on Xh ∩ EJ , but different such strata may map to the same stratum in Xh ∩
EJ/Ĉ(h, Xh, J). In fact, the strata for all possible sets of J2 from the same
orbit of Ĉ(h, Xh, J)-action on the set of J2 that contain J will map to the
same stratum S on Xh ∩ EJ/Ĉ(h, Xh, J). This stratum S will be isomorphic
to Xh ∩ E◦

J2
/Ĉ(h, Xh, J ⊆ J2) where Ĉ(h, Xh, J ⊆ J2) is the subgroup of G

that fixes h and Xh and fixes J and J2 as sets. By Lemma 3.13, we get

χy(S) =
|Ĉ(h, Xh, J2)|

|Ĉ(h, Xh, J ⊆ J2)|
χy(Xh ∩ E◦

J2
/Ĉ(h, Xh, J2)).

Indeed, both groups Ĉ(h, Xh, J ⊆ J2) and Ĉ(h, Xh, J2) act freely on the vari-
ety Xh ∩ EJ2 /C(h, Xh, J2) and preserve the stratification which allows one to
compare the χy-genera of the quotients. Using the additivity property of the
χy-genus we now get

χy(Xh ∩ EJ/Ĉ(h, Xh, J)) =
∑

J2 ⊇ J

|Ĉ(h, Xh, J2)|
|Ĉ(h, Xh, J)|

χy(Xh ∩ E◦
J2

/Ĉ(h, Xh, J2))

with the rational coefficients included to account for the fact that the same
stratum on the quotient may come from different strata on Xh∩EJ . We notice
that

∑
J,J2 ⊇ J ⊇ J1

(−1)|J |−|J1 | equals 1 for J1 = J2 and equals zero otherwise,



MCKAY CORRESPONDENCE FOR ELLIPTIC GENERA 1541

to get

lim
τ→i∞

Ellorb(X, E, G; z, τ)

=
y−

dimX
2

|G|
∑

h,Xh,J ⊆ I(Xh)

ywt(h,Xh,E)

× |Ĉ(h, Xh, J)|χy(Xh ∩ E◦
J/Ĉ(h, Xh, J))

∏

k∈J

(y −1)
(yδk+1 −1)

∏

Ek ⊇ Xh

(y −1)
(yδk+1 −1)

= y−
dimX

2

∑

{h},{Xh},{J}

ywt(h,Xh,E)χy(Xh ∩ E◦
J/Ĉ(h, Xh, J))

×
∏

k∈J

(y −1)
(yδk+1 −1)

∏

Ek ⊇ Xh

(y −1)
(yδk+1 −1)

.

Here we are summing over representatives h of conjugacy classes of G, then
over representatives Xh of the orbits of the action of C(h) on the components
of the fixed point set of h and finally over the orbits of the action of C(h, Xh, ∅)
on the subsets of I(Xh). This can be compared with Definitions 6.1 and 6.3
of [5]. Our sum over the subsets of the set of components fixed by h that
contain the set of components Ek that contain Xh coincides with the set from
the definition of [5] up to trivial contributions. Indeed, in Definition 6.1 of [5]
WJ is empty unless J consists of the elements that correspond to divisors that
intersect W and moreover contains all elements that correspond to the divisors
that contain W .

However, it appears that we are summing over the orbits {J} whereas
Definition 6.3 of [5] contains the sum over all J . The extra factor is equal to
the length of the orbit of J under the action of C(h, Xh, ∅). This appears to
be a typo in [5], which can be easily seen for a fixed point free action of G.

Remark 3.15. Clearly, the comparison between the orbifold elliptic genus
and the orbifold E-function follows from Theorem 5.3 and the main result
of [5]. However, it would be strange to rely on such a roundabout way of
proving it.

Proposition 3.16. Let X be a smooth G-variety and let E be a G-normal
divisor on it such that (X, E) is Kawamata log-terminal. Let m(KX +E) be a
trivial Cartier divisor for some integer m. Denote by n the order of the image
of the homomorphism G → AutH0(X, m(KX +E)), where the homomorphism
can be defined due to G-invariance of E. Then Ellorb(X, E, G) is a weak Jacobi
form of weight 0 and index dimX/2 with respect to the subgroup of the Jacobi
group ΓJ generated by the transformations

(z, τ) → (z+mn, τ), (z, τ) → (z+mnτ, τ), (z, τ) → (z, τ+1), (z, τ) → (
z

τ
,−1

τ
).
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Proof. As in the proof of Theorem 4.3 in [7], we introduce

Φ(g, h, κ, z, τ, x) :=
θ( x

2πi + κ(g) −τκ(h) −z)
θ( x

2πi + κ(g) −τκ(h))
e2πizκ(h)

where κ is a character of the subgroup of G generated by g and h considered
acting on a line bundle with the first Chern class x. Then the contribution of
a connected component Xg,h in Definition 3.2 is

( ∏

λ(g)=λ(h)=0

xλ

)
×

∏

λ

Φ(g, h, λ, z, τ, xλ)

×
∏

k

Φ(g, h, εk, (1 + δk)z, τ, ek)
Φ(g, h, εk, z, τ, ek)

θ(−z)
θ(−(δk + 1)z)

[Xg,h].

The proposition follows from the transformation properties of Φ(g, h, κ, z, τ, x)
proven in Theorem 4.3 of [7]. Note that these properties yield that the trans-
formation (z, τ) → (z + mnτ) transforms Ellorb(X, E, G) as a Jacobi form
provided:

∑
λ xλ +

∑
δkEk = 0 and for any g ∈ G one has

mn

(
∑

λ

λ(g) +
∑

k

δkεk(g)

)
∈ Z.

Those are the assumptions of the proposition. The Jacobi property for the
transformation (z, τ) → (z + 1, τ) also uses the above condition. The other
two generators of ΓJ mentioned above transform the contribution of the pair
(g, h) into the contribution for the pairs (gh−1, h) and (h, g−1) respectively,
multiplied by the corresponding Jacobi factor.

We remark that the result of this proposition also follows from the main
Theorem 5.3 of this paper and [7, Prop. 3.8].

4. Toroidal morphisms of nonsingular pairs

The goal of this section is to derive pullback and pushforward formulas
for functions of divisor classes for certain maps of varieties with simple normal
crossing divisors on them.

Let Z be a smooth algebraic variety, together with an open set UZ whose
complement is a simple normal crossing divisor D =

∑
i∈IZ

Di, where Di are
the irreducible components of D. To every subset I ⊆ IZ and every connected
component ZI;j of ZI = ∩i∈IDi we associate a cone CI;j in the lattice NI;j

∼=
Z|I|. We denote the standard basis of NI;j by {ek;j}, k ∈ I. The cone CI;j is
defined as ⊕k∈IR≥0ek;j . For any cone C its relative interior will be denoted
by C◦.

If I1 ⊆ I2 and a connected component ZI1 ;j1 contains a connected com-
ponent ZI2 ;j2 then we define a face inclusion map from NI1 ;j1 to NI2 ;j2 by
mapping ek;j1 to ek;j2 for every k ∈ I1. The image of the cone CI1 ;j1 under
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this map is a face of CI2 ;j2 , which explains the terminology. In agreement with
the terminology of [21] we define the conical polyhedral complex ΣZ of (Z, D)
as the union of all cones CI;j glued according to the face inclusion maps. We
will often refer to it as the conical complex. This is the same as the conical
polyhedral complex with an integral structure for the smooth toroidal embed-
ding without self-intersection, in the terminology of [21]. We also observe that
closed subvarieties ZI;j induce a stratification on Z. The corresponding locally
closed strata will be denoted by Z◦

I;j .
We define piecewise linear (resp. polynomial) functions on ΣZ as collec-

tions of linear (resp. polynomial) functions on each CI;j ∈ ΣZ which are com-
patible with all face inclusions. We will analogously talk about formal power
series on the conical complex by considering the completion of the space of
polynomial functions by the degree filtration, i.e. the space of collections of
formal power series on the vector space NI;j ⊗Z C for each ZI;j that are com-
patible with the face inclusions. There is a natural ring structure on the space
of formal power series, which we will denote by C[[ΣZ ]].

Another natural ring to consider is the partial semigroup ring defined by
the conical complex ΣZ . It is a vector space whose basis elements [v] are in
one-to-one correspondence with lattice points v of ΣZ . For every pair of points
v1, v2 ∈ ΣZ , the product [v1][v2] is defined as follows:

[v1][v2] =
∑̃

C∈ΣZ
v1 ,v2∈C

[v1 + v2],

where
∑̃

means that the same point of ΣZ that appears from different cones is
counted only once. Alternatively, it is enough to consider the cones C ∋ v1, v2

that do not contain any smaller such cone. In particular, the product is zero
if there are no cones C that contain both v1 and v2. This ring will be denoted
by C[ΣZ ]. It can also be thought of as a subring of the direct sum of the
semigroup rings ⊕I;jC[CI;j ] that consists of collections that are compatible
with the face inclusions. The identification is via mapping [v] to the collection
of [v] for C ∋ v and 0 otherwise.

It will be crucial to our calculations to construct a natural isomorphism
between the ring C[ΣZ ] and the subring of C[[ΣZ ]] that consists of piecewise
polynomial functions. Namely, for every cone CI;j we denote by xk;j the linear
functions on NI;j such that xk;j(el;j) = δl

k, where δ is the Kronecker sym-
bol. The element [v] = [

∑
k∈I akek;j ] of C[CI;j ] is mapped to the polynomial∏

k∈I
(xk;j)ak . If a collection of elements of C[CI;j ] is compatible with face re-

strictions, then so is the collection of the corresponding polynomial functions.
Indeed for any face inclusion between CI1 ;j1 and CI2 ;j2 the linear functions xk;j2

restrict to xk;j1 if k ∈ I1 and to 0 otherwise. It is straightforward to see that
this identification is compatible with the product structure. The inverse map
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from piecewise polynomial functions on ΣZ to C[ΣZ ] is easy to construct as
well. In what follows we will frequently pass from one description of C[Σ] to
the other.

Definition 4.1. We define a map ρ : C[[ΣZ ]] → A∗(Z) as follows. For every
lattice point v ∈ C◦

I;j given by

v =
∑

i∈I

kiei;j , ki ≥ 1

we define by f the corresponding piecewise polynomial function on ΣZ and set

ρ(f) = ZI;j ∩ (∩i∈I(Di)ki−1).

We extend the definition of ρ to arbitrary piecewise polynomial functions by
linearity. We extend it to arbitrary piecewise formal power series by noticing
that that only v with

∑
i ki ≤ dimZ contribute nontrivially.

Proposition 4.2. The map ρ defined above is a ring homomorphism.

Proof. It is enough to calculate the image of the product of two monomial
functions f1 and f2 that correspond to points v1 and v2 in the conical complex.
If there is no cone CI;j ∈ ΣZ that contains both v1 and v2, then f1f2 = 0. On
the other hand, in this case the components ZI1 ;j1 and ZI2 ;j2 do not intersect,
so ρ(f1)ρ(f2) = 0.

In general, the product f1f2 will correspond to
∑

CI;j ⊇ CI1 ;j1 ,CI;j ⊇ CI2 ;j2

[vCI;j ]

where I = I1 ∪ I2 and

vCI;j =
∑

i∈I1

ki,1ek;j +
∑

i∈I2

ki,2ek;j .

The cones CI;j are in one-to-one correspondence with the connected compo-
nents of the intersection ZI1 ;j1 ∩ ZI2 ;j2 . The image of each fCI;j under ρ is

ρ(fCI;j ) = ZI;j ∩ (∩i∈I1∪I2 D
ki,1+ki,2−1
i )

where ki,1 is defined to be zero for i ̸∈ I1 and similarly for ki,2. On the other
hand, the excess intersection formula [14] gives

ZI1 ;j1 ∩ ZI2 ;j2 =
∑

j

ZI;j ∩ (∩i∈I1∩I2 Di)

in A∗(Z). Then it is easy to see that ρ(f1f2) = ρ(f1)ρ(f2).
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Remark 4.3. If all ZI = ∩i∈IDi are either empty or connected, then the
above discussion simplifies greatly. Then the image of ρ is precisely the subring
of A∗(Z) generated by the classes of Di. The difficulty was to somehow localize
a polynomial in Di to the correct connected component.

Remark 4.4. The relation between lattice points of ΣZ and piecewise poly-
nomial functions on ΣZ becomes important for what follows. While the former
are easier to describe, the latter behave better under pullbacks.

We now define a certain class of morphisms between two varieties Ẑ and
Z with the normal crossing divisors D̂ and D respectively. This is a particular
case of the general definition of [2].

Definition 4.5. We call a proper generically finite morphism µ : Ẑ → Z
toroidal if the following conditions hold.

• D̂ = µ−1D and the morphism µ is finite and nonramified outside of D̂.

• The image of the closure of any stratum of Ẑ is the closure of a stratum
in Z.

• For every pair of points ẑ ∈ Ẑ and z ∈ Z such that µ(ẑ) = z and every
system of local analytic coordinates at z such that the components of D
that pass through z are coordinate hyperplanes, there exists a system of
local analytic coordinates at ẑ such that the map µ is given by monomials.

We claim that locally in Z a toroidal morphism is given by a finite toric
morphism. A local description of a finite toric morphism can be seen in Figure 1
where the positive orthant in one lattice is subdivided into cones of determinant
1 in a smaller lattice. We refer the reader to [15] for the background on toric
geometry.

Remark 4.6. Let C be a positive orthant in a lattice N and let N̂ be a
finite index sublattice of N . Then to each subdivision Σ of C into cones of
determinant one in N̂ (see Figure 1) one can associate a proper generically
finite toric morphism between the smooth toric variety that corresponds to
(N̂ , Σ) and the smooth toric variety CrkN that corresponds to (N,C).

As in [2], to every toroidal morphism we associate a map ν : ΣẐ → ΣZ as
follows. For a cone CÎ,ĵ , pick a generic point ẑ on the corresponding connected
component ẐÎ;ĵ and consider the above monomial map between the neighbor-
hoods of ẑ and z = µ(ẑ). The point z lies in the stratum ZI;j for some I and j.
For every î ∈ Î consider the point in CI;j whose coordinates are the degrees of
the local variables that correspond to î in the expressions of the variables that
correspond to Di, i ∈ I. This defines the image of the point eî;ĵ in CI;j and the
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Figure 1

map is extended to the whole ΣẐ by linearity. This map is compatible with
the face inclusions and is thus well-defined. Indeed, it encodes the coefficients
of D̂î in the divisors µ∗Di.

Moreover, we can describe the preimage of any cone CI;j as follows. Let
z be a generic point of the corresponding stratum Z◦

I;j and let U be a small
analytic neighborhood of z. Let Û be one of the connected components of the
preimage of U . We denote by U◦ and Û◦ the intersections of U and Û with
the complements of D and D̂ respectively. Then µ induces a finite nonramified
covering map from Û◦ to Û . Since the fundamental group of U◦ is naturally
isomorphic to NI;j , this covering gives a map from NI;j to a finite group. The
kernel of this map is the fundamental group of Û◦. It is a finite index subgroup
of N = NI;j which we denote by N̂ . The map from Û to U can be factored
through the singular variety U1 which is the preimage of U under the natural
map from Spec[C∗

I;j ∩ N̂ ] → Spec[C∗
I;j ∩N ]. Then the arguments of [21, Ch. 2,

§2] show that the map from Û to U1 comes from a subdivision of the cone CI;j

in N̂ into cones of volume 1 as in Figure 1.
In general, it is possible that different connected components of the preim-

age of U are part of the same connected component of the preimage of Z◦
I;j .

However, we have just shown that the preimage ν−1C◦
I;j of the interior of CI;j

is a union of connected components, each of which corresponds to a finite toric
morphism. Namely, for each component, there is a sublattice N̂ of finite index
in the lattice N = NI;j . The relative interior of cone CI;j is subdivided into
several simplicial cones of volume 1 in the lattice N̂ as in Figure 1. We will de-
note this subdivision by ΣCI;j , if it is clear from the discussion which connected
component of ν−1C◦

I;j we are referring to. Then every cone of ΣCI;j is a cone of
ΣẐ with the lattice N̂ as the corresponding lattice. For the stratum Z◦

I;j the re-
striction of µ to the preimage of an analytic neighborhood U of Z◦

I;j is described
by ν in the following sense. The connected components of this preimage are
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in one-to-one correspondence with the connected components of ν−1C◦
I;j . Let

us fix one such connected component, which we will denote by Û . It is easily
seen to be a neighborhood of the union of the strata Ẑ◦

Î;ĵ
for all CÎ;ĵ ∈ ΣCI;j .

Moreover, it is a locally trivial fibration with fibers isomorphic to the preim-
age in PN̂,ΣCI;j

of a disc around the origin under the map of Remark 4.6. The
base is isomorphic to some smooth variety W which is a nonramified cover of
degree di;j of Z◦

I;j . The map µ on U is locally on Z isomorphic to a product of
the map from Remark 4.6 and an identity map along. Here W can be taken
to be any stratum on Ẑ that corresponds to a maximum-dimensional cone in
ΣCI;j . The numbers dI;j depend on the connected component Û and they will
be important in our description of the pushforward.

Our goal is to investigate the restriction of µ∗ and µ∗ to the subrings of
A∗(Ẑ) and A∗(Z) which are images of ρ̂ = ρẐ and ρ = ρZ .

Proposition 4.7. The data of finite toroidal morphism define a map

ν∗ : C[[ΣZ ]] → C[[ΣẐ ]]

simply by pulling back the corresponding functions via ν. This map is a lifting
of µ∗ in the sense that

ρ̂ ◦ ν∗ = µ∗ ◦ ρ.

Proof. Let us first check this for a linear function on ΣZ . Every such
function corresponds to a divisor

∑
i αiDi. Then locally this is a statement of

toric geometry, namely that the preimage of a divisor under a map between two
toric varieties is given by the same piecewise-linear function, which is apparent
from the definition of ν.

It is then enough to check this statement for a function f that corresponds
to a point v =

∑
i∈I ei;j in the relative interior of a cone CI;j ∈ ΣZ , since both

ν∗ and µ∗ are ring homomorphisms. We can restrict our attention to a Zariski
neighborhood U of ZI;j such that U ∩ZI = ZI;j . Then all we need is the above
statement in toric geometry, restricted to U , together with the fact that µ∗

and ν∗ are ring homomorphisms.

It is a bit more difficult to describe the pushforward.

Theorem 4.8. Let ν∗ be defined as follows. For every f ∈ C[[ΣẐ ]] and
every cone CI;j ∈ ΣZ consider the subdivision ΣCI;j of each connected com-
ponent of ν−1C◦

I;j. For each CÎ;ĵ of ΣCI;j with |Î| = |I|, the power series in
the variables xî, î ∈ Î that corresponds to the restriction of f to CÎ,ĵ gives a
power series in the variables xi, i ∈ I via the linear change of variables that
corresponds to the inclusion of CÎ;ĵ into CI;j. This power series will be denoted
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by fÎ;ĵ. Then we define the element of C((xi;j)), i ∈ I

(ν∗f)I;j =
∑

ΣCI;j

dI;j

∑

CÎ;ĵ∈ΣCI;j ,|Î|=|I|

fÎ;ĵ

∏
i∈I xi;j∏
î∈Î xî;ĵ

(10)

where the outer sum is taken over all connected components of ν−1C◦
I;j. These

functions (ν∗f)I;j are compatible with face restrictions and actually lie in
C[[xi;j , i ∈ I]]. Thus they define a map ν∗ : C[[ΣẐ ]] → C[[ΣZ ]]. Moreover,
ν∗ is a lift of µ∗ in the sense that

µ∗ ◦ ρ̂ = ρ ◦ ν∗.

Proof. Let us check that the image of the function f is actually in C[[CI;j ]]
for every given cone CI;j . It is enough to consider one cone subdivision ΣCI;j .
The function ν∗f may have simple poles over hyperplanes that correspond to
cones of ΣCI;j of dimension |I|−1. Each such cone has two adjacent cones of
maximum dimension, and it is straightforward to see that the terms of (10) for
two such cones will contribute opposite residues for this hyperplane, because
of the compatibility condition on f .

Let us now show that ν∗f is well-defined as a map from C[[ΣẐ ]] to C[[ΣZ ]],
that is, the definition of (ν∗f)I;j is compatible with face inclusions. Let CI1 ;j1 be
a codimension one face of CI2 ;j2 . Hence I2 = I1 ∪ {i0}. The cones CÎ2 ;ĵ2

∈ ΣẐ
that map to the cone CI2 ;j2 and have the same dimension may or may not
contain a face CÎ1 ;ĵ1

that maps to CI1 ;j1 . In the latter case, the contribution of
such CÎ2 ,ĵ2

to (ν∗f)I2 ;j2 is going to restrict to zero on the face CI1 ;j1 . Indeed,
in equation (10), the restriction of the numerator to CI1 ;j1 vanishes, because
it contains the linear factor xi0 ;j2 , whereas the denominator does not vanish.
In the former case, the factor xi0 ;j2 will appear in the numerator while xî0 ;ĵ2

will appear in the denominator,where î0 is the linear function that vanishes on
CÎ1 ;ĵ1

. It is easy to see that

xi0 ;j2

xî0 ;ĵ2

=
|NI2 ;j2 : NÎ2 ;ĵ2

|
|NI1 ;j1 : NÎ1 ;ĵ1

| .

The other factors in the fraction would restrict to those for the contribution
of CÎ1 ;ĵ1

to (ν∗f)I1 ;j1 . For each cone CÎ1 ;ĵ1
there may be several different cones

CÎ2 ;ĵ2
as above, but we observe that for each CÎ1 ;ĵ1

∑

CÎ2 ;ĵ2

|NI2 ;j2 : NÎ2 ;ĵ2
|dI2 ;j2 = |NI1 ;j1 : NÎ1 ;ĵ1

|dI1 ;j1 .(11)

Indeed, both sides depend only on the connected component of ν−1CI1 ;j1 rather
than the specific cone CÎ1 ;ĵ1

. The right-hand side then describes the number
of points in the preimage of a point in the neighborhood of the stratum Z◦

I1 ;j1

that lie near a certain connected component Y of µ−1ZI1 ;j1 . Indeed, for any
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z ∈ Z◦
I1 ;j1 there is a neighborhood U ∋ z such that the preimage is isomorphic

to a union of dI1 ;j1 copies of a toric variety PNI1 ;j1 ,ΣCI1 ;j1
. For each copy the

map on the big open set is finite unramified of degree |NI1 ;j1 : NÎ1 ;ĵ1
|. The

left-hand side describes the sum of numbers of points in the preimage of a
point in the neighborhood of Z◦

I2 ;j2 sorted by the connected component of its
preimage. However, since we are summing over the connected components of
the preimage of ZI2 ;j2 that are part of the component of the preimage of ZI1 ;j1

both sides are the same.
Next, we observe that ν∗ is a module homomorphism with respect to the

C[[ΣZ ]]-algebra structure on C[[ΣẐ ]] induced by ν∗. Indeed, multiplication by
a pullback of a function g on ΣZ results in multiplication of all fÎ,ĵ in equation
(10) by g.

Because µ∗ is also a module homomorphism, it is now enough to check
that ρ(ν∗(f)) = µ∗(ρ̂(f)) for functions f from some generating set of C[ΣẐ ]
as a module over C[ΣZ ]. We claim that such a generating set can be taken
to be the set of f that correspond to minimal lattice points in the interiors
of cones. Indeed, for every cone CÎ;ĵ ∈ ΣẐ , consider a cone CI;j ∈ ΣZ that
it maps into the interior of under ν. It is easy to see that products of the
function f that correspond to the minimum interior point of v =

∑
î∈I eî;ĵ by

pullbacks of polynomial functions on CI;j span precisely the space of functions
that correspond to monomials from the interior of CÎ;ĵ . So it is now enough
to consider the function f that comes from the minimum interior point, where
we keep the notation as above. We recall that for such f we have ρ̂(f) = ẐÎ;ĵ .

In the case of |Î| < |I| the stratum ẐÎ,ĵ has image of smaller dimension,
so µ∗ρ̂(f) = 0. Consider all cones CÎ1 ;ĵ1

in ΣCI;j that contain CÎ;ĵ and have
dimension |I1| = |I|. These cones form the star of the neighborhood of CÎ;ĵ
in the fan ΣCI;j . The contributions of the fractions of equation (10) times the
corresponding f will be proportional to

∑

CÎ1 ;ĵ1

∏

î∈Î1 ,i̸∈Î

1
xî;ĵ1

.

Since all these linear functions xî;ĵ1
vanish on the span of CÎ;ĵ , one can work

on the quotient, where Lemma 8.5 implies that (ν∗f)I;j = 0.
We also need to check that (ν∗f)I1 ;j1 = 0 for all cones CI1 ;j1 ∈ ΣZ that

contain CI;j . These calculations are analogous and are left to the reader.
Let us now consider the case |Î| = |I|. In this case there will be only one

contribution to (ν∗f)I;j and we get

(ν∗f)I;j = dI;j

∏

i∈I

xi;j .
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We also claim that for every other cone CI1 ;j1 that contains CI;j we will have

(ν∗f)I1 ;j1 = dI;j

∏

i∈I

xi;j1 .

Indeed, for every connected component of ν−1(CI;j) the terms of equation (10)
will be zero except for the cones CÎ1 ;ĵ1

with |Î1| = |I1| that contain CÎ,ĵ . If we
again work in the quotient by the span of CÎ,ĵ , we see that Lemma 8.3 implies
that the total contribution of such CÎ1 ;ĵ1

is

dI1 ;j1

|NI1 ;j1 : NÎ1 ;ĵ1
|

|NI;j : NÎ;ĵ |
∏

i∈I

xi;j1 .

Then an analog of equation (11) finishes the calculation of (ν∗f)I1 ;j1 .
Then we conclude that ν∗f corresponds to dI;j times the minimum lattice

point of CI;j . On the other hand, the corresponding cycle ẐÎ,ĵ maps onto
ZI;j and the morphism is is generically finite of degree dI;j . Therefore, we get
µ∗ẐÎ,ĵ = dI;jZI;j , which finishes the proof.

5. Main theorem

Our goal is to prove that any G-equivariant morphism µ : Ẑ → Z of
smooth varieties which is birational to a quotient by G has the property that
the pushforward of the orbifold elliptic class in A∗(Ẑ) is the elliptic class in
A∗(Z). The strategy of the proof is to reduce the situation to a toroidal
morphism.

Let µ : Ẑ → Z be such a G-equivariant toroidal morphism. Let h be any
linear function on the fan ΣZ . The function h corresponds to the divisor

Dh =
∑

i∈IZ

αiDi.

We will also consider the divisor D̂h on Ẑ such that

µ∗(KZ + Dh) = KẐ + D̂h(12)

and
D̂h =

∑

î∈IẐ

α̂îD̂î.

The set IẐ splits into two sets Iexc
Ẑ

and Iram
Ẑ

according to whether or not Di

is contracted by µ to a smaller-dimensional variety. We will abuse notation
and call the divisors D̂î for i ∈ Iram

Ẑ
ramification divisors, and assign to each

of them the ramification index rî (which may be equal to 1). We observe that
if µ(D̂î) = Di, then

α̂î + 1 = rî(αi + 1).
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Since µ is birationally equivalent to a quotient morphism and is locally given
by the map between two toric varieties, it is easy to see that locally the group
G acts as a subgroup of the torus. The isotropy group of every point of the
stratum that corresponds to the cone CÎ;ĵ is equal to the index of

∑
î∈Î Zeî;ĵ

in the restriction of NCI;j to the Q-span of eî;ĵ . We will denote this group
by GÎ;ĵ .

Consider the following function E of z, τ with values in A∗(Ẑ).

E(z, τ) =
1
|G|

∑

g,h∈G;gh=hg

∑

Zg,h=ZÎ;ĵ

ZÎ;ĵ ×
∏

î∈IẐ

D̂îθ(
D̂î

2πi −z)θ′(0)

2πiθ( D̂î

2πi)θ(−z)

×
∏

î∈Î

θ( D̂î

2πi + gî −hîτ −(α̂î + 1)z)θ(−z)θ( D̂î

2πi)

D̂îθ(
D̂î

2πi + gî −hîτ)θ(−(α̂î + 1)z)θ( D̂î

2πi −z)
e2πi(α̂î+1)hîz

×
∏

î̸∈Î

θ( D̂î

2πi −(α̂î + 1)z)θ(−z)

θ( D̂î

2πi −z)θ(−(α̂î + 1)z)
.

Here gî and hî are the rational numbers in the range [0, 1) which describe the
characters of the action of g and h on the divisor D̂î at each point of ẐÎ;ĵ .

The following theorem describes the pushforward of E to Z.

Theorem 5.1.

µ∗E(z, τ) =
∏

i∈IZ

Diθ′(0)θ( Di

2πi −(αi + 1)z)
2πi θ( Di

2πi)θ(−(αi + 1)z)
.

Proof. We will use Theorem 4.8 to reduce the statement to a combinatorial
result. First, we observe that E(z, τ) can be obtained as ρ̂(F (z, τ)) where F
is defined as follows.

Consider the cone CÎ;ĵ that is a part of the subdivision ΣCI;j . Denote by
GÎ;ĵ the quotient of the intersection of the lattice ⊕i∈IZei;j with the rational
span of êî;ĵ , î ∈ Î by ⊕î∈ÎZêî;ĵ . The value of F (z, τ) on this cone is

FÎ;ĵ(z, τ) =
1
|G|

∑

g,h∈GÎ;ĵ

∏

î∈Î

x̂î;ĵθ
′(0)θ( x̂î;ĵ

2πi + gî −hîτ −(α̂î + 1)z)

2πi θ( x̂î;ĵ

2πi + gî −hîτ)θ(−(α̂î + 1)z)
e2πi(α̂î+1)hîz.

Indeed, for every g, h ∈ GÎ;ĵ there is a unique connected component of the
fixed point set of g and h that contains ZÎ;ĵ . Then we use the definition and
multiplicative properties of ρ, together with the fact that D̂î corresponds to
the function on ΣẐ that equals xî,ĵ for every CÎ;ĵ such that Î ∋ î and equals
zero otherwise.
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Now we need to calculate ν∗F (z, τ). Let us calculate the component of
ν∗F (z, τ) on a cone CI;j . By the definition of ν∗ we get

ν∗F (z, τ)I;j =

(
∏

i∈I

xi;j

)
∑

ΣCI;j

dI;j

|G|

∑

CÎ;ĵ∈ΣCI;j ,|Î|=|I|

∑

g,h∈GÎ;ĵ

∏

î∈Î

θ′(0)θ( x̂î;ĵ

2πi + gî −hîτ −(α̂î + 1)z)

2πi θ( x̂î;ĵ

2πi + gî −hîτ)θ(−(α̂î + 1)z)
e2πi(α̂î+1)hîz.

We now apply Lemma 8.1. Indeed, it is easy to check that equation (12) implies
that the values (αî + 1)z are values of a linear function on CI;j . As a result,
we get

ν∗F (z, τ)I;j =

(
∏

i∈I

xi;j

)
∑

ΣCI;j

dI;j

|G| |NI;j : NÎ;ĵ |
∏

i∈I

θ′(0)θ(xi;j

2πi −(αi + 1)z)
2πi θ(xi;j

2πi )θ(−(αi + 1)z)

=
∏

i∈I

xi;jθ′(0)θ(xi;j

2πi −(αi + 1)z)
2πi θ(xi;j

2πi )θ(−(αi + 1)z)
.

Here we use
∑

ΣCI;j
dI;j |NI;j : NÎ,ĵ | = |G|, which follows from the count of the

number of preimage points of a point close to the stratum ZI;j .
We now use Theorem 4.8 to get

µ∗E(z, τ) = µ∗ρ̂F (z, τ) = ρν∗F (z, τ) =
∏

i∈IZ

Diθ′(0)θ( Di

2πi −(αi + 1)z)
2πi θ( Di

2πi)θ(−(αi + 1)z)
.

Indeed, the calculation of ρν∗F (z, τ) is accomplished by the multiplicativity of
ρ and the fact that the power series in Di has constant term 1.

We will also need the following lemma that connects the Chern classes of
T Ẑ and µ∗TZ.

Lemma 5.2.

c(T Ẑ) =
∏

î∈IẐ

(1 + Dî)
∏

i∈I

(1 + µ∗Di)−1µ∗c(TZ).

Proof. First of all, it is easy to see that the pullback of the bundle of
logarithmic differentials on Z is the bundle of logarithmic differentials on Ẑ.
Then it is straightforward to calculate the ratio of Chern classes for the bundles
of logarithmic differentials and usual differentials for a variety with normal
crossing divisor. The details are left to the reader.

We are now ready to formulate and prove our main theorem.
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Theorem 5.3. Let (X; DX) be a Kawamata log-terminal pair which is
invariant under an effective action of G on X. Let ψ : X → X/G be the
quotient morphism. Let (X/G; DX/G) be the quotient pair ; see Definition 2.7.
Then

ψ∗ELLorb(X, DX , G; z, τ) = ELL(X/G, DX/G; z, τ).

Proof. The following lemma allows us to reduce the problem to the situ-
ation of a G-equivariant toroidal morphism.

Lemma 5.4. There exists a commutative diagram

µ : Ẑ → Z
↓ ↓

ψ : X → X/G

where the vertical arrows are resolutions of singularities and µ is a G-equivariant
toroidal morphism.

Proof. We define Z as a desingularization of (X/G, DX/G). Consider the
normalization of Z in the function field of X and the corresponding normal-
ization morphism. By Abhyankar’s lemma it is a (typically singular) toroidal
embedding with the toroidal morphism to Z. Then toroidal desingularization
finishes the job. See [3] for details.

Proof of Theorem 5.3 continues. By Lemma 5.4, Definition 3.7 and compo-
sition properties of pushforwards, it is sufficient to prove the pushforward result
for a G-equivariant toroidal morphism µ : Ẑ → Z which is birational to ψ. By
Lemma 5.2 and Definition 3.2 of the orbifold elliptic class ELL(Ẑ, DẐ , G; z, τ),
we see that

ELL(Ẑ,DẐ , G; z, τ) = E(z, τ)µ∗

(
∏

k

zkθ( zk

2πi −z)
θ( zk

2πi)

∏

i∈IZ

2πiθ( Di

2πi)θ(−z)
Diθ′(0)θ( Di

2πi −z)

)
.

Then Theorem 5.1 and the definition of the elliptic class ELL(Z, D; z, τ) finishes
the proof.

Remark 5.5. Theorem 5.3 gives an affirmative answer to the conjecture
of [7]. We call it the McKay correspondence for elliptic genera, analogously to
the homological McKay correspondence for stringy E-functions.
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6. DMVV formula for pairs

One of the motivations of the definition of orbifold elliptic genus in [7]
was the formula for the generating functions of elliptic genera of symmetric
products.

∑

n≥0

pnEllorb(Xn, Sn; z, τ) =
∞∏

i=1

∏

l,m

1
(1 −piylqm)c(mi,l)

.(13)

Here X is a Kähler manifold, Sn is the symmetric group acting on the n-fold
product and c(m, l) are the coefficients of the elliptic genus

∑
m,l c(m, l)ylqm

of X.
This formula was originally derived in [11] by means of some string-

theoretic arguments. In particular, the orbifold elliptic genus of a quotient
of a variety Xn by the symmetric group Sn was defined as the trace of a cer-
tain operator over the Hilbert space of the conformal field theory quotient of
Cn, where C is the superconformal field theory conjecturally associated to X.
In [7], DMVV formula was shown for the mathematically defined orbifold el-
liptic genus. Our goal now is to extend this result to singular varieties and
more generally to arbitrary Kawamata log-terminal pairs.

Theorem 6.1. Let (X, D) be a Kawamata log-terminal pair. For every
n ≥ 0 consider the quotient of (X, D)n by the symmetric group Sn, which we
will denote by (Xn/Sn, D(n)/Sn). Here we denote by D(n) the sum of pullbacks
of D under n canonical projections to X. Then we have

∑

n≥0

pnEll(Xn/Sn, D(n)/Sn; z, τ) =
∞∏

i=1

∏

l,m

1
(1 −piylqm)c(mi,l)

,

where the elliptic genus of (X, D) is
∑

m≥0

∑

l

c(m, l)ylqm

and y = e2πiz, q = e2πiτ .

Remark 6.2. In the case of smooth X with D = 0, the Fourier coefficient
of Ell(X, z, τ) at qm is a polynomial in y±

1
2 . In general other rational l are

possible, but more importantly, the coefficient at qm is no longer a polynomial
in y±

1
d , rather it is a rational function. However, we will always assume that

this function is Laurent expanded around y = 0, so we will be working in the
field of formal power series in y±

1
d , where d is divisible by 2 and all denomina-

tors of the discrepancy coefficients for some resolution of (X, D). The issue of
non-polynomiality was first raised in [4] at the q0 level.
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Proof. First of all, observe that the quotient of the tensor power of a
Kawamata log-terminal pair is again a Kawamata log-terminal pair. Moreover,
by Theorem 5.3, we can calculate the elliptic genus of (Xn/Sn, D(n)/Sn) as an
orbifold elliptic genus of (Xn, D(n), Sn). A resolution of singularities (X̂, D̂) of
the pair (X, D) induces a birational morphism X̂n → Xn so we may assume
that (X, D) is nonsingular, i.e. X is smooth and D is a normal crossing divisor∑

i αiDi with αi > −1. While the divisor D(n) on Xn has simple normal
crossings, it is not Sn-normal. Indeed the pullbacks of the same component
Di via different projections are group translates of each other and certainly
intersect and are nontrivially permuted by the isotropy group of any such
intersection point that lies on the main diagonal X ⊆ Xn. To rectify this
situation we need to consider an appropriate blowup of Xn. By Remark 3.11,
each pair of commuting elements (g, h) can be handled separately.

Let us describe the pairs of commuting elements g, h ∈ Sn and the con-
nected components of their fixed point set. If the cycle decomposition of h has
aj cycles of degree j, then the fixed point set of h on Xn is the product of∑

j aj copies of X, embedded into Xn by the product of diagonal embeddings
of X into Xj for each cycle of length j. Elements g of Sn that commute with
h form a semidirect product of the group Ch =

∏
j(Z/jZ)aj which consists of

the products of powers of cycle components of h and the group Bh =
∏

j Saj

which consists of the group that permutes cycles of the same length without
disturbing the order in the cycle. A fixed point set of each such pair (g, h)
consists of points on X

∑
j aj that are preserved by the image of g in Bh. It

is easy to see that the contribution of each such (Xn)g,h is the product of the
contributions of each factor. As a result, it is enough to consider the con-
tribution of the diagonal embedding of X into Xij = (Xj)i where h acts by
permuting the copies of X inside each Xj and g acts by a product of a cyclic
permutation of i copies of Xj and some cyclic permutations within each Xj ,
that does not change the cyclic orders of the components of Xj . Then gi = hs

for some 0 ≤ s ≤ j −1, and s determines the action uniquely. Namely, if
xk,l, k ∈ Z/iZ, l ∈ Z/jZ denote the components of Xij , then we may assume
that h acts by xk,l → xk,l+1 and g acts by xk,l → xk+1,l for k = 0, . . . , i −2
and xi−1,l → x0,l+s. We will denote by G the group generated by g and h.
It is an abelian group of order ij given by the generators g, h and relations
gh = hg, gi = hs, hj = 1. We denote the corresponding product of ij copies of
X by XG, which indicates the action of G on it.

We now need to make (XG, D(G)) into a G-normal pair. Let Dc, 1 ≤ c ≤ k
be the irreducible components of D on X. We will denote by Dr,c, r ∈ G the
pullback of Dc under the rth projection map XG → X. We will perform the
following sequence of blowups to XG. First, we blow up ∩r∈GDr,1, then we blow
up the proper preimage of ∩r∈GDr,2, and so on. We can describe this blowup in
terms of the subdivision of the conical complex that corresponds to the simple



1556 LEV BORISOV AND ANATOLY LIBGOBER

normal crossing divisor D(G) on XG. For the sake of simplicity we assume that
the intersection of every number of components Dc on X is connected. The
general case is completely analogous, it can also be reduced to the connected
case by further blowups of X. Every cone C of the conical complex ΣXG

is generated by elements er,c for some subset of IC ⊆ G × {1, . . . , k}. We
denote by JC the subset of {1, . . . , k} that consists of all c for which IC ⊇
G × {c}. The subdivision of C that corresponds to this sequence of blowups
is then the product of Z≥0er,c for (r, c) ∈ IC , c ̸∈ JC and the product over all
c ∈ JC of the subdivisions of

∑
r∈G Z≥0er,c where the extra vertex

∑
r∈G er,C

is added and the cone is subdivided accordingly. It is clear that this is a
well-defined subdivision of ΣXG and we denote the corresponding variety by
X̂G and the corresponding divisor by D̂(G). We observe that there are k
exceptional components of D̂(G), which we will call Ec, and the rest are the
proper preimages of the components of D(G).

We need to describe connected components of the fixed point set of G on
X̂G. Every such fixed point maps to the diagonal X ⊆ XG, and should lie on
the stratum of the stratification by the intersections of components of D̂(G) that
is stable under the group action. Since the construction is local in X, we need to
see what happens when X is a Cn with D given as a union of some coordinate
hyperplanes z1 = 0, z2 = 0, . . . , zl = 0. The extra coordinates zl+1, . . . , zn

will have an effect of tensoring the construction by an affine space, so it is
enough to look at the l = n case. Then we need to investigate the fixed point
sets of the toric variety that corresponds to a certain blowup of the positive
orthant in Zijk where the generators are denoted by er,c, r ∈ G, 1 ≤ c ≤ l.
The group G acts by multiplication on the first component of the index of
the coordinate. The rays of the fan of the blowup that are fixed under G
correspond to e∗,c =

∑
r∈G er,c. Moreover, it is easy to see that the only strata

that are preserved by G are the intersections of the corresponding divisors. In
other words, we need to consider the faces of the l-dimensional cone C which
is a part of the subdivision of the positive orthant and is the span of all e∗,c.
This cone corresponds to the affine set which is isomorphic to

Cl × (C∗)ijl−l.(14)

The coordinates on (C∗)ijl−l are given by xr,cx−1
r1 ,c and the coordinates on Cl

are given by x0,c. Let P be a fixed point of G. For each c, xr,c/xr1 ,c =
exp(2πiλ(r −r1)) for some character λ : G → Q/Z. If λ is nontrivial then x0,c

is zero, and otherwise arbitrary values of x0,c are allowed. Moreover, for each
component of the fixed point set the map to Cn ⊆ (Cn)G is an embedding.
Indeed, it is clear for each factor CG that corresponds to the Dc. Basically, for
each factor, the blowup locus intersects the main diagonal of CG in codimension
one, namely at the origin.
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Returning to the global situation, the above description tells us that con-
nected components of the fixed point set Y of X(G) correspond to the collec-
tions of characters λc : G → Q/Z. The fixed point set for each such character
is isomorphic to DI = ∩i∈IDi where I is the set of those components c for
which λc is nontrivial. Indeed, this follows from the fact that locally the map
from the component of the fixed point set to XG is an embedding. We observe
that for some combinations of characters we may have DI = ∅.

We now need to calculate the tangent bundle to such a component, which
we will denote by Yλ1 ,...,λk

. Notice that the divisors D̂r,c do not intersect with Y .
Indeed, every G-invariant point of D̂r,c would belong to D̂r1 ,C for all r1, but the
intersection of all these divisors is empty since π factors through the blowup
of the intersection of Dr,C , r ∈ G. As far as intersection with Ec is concerned,
Yλ1 ,...,λk

is contained in Ec for λc ̸= 0 and intersects transversally the other
Ec. For λc = 0 the intersection of Ec and Yλ1 ,...,λk

can be identified with the
intersection by Dc under the isomorphism Yλ1 ,...,λk

∼= DI . The character of G
that corresponds to Ec ⊇Yλ1 ,...,λk

is equal to λc.
The Chern classes of the tangent bundles of X̂G and XG are related by

Lemma 5.2, namely

c(TX̂G) = π∗c(TXG)
k∏

c=1

(1 + Ec)
∏

r∈G,1≤c≤k

(1 + D̂r,c)
(1 + π∗Dr,c)

where D̂r,c is the proper preimage of Dr,c. Notice that as classes in A∗(X̂G),
D̂r,c = π∗Dr,c −Ec. Moreover, we can write c(TXG) as ⊕r∈GTXr where TXr

is the pullback of the tangent bundle of X under the rth projection. Since D̂r,c

are disjoint from Yλ1 ...,λk
, we get

c(i∗TX̂G) = i∗π∗c(TXG)
k∏

c=1

(1 + i∗Ec)1−|G|

where i : Yλ1 ,...,λk
→ X̂G is the embedding. Notice that π restricts to an em-

bedding on Yλ1 ,...,λk
with image DI ⊆ X ⊆ XG where I is the set of all c

that for which λc is nontrivial. The following lemma describes i∗TX̂G in more
detail.

Lemma 6.3. Let λ be a character of G. Then the λ-component Vλ of
the restriction of TX̂G to Yλ1 ,...,λk

, identified with DI ̸= ∅ can be described as
follows. If λ = 0, then Vλ = TDI . If λ ̸= 0, then there is an exact sequence

0 → j∗TXlog → Vλ →
⊕

c,λc=λ

O(Dc) → 0

where j is the embedding DI → X and TXlog is the dual to the bundle of
log-differentials for (X, D).
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Proof. We observe that Yλ1 ,...,λk
is contained in the intersection of Ec

for λc ̸= 0, which induces a G-equivariant surjection from the restriction of
TX̂G to the restriction of ⊕λc ̸=0O(Ec) with the kernel being the restriction
of the tangent space to ∩λc ̸=0Ec to Yλ1 ,...,λk

. It is easy to see that under the
identification of Yλ1 ,...,λk

with DI the restriction of O(Ec) is isomorphic to
O(Dc) and has character λc.

So we now need to investigate the restriction of the tangent space of
∩λc ̸=0Ec and its eigenbundles. The λ = 0 case is clear, so it is enough to
consider the normal bundle to Yλ1 ,...,λk

in ∩λc ̸=0Ec. Locally, in the notation
of (14), this bundle is isomorphic to the restriction of the tangent bundle of
(C∗)ijk−k. The cotangent bundle of (C∗)ijk−k is generated by dxr,c

xr,c
−dxr1 ,c

xr1 ,c
, so

its λ-eigenbundle is isomorphic to a bundle generated by dxc

xc
, which is precisely

the bundle of logarithmic differential forms. Even though (14) refers to the
neighborhood of a point of the intersection of dimX divisors Dc, it is clear
that the general case is obtained by a Cartesian product with a disc and the
identification is still valid. It remains to notice that this identification behaves
well under coordinate changes.

Proof of Theorem 6.1 continues. In view of Lemma 6.3, the contribution
of (g, h) to the orbifold elliptic genus of (XG, D(G)) is

∑

{λ1 ,...,λk},∩λc≠0Dc ̸=∅

∫

X

( ∏

c,λc ̸=0

Dc

) ∏

l

xlθ( xl

2πi −z)
θ( xl

2πi)

∏

c,λc ̸=0

θ( Dc

2πi)
Dcθ( Dc

2πi −z)

×
∏

λ̸=0

( ∏

l

θ( xl

2πi + λ(g) −λ(h)τ −z)
θ( xl

2πi + λ(g) −λ(h)τ)
e2πiλ(h)z

×
k∏

c=1

θ( Dc

2πi + λ(g) −λ(h)τ)θ(λ(g) −λ(h)τ −z)
θ( Dc

2πi + λ(g) −λ(h)τ −z)θ(λ(g) −λ(h)τ)

)

×
∏

c,λc ̸=0

θ( Dc

2πi + λc(g) −λc(h)τ −z)
θ( Dc

2πi + λc(g) −λc(h)τ)
e2πiλc(h)z

×
∏

c,λc ̸=0

θ( Dc

2πi + λc(g) −λc(h)τ −|G|(αc + 1)z)θ(−z)
θ( Dc

2πi + λc(g) −λc(h)τ −z)θ(−|G|(αc + 1)z)
e2πi(|G|αc+|G|−1)λc(h)z

×
∏

c,λc=0

θ( Dc

2πi −|G|(αc + 1)z)θ(−z)
θ( Dc

2πi −z)θ(−|G|(αc + 1)z)

where we have used the fact that the coefficients by Ec in the log-pair on X̂G

are (|G|αc −|G| −1) and other divisors do not intersect the fixed point set
and are thus irrelevant. After observing that the formula gives 0 for the case
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DI = ∅, the above can be rewritten as

Fi,j,s =
∑

{λ1 ,...,λk}

∫

X

∏

l

(
xl

∏

λ

θ( xl

2πi + λ(g) −λ(h)τ −z)
θ( xl

2πi + λ(g) −λ(h)τ)
e2πiλ(h)z

)

×
∏

λ̸=0

k∏

c=1

θ( Dc

2πi + λ(g) −λ(h)τ)θ(λ(g) −λ(h)τ −z)
θ( Dc

2πi + λ(g) −λ(h)τ −z)θ(λ(g) −λ(h)τ)

×
∏

c

θ( Dc

2πi)θ(
Dc

2πi + λc(g) −λc(h)τ −|G|(αc + 1)z)θ(−z)
θ( Dc

2πi −z)θ( Dc

2πi + λc(g) −λc(h)τ)θ(−|G|(αc + 1)z)
e2πi|G|(αc+1)λc(h)z.

We will use the following lemmas that take into account the specific form
of G.

Lemma 6.4.

∏

λ

θ( xl

2πi + λ(g) −λ(h)τ −z)
θ( xl

2πi + λ(g) −λ(h)τ)
e2πiλ(h)z =

θ( ixl

2πi −iz, iτ−s
j )

θ( ixl

2πi ,
iτ−s

j )
.

Proof. First, we observe that the set of pairs (λ(g), λ(h)) can be taken to
be the set of pairs (m

ij , n
j ) such that 0 ≤ n ≤ j −1, 0 ≤ m ≤ ij −1 and m = ns

mod j.
Let us check the transformation properties of the left-hand side of the

equation under z → z + 1/i. The exponential factors contribute

exp(2πi
1
i

∑

λ

λ(h)) = exp(2πi
j−1∑

n=0

n

j
) = (−1)j−1.

For each n = 0, . . . , j −1, the set of λ(g) is given by the fractional parts of
ns
ij + k

i , k = 0, . . . , i−1. There will be exactly one such fractional part which is
less than 1

i . The transformation z → z + 1/i switches these fractions around
except for the extra 1 for the fraction with λ(g) < 1

i . As a result, we get
the extra factor (−1)j from the numerator, so overall the left-hand side of the
equation changes sign under z → z + 1

i , as does the right-hand side.
Now, let us check the transformation properties of the left-hand side under

z → z + iτ−s
ij . This variable change amounts to n → n + 1, m → m + s, which

moves around the θs in the numerator, except for the cases when new values
of m and n fall out of their prescribed ranges. In the case of m falling out
of its range, the extra factor required to put it back in is (−1). It is easy to
calculate the number of such occurrences, because the sum of all m is going to
change by ijs which require s switches to put into the correct range. So the
extra factor from the switches of m is (−1)s. In the case of n, it falls out of
the range when it goes from (j −1) to j. In this case we get m = 0 mod j,
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so λ(g) = k
i , k = 0, . . . , i −1. The extra factors come from the transformation

properties of θ and equal

(−1)ie
∑i−1

k=0 (2πi(
xl
2πi+

k
i
−z)−πiτ) = e−πi+ixl−2πiiz−πiiτ .

The exponential factors contribute exp(πi(j −1) (iτ−s)
j ), so the overall factor is

e−πi+ixl−2πiiz−πiiτ+πi(j−1) (iτ−s)
j

+πis = −eixl−2πiiz−πi (iτ−s)
j

which is exactly the effect of the transformation z → z+ (is−τ)
ij to the right-hand

side of the equation.
It is straightforward to check that both sides have no poles and the same

zeroes as functions of z, therefore their ratio is a holomorphic elliptic function,
hence a constant. It remains to observe that both sides equal 1 for z = 0.

Lemma 6.5.

∏

λ̸=0

θ( Dc

2πi + λ(g) −λ(h)τ)θ(λ(g) −λ(h)τ −z)
θ( Dc

2πi + λ(g) −λ(h)τ −z)θ(λ(g) −λ(h)τ)

=
θ( iDc

2πi ,
iτ−s

j )θ( Dc

2πi −z)θ(−iz, iτ−s
j )θ′(0)

θ( iDc

2πi −iz, iτ−s
j )θ( Dc

2πi)iθ′(0, iτ−s
j )θ(−z)

.

Proof. We use the result of Lemma 6.4 with xl replaced by Dc and the
limit of the same calculation as xl → 0.

Proof of Theorem 6.1 continues. By Lemmas 6.4 and 6.5, we can rewrite
Fi,j,s as

Fi,j,s =
∑

{λ1 ,...,λk}

∫

X

∏

l

(
xl

θ( ixl

2πi −iz, iτ−s
j )

θ( ixl

2πi ,
iτ−s

j )

)
k∏

c=1

e2πiij(αc+1)λc(h)z

×
k∏

c=1

θ( iDc

2πi ,
iτ−s

j )θ(−iz, iτ−s
j )θ′(0)θ( Dc

2πi + λc(g) −λc(h)τ −ij(αc + 1)z)

θ( iDc

2πi −iz, iτ−s
j )iθ′(0, iτ−s

j )θ( Dc

2πi + λc(g) −λc(h)τ)θ(−ij(αc + 1)z)
.

We will use the following lemma.

Lemma 6.6.

∑

λ

θ(u + λ(g) −λ(h)τ −v)
θ(u + λ(g) −λ(h)τ)

e2πiλ(h)v = i
θ′(0, iτ−s

j )θ(−v)θ(iu −v
j , iτ−s

j )

θ′(0)θ(−v
j , iτ−s

j )θ(iu, iτ−s
j )

.

Proof. We use the following basic formula which is essentially contained
in [6], where the right-hand side converges for ℑ(τ) > ℑ(u) > 0.

−θ(u + z)θ′(0)
2πiθ(u)θ(z)

=
∑

k∈Z

e2πiku

1 −e2πize2πikτ
.
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We also recall the description of (λ(g), λ(h)) from Lemma 6.4. Not that the
quotient depends on the choice of λ(g) mod 1 only, so we can assume that
λ(g) = ns

ij + m
i , m ∈ Z/iZ. Then,

∑

λ

θ(u + λ(g) −λ(h)τ −v)
θ(u + λ(g) −λ(h)τ)

e2πiλ(h)v

=
i−1∑

m=0

j−1∑

n=0

θ(u −v + m
i + ns

ij −n
j τ)

θ(u + m
i + ns

ij −n
j τ)

e2πiv n
j

= −2πiθ(−v)
θ′(0)

i−1∑

m=0

j−1∑

n=0

∑

k∈Z
e2πiv n

j
e2πik(u+ m

i
+ ns

ij
−n

j
τ)

1 −e−2πive2πikτ

= −i
2πiθ(−v)

θ′(0)

j−1∑

n=0

∑

k∈Z

e2πiv n
j e2πikiue−2πikn iτ−s

j

1 −e−2πive2πikiτ

= −i
2πiθ(−v)

θ′(0)

∑

k∈Z

e2πikiu

(1 −e−2πive2πikiτ )
(1 −e2πive−2πik(iτ−s))

(1 −e2πiv 1
j e−2πik iτ−s

j )

= i
2πiθ(−v)

θ′(0)

∑

k∈Z

e2πikiue2πive−2πikiτ

(1 −e2πiv 1
j e−2πik iτ−s

j )

= −ie2πiv(1−1
j
) 2πiθ(−v)

θ′(0)

∑

k∈Z

e2πik(iu−(j−1) iτ−s
j

)

(1 −e−2πiv 1
j e2πik iτ−s

j )

= ie2πiv(1−1
j
)
θ(−v)θ′(0, iτ−s

j )θ(iu −(j −1) iτ−s
j −v

j , iτ−s
j )

θ′(0)θ(iu −(j −1) iτ−s
j , iτ−s

j )θ(−v
j , iτ−s

j )

= i
θ′(0, iτ−s

j )θ(−v)θ(iu −v
j , iτ−s

j )

θ′(0)θ(−v
j , iτ−s

j )θ(iu, iτ−s
j )

.

In the above calculations the series are absolutely convergent, as long as
ℑ(τ) > 0 and 1 > ℑ(u)

ℑ(τ) > j−1
j . Then analytic continuation finishes the proof.

Proof of Theorem 6.1 continues. By Lemma 6.6 we can rewrite

Fi,j,s =
∫

X

∏

l

(
xlθ( ixl

2πi −iz, iτ−s
j )

θ( ixl

2πi ,
iτ−s

j )

)
k∏

c=1

θ(−iz, iτ−s
j )θ( iDc

2πi −i(αc + 1)z, iτ−s
j )

θ( iDc

2πi −iz, iτ−s
j )θ(−i(αc + 1)z, iτ−s

j ).

We notice that when we calculate
∫
X , we only pick up the polynomials of

degree dimX in xl and Dc, which allows us to conclude that

Fi,j,s(z, τ) = Ell(X, D; iz,
iτ −s

j
).

We now recall that the contribution of the commuting pair of elements g, h ∈ Sn

to the orbifold elliptic genus of (Xn, D(n)) is 1
n! times the product of several
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Fi,j,s, each one corresponding to an orbit of the action of ⟨g, h⟩ on {1, . . . , n}.
Every such orbit Im will have im, jm and sm ∈ Z/jmZ uniquely specified. So
we have
∑

n≥0

pnEll(Xn/Sn, D(n)/Sn; z, τ)

=
∑

n≥0

pn
∑

gh=hg,g,h∈Sn

1
n!

∏

Im

Fim,jm,sm(z, τ)

=
∑

r : Z>0×Z>0→Z≥0

p
∑

i,j ijr(i,j)

∏
i,j r(i, j)!(ij)r(i,j)

∏

i,j

(
j−1∑

s=0

Fi,j,s(z, τ)r(i,j)

)
.

In this calculation we have used the fact that for n =
∑

i,j ijr(i, j) there are

1∏
i,j r(i, j)!

n!∏
i,j((ij)!)r(i,j)

ways to split {1, . . . , n} into groups of subsets so that there r(i, j) subsets of
“type (i, j)”. Then for each set of type (i, j) there are (ij)!

ij different ways to
define the action of the g and h conjugate to the standard action we have
discussed earlier. We now conclude that

∑

n≥0

pnEll(Xn/Sn, D(n)/Sn; z, τ) = exp

⎛

⎝
∑

i,j>0

j−1∑

s=0

pij

ij
Fi,j,s(z, τ)

⎞

⎠

= exp

⎛

⎝
∑

i,j>0

j−1∑

s=0

pij

ij
Ell(X, D; iz,

iτ −s

j
)

⎞

⎠

= exp

⎛

⎝
∑

i,j>0

∑

m,l

j−1∑

s=0

c(m, l)
pij

ij
yilq

im
j e2πi ms

j

⎞

⎠

= exp

⎛

⎝
∑

i,j>0

c(mj, l)
pij

i
yilqim

⎞

⎠

=
∞∏

j=1

∏

m,l

exp

(
c(mj, l)

∑

i>0

pij

i
yilqim

)

=
∞∏

j=1

∏

m,l

exp(−c(mj, l) ln(1 −pjylqm))

=
∞∏

j=1

∏

m,l

(1 −pjylqm)−c(mj,l),

which finishes the proof.
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Corollary 6.7. Let X be a complex projective surface and X(n) be the
Hilbert scheme of subschemes of X of length n. Let

∑
m,l c(m, l)ylqn be the

elliptic genus of X. Then
∑

n≥0

pnEll(X(n); z, τ) =
∞∏

i=1

∏

l,m

1
(1 −piylqm)c(mi,l)

.

Proof. By Theorem 5.3, the orbifold elliptic genus of the symmetric power
Xn/Sn equals the elliptic genus of its crepant resolution, which is provided by
X(n) in the surface case.

Remark 6.8. As a corollary of our work we easily deduce the analog of
the DMVV conjecture for wreath products; see [32].

7. Open questions

In this section we mention possible directions in which the results of this
paper could be extended.

The biggest drawback of our technique is that it does not establish the
elliptic genus of a Kawamata log-terminal pair as a graded dimension of some
natural vector space. In the smooth nonequivariant case such a description
is provided by (3). Even more interesting is the description of the elliptic
genus as the graded dimension of the vertex algebra which is the cohomology
of the chiral de Rham complex of [27]; see [6]. This is still open even in the
nonequivariant case. This would be very interesting even at the q = 0 level,
since it may give a vector space that realizes the stringy Hodge numbers of a
singular variety X.

It would also be interesting to try to somehow extend the results of this
paper to more general orbifolds (smooth stacks). The definition of orbifold
elliptic genus (no divisor) was extended to this generality in [13]. While our
paper focuses on the global quotient case, it is possible that its techniques may
still apply to the case of an algebraic variety with at most quotient singularities.
Indeed, the toroidal techniques are in some sense local. In a related remark, we
do believe that the analog of our main theorem holds for the orbifold elliptic
classes of (X, E, G) and (X/G1, E/G1, G/G1) where G is an arbitrary normal
subgroup of G.

The birational properties of elliptic genus mean that it is preserved under
K-equivalence (cf. [20], [31]). It is conjectured in [20] that K-equivalent va-
rieties have equivalent derived categories. This therefore points to a possible
connection between elliptic classes considered above and derived categories. It
is however more likely that both objects are a part of a bigger structure of
a conformal field theory which somehow behaves well under K-equivalence.
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This is largely speculative at this point, but it would be interesting to define
mathematically an invariant of a variety which would encompass both its de-
rived category and its elliptic genus. The situation is even more murky for
Kawamata log-terminal pairs, since it is unclear what the correct definition of
the derived category of the pair may be.

A mirror symmetric analog of a resolution of singularities is a deformation
to a smooth variety. Unfortunately, this theory is not nearly as developed as
the theory of birational morphisms. It would be interesting to define an analog
of a crepant resolution in this setting and to try to check the invariance of the
elliptic genus.

It is known that the elliptic genus for smooth manifolds has a rigidity
property. Recently, this property has been extended to the orbifold case in [13].
It is reasonable to try to extend this property to the case of Kawamata log-
terminal pairs. It is possible that the framework of pairs that consist of an
orbifold and an equivariant bundle over it (see [13]) will be useful.

It would be also interesting to see how the orbifold elliptic class of a singu-
lar variety X compares to the Mather Chern class of X; see for example [14].

8. Appendix. Assorted toric lemmas

In this appendix we collect several combinatorial statements which are
useful in our study of toroidal morphisms.

Lemma 8.1. Let Σ be a simplicial fan in the first orthant of a lattice
N = ⊕iZei. Moreover, let N̂ be a sublattice of N of finite index. We denote
the quotient group N/N̂ by G. We further assume that each cone C of Σ is
generated by a part of a basis of N̂ . We denote by xi the linear functions on
NC that are dual to ei. For each cone C of maximum dimension we denote by
{xi;C} the linear combinations of xi which are dual to the generators of C. Let
a be a linear function on N which takes values ai on ei and values ai;C on the
generators of C. Then

∑

C∈Σ,dimC=rkN

∑

g,h∈G

∏

i

θ′(0)θ(xi;C

2πi + gi;C −hi;Cτ −ai;C)
2πi θ(xi;C

2πi + gi;C −hi;Cτ)θ(−ai;C)
e2πiai;Chi;C

= |N : N̂ |
∏

i

θ′(0)θ( xi

2πi −ai)
2πi θ( xi

2πi)θ(−ai)

where gi;C and hi;C denote rational numbers in the range [0, 1) that are frac-
tional parts of the coordinates of the lifts of g and h to N in the basis of C.

In the case when the lattice N is one-dimensional one obtains the following
identity not involving toric data:



MCKAY CORRESPONDENCE FOR ELLIPTIC GENERA 1565

Corollary 8.2.

1
d

∑

0≤ i,j<d

θ( x
2πid + i

d − j
dτ −z)

θ( x
2πid + i

d − j
dτ)θ(−z)

e
2πizj

d =
θ( x

2πi −
z
d)

θ( x
2πi)θ(−

z
d)

.

The scheme of the proof is the same as in the general case below: one
checks that both sides have the pole of order 1 for x = 0 the residues are the
same and, moreover, the ratio of both sides is an elliptic function with respect
to x → x + 2πi, x → x + 2πiτ .

Proof. We will argue by induction on rkN , with rkN = 0 being the trivial
base of the induction (or checking first 8.2 as outlined above).

Let us study transformation properties of both sides of the equation under
the translations x1 → x1 + 2πi and x1 → x1 + 2πiτ . Under the transformation
x1 → x1 +2πi the term of the sum that corresponds to C, g, h changes into the
term that corresponds to C, g + e1, h. Indeed, the coefficients of e1 in the basis
of the cone C are the same as the coefficients of x1 in the linear functions xi;C .
As a result, both sides of the equation are unchanged under x1 → x1 + 2πi.
Under the transformation x1 → x1 + 2πiτ the term that corresponds to C, g, h
changes into the term that corresponds to C, g, h −e1 times e2πia1 . Indeed,
the extra factor comes from the exponential terms since a1 is the difference
between the value of a on h and h −e1. We also observe that the terms of
the product are such that any lift of h to N gives the same value, so the
fact that some of the coefficients of h −e1 in the basis of C are not in [0, 1)
is not a problem. Clearly, the right-hand side of the equation has the same
transformation properties.

We will now show that the left-hand side of the equation of the lemma has
only simple poles at x1 = 2πi(Z+Zτ), considered as a function of x1 with fixed
generic values of other parameters. By the above transformation argument, it
is enough to show there are no poles at the solutions to linear equations on
x1 given by xi;C = 0. We only need to worry about such xi;C that define
a noncoordinate hyperplane which corresponds to some cone C̄ of dimension
rkN −1 in the interior of the first orthant. This cone C̄ is contained in two
cones C and C ′ of maximum dimension and we argue that the contributions
of these cones to the singular part of the Laurent expansion around xi;C = 0
cancel. Let v1, . . . , vrkN−1, v be the generators of C and v1, . . . , vrkN−1, v′ be
the generators of C ′. It is easy to see that v+v′ =

∑rkN−1
i=1 civi for some integer

ci and

xi;C = xi;C′ + cixrkN ;C , 1 ≤ i ≤ rkN −1; xrkN ;C = −xrkN ;C′ .

There are similar transformation formulas for gi;C and hi;C . The poles at
xrkN ;C = 0 can be of order at most 1, and they can only occur in the case
grkN ;C = hrkN ;C = grkN ;C′ = hrkN ;C′ = 0. As a result, we only need to
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calculate the residue at this pole. The residue of the term that corresponds to
C ′, g, h is equal to

−1
c

rkN−1∏

i=1

θ′(0)θ(xi;C

2πi + gi;C −hi;Cτ −ai;C)
2πi θ(xi;C

2πi + gi;C −hi;Cτ)θ(−ai;C)
e2πiai;Chi;C

where c is the coefficient of x1 in xrkN ;C . This cancels the residue of the term
that corresponds to C, g, h.

By a standard argument from the theory of elliptic functions we conclude
that the left-hand side of the equation of the lemma has simple zeros at x1 =
2πi(a1 + Z + Zτ) and at no other points. Moreover, the ratio of the two sides
of the equation is independent of x1. It is therefore enough to verify that the
residues at x1 = 0 of both sides are same. Only the terms with cones C that
have a face C̄ of dimension rkN −1 that lies in the side of the orthant spanned
by e>1 can contribute to the residue. We will denote the generator of C that
does not lie in C̄ by e1. The residue occurs only for g1;C = h1;C = 0 and then
it equals

1
c

∏

i>1

θ′(0)θ(xi;C̄

2πi + gi;C̄ −hi;C̄τ −ai;C̄)
2πi θ(xi;C̄

2πi + gi;C̄ −hi;C̄τ)θ(−ai;C̄)
e2πiai;C̄hi;C̄

where c is the coefficient of x1 in x1;C . Here we have observed that xi;C restricts
to xi;C̄ on x1 = 0, and similarly for gi;C and hi;C . If the intersection of N̂ and
N with the span of e>1 are lattices N̂1 and N1 respectively, then

c =
|N1 : N̂1|
|N : N̂ |

.

It remains to apply the induction hypothesis to the fan Σ1 induced by Σ on
the span of e>1.

Lemma 8.3. Let Σ be a simplicial fan in the first orthant of a lattice
N = ⊕iZei. Moreover, let N̂ be a sublattice of N of finite index. We further
assume that each cone C of Σ is generated by a part of a basis of N̂ . We
denote by xi the linear functions on NC that are dual to ei. For each cone C of
maximum dimension we denote by {xi;C} the linear combinations of xi which
are dual to the generators of C. Then

∑

C∈Σ,dimC=rkN

1
∏rkN

i=1 xi,C

= |N : N̂ | 1
∏rkN

i=1 xi

.

Proof. By Lemma 8.1,
∑

C∈Σ,dimC=rkN

∑

g,h∈G

∏

i

θ′(0)θ( εxi;C

2πi + gi;C −hi;Cτ −ai;C)
2πi θ( εxi;C

2πi + gi;C −hi;Cτ)θ(−ai;C)
e2πiai;Chi;C

= |N : N̂ |
∏

i

θ′(0)θ( εxi

2πi −ai)
2πi θ( εxi

2πi)θ(−ai).
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It remains to look at the coefficient by ε−rkN in the Laurent expansion of both
sides around ε = 0.

Example 8.4. In the case of Figure 1 the identity of Lemma 8.3 is
1

x2(x1−2x2
3 )

+
1

(2x2−x1
3 )(2x1−x2

3 )
+

1
x1(x2−2x1

3 )
=

3
x1x2

.

Lemma 8.5. Let Σ be a simplicial fan in a lattice N such that the union
of all of its cones is a product of a subspace and a positive orthant. In addition,
we assume that all maximum-dimensional cones of Σ are generated by a basis
of N . Then ∑

C∈Σ,dimC=rkN

1
∏rkN

i=1 xi;C

= 0

where xi;C denote the basis of linear forms dual to the lattice generators of C.

Proof. By Lemma 8.3, applied to the case N̂ = N , the function 1∏rkN
i=1 xi;C

is additive on Σ, so we can replace Σ by any of its subdivisions with the same
properties. After an appropriate subdivision, we can assume that each cone of
Σ sits in one of the orthants and the support of Σ is ⊕i̸∈IR≥0ei + ⊕i∈IRei for
some basis {ei} and some nonempty set I. Then we apply Lemma 8.3 again
to show that

∑

C∈Σ,dimC=rkN

1
∏rkN

i=1 xi;C

=
∑

{σi}∈{1,−1}I

∏

i∈I

1
σixi

∏

i̸∈I

1
xi

= 0.
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