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Abstract. We show that closures of families of unitary local systems on quasiprojective
varieties for which the dimension of a graded component of Hodge filtration has a constant
value can be identified with a finite union of polytopes. We also present a local version of
this theorem. This yields the “Hodge decomposition” of the set of unitary local systems with
a non-vanishing cohomology extending Hodge decomposition of characteristic varieties
of links of plane curves studied by the author earlier. We consider a twisted version of
the characteristic varieties generalizing the twisted Alexander polynomials. Several explicit
calculations for complements to arrangements are made.

1. Introduction

Letρ : π1(X) → UN be a unitary N -dimensional representation of the fundamental
group of a non-singular quasiprojective variety X or, in other words, a unitary rank
N local system. It is well known (cf. [1,31]) that with this data one can associate the
cohomology groups Hi (X, ρ) and that the cohomology of a unitary local system
Vρ supports canonical mixed Hodge structure, part of which is the Hodge filtration
. . . F p+1 Hn(Vρ) ⊆ F p Hn(Vρ) ⊆ · · · .

One of the purposes of this paper is to study the structure of the family Sn,p
ρ,l

of local systems Vρ ⊗ Lχ with a fixed ρ corresponding to unitary characters
χ : π1(X) → C∗ for which the dimension of graded components Gr p

F = F p/F p+1

of the graded space associated with the Hodge filtration on cohomology satisfies
dimGr p

F Hn(X, Vρ⊗χ ) ≥ l. This structure, it turns out, is rather different in projec-
tive and quasiprojective cases and the difference will be explained shortly in this
introduction.

Secondly, we derive a local version of results on the structure of the sets of local
systems with fixed dimension of cohomology and also the sets of local systems with
fixed dimension of associated graded for Hodge filtration groups (a construction
of a mixed Hodge structure in this case, apparently absent in the literature and
therefore we give one in Sect. 3). The local and global situations are closely related
and in previous paper [24] we showed how such type of local data can be used to
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derive information about sets of local systems with fixed dimension of cohomology
in some quasiprojective cases. For simplicity, we assume in this paper that there
are no non-trivial rank one local systems on a non-singular compactification X̄ of
X i.e. H1(X̄ , C∗) = 0.

Let us first describe our local results (which global counterparts are in [1,9,30])
and consider a pair (X ,D) consisting of a germ of a complex space X having as its
link a simply connected manifold and a divisor D = ⋃

Di on X which is a union
of r irreducible components. In this case the family of the rank one local systems
on X −D is parameterized by a r -dimensional affine torus: H1(X −D, C∗) = C∗r

(cf. [11]). In Sect. 3 we show the following:

Theorem 1.1. The collection of local systems

Sn
l = {χ ∈ H1(X − D, C∗)|dimHn(X − D, Lχ ) ≥ l}

is a finite union of translated by points of finite order sub-tori of H1(X − D, C∗).1

This is a local counterpart of the translated subgroup property of the families of
rank one local systems with jumping cohomology on quasiprojective manifolds (cf.
[1]). Note that X −D is Stein but not quasiprojective and so, except for occasional
cases when it is homotopy equivalent to a quasiprojective manifold, this does not
follow immediately from [1]. Rather, we use a Mayer-Vietoris spectral sequence
for the union of tori bundles on quasiprojective manifolds, which, as we show,
degenerates in term E2 and this together with [1] yields the claim. As in [23] (cf.
also [12]) we call Sn

l the characteristic variety of (X ,D).
The Theorem 1.1 was conjectured in [23] where we also conjectured a procedure

for calculation of the translated sub-tori from the Theorem 1.1 in the case when X
is non-singular and D is an isolated non-normal crossing divisor (see Sect. 4 for
discussion of this case). The idea in [23] was to calculate the dimensions h p,q,n

χ of
the vector spaces defined in terms of the mixed Hodge structure on the cohomology
of a local system Lχ , using their relation to the homology of abelian covers and then
to apply the results to obtain the translated sub-tori in the Theorem 1.1 as the Zariski
closure in H1(X − D, C∗) of the image of the jumping loci of the Hodge group
under the exponential map. A special case of this approach is the algebro-geometric
calculation of the zeros of multivariable Alexander polynomials carried out in [22].
In Sect. 3 we address the issue of the existence of a Mixed Hodge structure on the
cohomology of local systems on X − D, which admit logarithmic extension with
eigenvalues belonging to [0, 1). This is a local version of the result of Timmescheidt
[31] (also [1]) and in the case of trivial local systems reduces to construction in
[13]. The Hodge numbers of local systems corresponding to χ ’s having finite order
in H1(X − D, C∗) obtained from the construction in Sect. 3 coincide with the
Hodge numbers h p,q,n

χ which are the dimensions of χ -eigenspaces of the covering
group acting on the Deligne’s Hodge groups of finite abelian covers of X −D. This
allows us in Sect. 4 to use the information obtained in Sect. 3 to study the Hodge
decomposition of abelian covers corresponding to isolated non normal crossings.

1 The assumption of simply connectedness of the link of X is used only to simplify the
exposition and can be dropped after some modification in the statement. Cf. work [3] for
such modification in related context.
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Now let us explain the difference between the loci with fixed dimension of
Gr p

F Hn in projective and quasiprojective cases. On compact Kahler manifolds, the
families of local systems can be identified with the families of topologically trivial2

holomorphic line bundles (cf. [30] or [3]) and those with jumping Hodge numbers
are the unions of translated abelian subvarieties of the Picard groups (cf. [9]). As
an example in quasiprojective case, let us look at the cohomology of local systems
on P1 − (0, 1,∞). The unitary local systems are parameterized by the maximal
compact subgroup in C∗ × C∗. One can show that the cohomology H1(P1 −
(0, 1,∞), Lχ ) of a local system corresponding to χ : π1(P1 − (0, 1,∞)) → C∗

and having a finite order n is isomorphic to the χ -eigenspace H1(Xn,n, C)χ ⊂
H1(Xn,n, C) where Xn,n is the abelian cover of P1 − (0, 1,∞) corresponding to
the reduction modulo n:

H1(P1 − (0, 1,∞), Z) = Z ⊕ Z → Z/nZ ⊕ Z/nZ

(in other words: H1(Xn,n, C)χ = {a ∈ H1(Xn,n, C)|g · a = χ(g)a where g ∈
Z/nZ⊕Z/nZ}). Such an abelian cover has as a model the complement to the fixed
points of non identity elements in the group Z/nZ ⊕ Z/nZ acting on a Fermat
curve:

Fn : xn + yn = zn, (x, y, z) → (ζ a
n x, ζ b

n y, z)

(ζn is a primitive root of degree n, a, b ∈ Z/nZ). In particular, each H1(P1 −
(0, 1,∞), Lχ ) acquires the Hodge and weight filtrations induced from
H1(Xn,n, C)χ . We shall focus on the weight 1 component Gr W

1 H1(Xn,n) =
H1(Fn) and will look for those χ for which

Gr1
F Gr W

1 H1(P1 − (0, 1,∞), Lχ ) = Gr1
F Gr W

1 H1(Fn, C)χ ̸= 0

Now the cohomology classes H1,0(Fn, C) are represented by the residues of mero-
morphic 2-forms on P2 with poles having order one along Fn cf. [10]:

P(x, y, z)zdx ∧ dy
xn + yn − zn

where P(x, y, z) is a homogeneous polynomial of degree n − 3. Since the group
Z/nZ ⊕ Z/nZ acts via multiplication of the coordinates (in particular generators act
as follows: gx : (x, y, z) → (ζn x, y, z), gy : (x, y, z) → (x, ζn y, z)) each non zero

eigenspace of the character χa,b such that χa,b(ga) = e
2π i(a+1)

n ,χa,b(gb) = e
2π i(b+1)

n

is generated by the monomial forms xa ybzn−3−a−bzdx∧dy
xn+yn−zn (0 ≤ a + b ≤ n − 3). On

the universal cover of the space of unitary characters, they are represented in terms
of ā = a + 1, b̄ = b + 1 by the triangle

{
ā
n
,

b̄
n
|ā > 0 b̄ > 0, ā + b̄ < n

} 3

2 One can also work with bundles for which the first Chern class is a torsion.
3 One can check that weight two part Gr1

F Gr W
2 H1(Xn,n)χ adds characters on the boun-

dary of this triangle.
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The situation described in this example is quite general. In Sect. 2.1 we prove
the following:

Theorem 1.2. Let X be a quasiprojective manifold without non-trivial rank one
local systems on a non singular compactification, ρ : π1(X) → UN be a
N-dimensional unitary representation , Charπ1(X) be the torus of characters of
the fundamental group and Charuπ1(X) be the subgroup of unitary characters. Let
U be the fundamental domain of π1(Charuπ1(X)) acting on the universal cover

˜Charuπ1(X) of the torus Charuπ1(X) and exp : U → Charuπ1(X) be the universal
covering map.4 Then

Sn,p
ρ,l = {χ ∈ Charuπ1(X)|dimGr p

F Hn(Vρ ⊗ Lχ ) ≥ l} (1)

is a finite union of polytopes in U , i.e., the subsets, each of which is the set of
solutions for a finite set of inequalities L ≥ 0 where L is a linear function.

The argument is based on a study of Deligne extensions and yields an inde-
pendent proof of quasiprojective version of Theorem 1.1 (i.e., the result of [1]).

We also prove that in the local situation of Theorem 1.1 the structure of the fami-
lies local system with fixed Hodge numbers is similar to the one in quasiprojective
case as described in Theorem 1.2. More precisely, we show the following:

Theorem 1.3. Let (X ,D) be a germ of a divisor with r irreducible components on
a germ of a complex space as in Theorem 1.1. Let X = X − D and Char X =
Charπ1(X) be the space of characters of the fundamental group of X.

Let Charuπ1(X) ⊂ Charπ1(X) be the maximal torus of unitary characters

and let U ⊂ ˜Charuπ1(X) be a fundamental domain of the covering group of the

universal cover ˜Charuπ1(X) of Charuπ1(X). For each pair (p, n) and l ∈ N
there exists a collection of polytopes S p,n

l ⊂ U such that the image of S p,n
l under

the covering map U → Charuπ1(X) consists of the local systems L satisfying
rk F p/F p+1 Hn(L) = l. The image of the union ∪p,(...,li ,...),

∑
l p=lS

n,p
li

under the

covering map ˜Charuπ1(X) → Charu X is the unitary part of characteristic variety:
Sn

l ∩ Charuπ1(X).

One of the tools used in the Proof of theorem 1.3 is the Mayer Vietoris spectral
sequence for the cohomology of rank one local systems on the union of quasipro-
jective manifolds with normal crossings which is discussed in Lemma 3.5.

In the case when (X ,D) is an isolated non-normal crossing (which is studied in
[11,23]) this has as a consequence the fact that the support of the homotopy groups
of the complements has canonical decomposition into a union of polytopes. These
polytopes can be related to the distribution of the Hodge numbers of abelian covers
and will be discussed in Sect. 4.

4 We identify the universal cover with the tangent space to Charuπ1(X), the universal
covering map with the exponential map and the fundamental domain U with the unit cube
in the tangent space.
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The next section studies an abelian generalization of the twisted Alexander
polynomials studied in [4]. We also prove a generalisation of the cyclotomic pro-
perty of the roots of Alexander polynomials (cf. Theorem 5.4) which lead to a
restrictions on class of groups which are isomorphic to the fundamental groups of
the complements to plane algebraic curves (cf. Theorem 5.7). Finally, in the last
section, we make explicit calculations of polytopes Sn,p

l in several examples.
The author wants to thank N.Budur and J.I.Cogolludo for their comments on

a draft of this paper. Note that the polytopes5 in this circle of questions were
introduced in [21] (cf. also [22]). Polytopes in the quasiprojective case were studied
recently by Nero Budur in [3] using Mochizuki’s work.

2. Hodge numbers of local systems on quasiprojective varieties

Let X be a quasiprojective manifold and let X̄ be a compact projective mani-
fold such that H1(X̄ , C∗) = 0, X̄ − D = X where D is a divisor with normal
crossings. Denote by %1

X̄
(logD) the sheaf of logarithmic 1-forms. We shall fix a

N -dimensional unitary representation ρ : π1(X) → UN such that there is a locally
trivial bundle V on X̄ , a meromorphic connection ∇ : V → %1

X̄
(logD) ⊗ V for

which the restriction on X is flat and the corresponding holonomy representation
is ρ (cf. [6]). Let χ : π1(X) → C∗ be a unitary character of the fundamental
group. Denote by Vρ⊗χ the local system corresponding to representation ρ ⊗ χ .
It follows from [1,31] that the cohomology groups Hi (X, Vρ⊗χ ) support three
filtrations F, F̂, W (F, F̂ being decreasing and W increasing) such that

dimGr W
n Hi (X, Vρ ⊗ Lχ ) = dimF pGr W

n + dim F̂q Gr W
n (p + q = n)

Moreover, these filtrations on the cohomology are independent of a particular com-
pactification X̄ used in their construction but rather depend only on X and ρ. Note
that F-filtration is the one resulting from the degenerating in E1-term Hodge–
deRham spectral sequence (cf. [31]):

E p,q
1 = H p(%q(logD) ⊗ Vρ⊗χ ) ⇒ H p+q(Vρ⊗χ ). (2)

Here Vρ⊗χ is a vector bundle on X̄ with flat logarithmic connection ∇ such that
the eigenvalues of the residues matrices Res∇ along components of D satisfy
0 ≤ Re < 1 and such that on X the holonomy of ∇ is the representation ρ ⊗ χ .
We call such V the Deligne’s (canonical) extension of a bundle on X supporting
the local system.

The set of unitary rank one local systems Charu(π1(X)) is parameterized by
the maximal compact subgroup of the torus Hom(π1(X), C∗). We assume for
simplicity throughout this paper that this torus is connected (i.e., H1(X, Z) is torsion
free) leaving to an interested reader the general case. As already was mentioned, we
view the universal cover ˜Charu(π1(X)) as the tangent space to Charu(π1(X)) at the
identity with the covering map being the exponential map. A choice of generators

5 Called “polytopes of quasiadjunction”.
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in H1(X, Z) = ⊕Zr allows one to identify the universal cover ˜Charu(π1(X)) with
Rn so that the generator of the i-th summand acts as (x1, . . . , xr ) → (x1, . . . , xi +
1, . . . , xr ). An exponential map yields the lattice ˜Charu(π1(X))Z = Ker(exp) ⊂

˜Charu(π1(X)). We use the unit cube

U : {(x1, . . . , xr )|0 ≤ xi < 1} (3)

as the fundamental domain for the action of ˜Charu(π1(X))Z = H1(X, Z) on the
universal cover ˜Charu(π1(X)). A subset of U is called a polytope if there exists
a collection of linear functions l j ∈ Hom( ˜Charu(π1(X))Z, Q) on the universal

cover ˜Charu(π1(X)) so that this subset is the set of solutions of a finite collection
of inequalities a j ≤ l j (u) < a′

j (a j , a′
j ∈ R).

The main result in this section is the following:

Theorem 2.1. Let X be a quasiprojective variety and let X̄ = X ∪ D be a com-
pactification such that H 1(X̄ , C∗) = 0. Let Sn,p

ρ,l be the subset of U defined as
follows.

Sn,p
ρ,l = {u ∈ U |dimGr p

F Hn(Vρ⊗exp(u)) ≥ l} (4)

Then (4) is a finite union of polytopes.

Proof. Let π : (X̃ , D̃) → (X̄ , D) be a log-resolution of (X̄ , D), i.e. the total
transform D̃ = ⋃

k=1,...,K D̃k of D is a normal crossing divisor. We claim that
on X̃ there are only finitely many bundles V which are the Deligne’s extensions
of the local systems in the family V ⊗ Lχ where χ ∈ Charπ1(X). Moreover,
the collection of unitary local systems in the torus Charu(π1(X)) having a fixed
Deligne’s extension is the image via the exponential map of a polytope in the
universal cover ˜Charu(π1(X)). The above theorem clearly follows from this.

Let ||ωi, j (ρ)|| (resp. ωχ ) be the connection matrix of a flat logarithmic connec-
tion (for a locally trivial bundle V on X̃ ) corresponding to the local system ρ

(resp. χ ), where ωi, j (ρ),ωχ ∈ '(U,%1
X̃
(log(D̃)) are logarithmic 1-forms in a

chart U ⊂ X̃ biholmorphic to a disk so that U ∩ D̃ in U is given by z1 · · · zk = 0.

For a component D̃k of the normal crossing divisor D̃ let RD̃k
i, j (ρ) = ResD̃k

ωi, j (ρ)

be the entries of the matrix of residues along D̃k (for the extension V). Let β D̃k
i (ρ) be

the collection of eigenvalues of the matrix RD̃k
i, j (ρ). The components of the matrix

of connection corresponding to the local system V ⊗ Lχ in a basis vi , i = 1, . . . , N
(resp. e) of V (resp. Lχ ) are ωi, jv j ⊗ e + ωχvi ⊗ e (the connection on the tensor
product is given by ∇(v ⊗ e) = ∇(v) ⊗ e + v ⊗ ∇(e)). Hence the eigenvalues of
ResDk ∇ρ⊗χ can be computed as:

β
Dk
i (ρ) + ResD̃k

∇χ (i = 1, . . . , N ). (5)

where ResD̃k
∇χ is the residue of the log-connection ∇χ in the rank one bundle

along D̃k .
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Let ω1, . . . ,ωr , ωs ∈ H0(X̃ ,%1
X̃
(log(D̃))) be a basis of the space of log

1-forms. Notice that dimH0(X̃ ,%1
X̃
(log(D̃))) = r since dimH1(X, C) =

dimH0(X̃ ,%1
X̃
(log(D))) + dimH1(X̄ ,OX̄ ) (cf. [7]), H1(X̄ , C∗) = H1(X̃ , C∗)

and we assumed that H1(X̃ , C∗) = 0. We shall select forms ωs so that their coho-
mology classes all belong to H1(X, Z) ⊂ H1(X, C). The set of (α1, . . . ,αr ) ∈ Cr

such that for a fixed ρ the connection ∇α1,...,αr
ρ with the matrix

||ωα1,...,αr
i, j || = ||ωi, j || +

(∑
αsωs

)
I (6)

yields a unitary local system form a r -dimensional R-subspace ˜Charu(π1(X))of Cr .
Indeed, all connections with matrix ||ωα1,...,αr

i, j || are flat since the connection cor-
responding to ||ωi, j || is flat and any holomorphic log-form is closed (cf. [7]).
Moreover, the holonomy of a connection along a path is given by solutions of a
system of first order ODEs and hence is the exponent of a matrix A depending on
the each summand in (6) linearly. Hence those (α1, . . . , αr ) which yield a skew-
hermitian A form a R-linear subspace in the universal cover ˜Char(π1(X)) = Cr

of the space of characters. In addition, there is a compact connected fundamental
domain Ũ ⊂ ˜Charu(π1(X)) for the action of H1(X, Z) such that the family of uni-
tary local systems corresponding to elements in Ũ coincides with Charu(π1(X)).
One can take Ũ so that it is an affine transform of U given by (3).

The eigenvalues of the residue matrix of the connection ∇α1,...,αr
ρ along a com-

ponent D̃k in an extension M (i.e. a locally trivial bundle on X̃ ) are given by:

N D̃k
i (α1, . . . , αr ,M) = β

D̃k
i (ρ) +

∑
αs ResD̃k

ωs i = 1, . . . , rkV (7)

In particular, for each i = 1, . . . , rkV and D̃k , the image of the map Ũ → R given

by (α1, . . . , αr ) → N D̃k
i (α1, . . . ,αr ) is bounded and for any collection of integers

nD̃k
i , i = 1, . . . , rkV, k = 1, . . . , K the set (α1, . . . ,αr ) such that

nD̃k
i ≤ N D̃k

i (α1, . . . , αr ) < nD̃k
i + 1 (8)

is a (possibly empty) polytope in Ũ .
Now let us describe the bundles on X̃ which are the Deligne’s extensions of the

connections in the family given by (6). Let us call collection nD̃k
i realizable if there

is a connection corresponding to (α1, . . . , αr ) such that nD̃k
i = [N D̃k

i (α1, . . . ,αr )].
Let M(nD̃k

i ) be the Deligne extension of this connection. We claim that all connec-

tions with matrices (6) and residues satisfying (8) have M(nD̃k
i ) as its Deligne

extension. Consider a sufficiently fine cover of X̃ by open sets such that both

bundles M and M(nD̃k
i ) can be trivilized. Over each open set U of such a cover

one has the transition matrix gU ∈ GL N ('(U,O(∗D̃)) from a frame e1, . . . , eN



8 A. Libgober

of M to a frame e′
1 . . . e′

N of M(nD̃k
i ). The connection matrices %(e1, . . . , eN ) and

%(e′
1, . . . , e′

r ) are related as follows:

%(e1, . . . , eN ) = g−1
U dgU + %(e′

1, . . . , e′
N ) (9)

Since both exp(2π i ResD̃k
%(e1, . . . , eN )) and exp(2π i Res%(e′

1, . . . , e′
N ))

conside with the monodromy of the connection around D̃k (cf. [6, Prop. 3.11])
one sees that the eigenvalues of ResD̃k

g−1
U dgU are integers. Moreover, these resi-

dues are equal to nD̃k
i since M(nD̃k

i ) is the Deligne extension and the eigenvalues
of the residues of the connection %(e′

1, . . . , e′
N ) are in interval [0, 1). This also

implies that in the frame e′
1, . . . , e′

N the eigenvalues of the residues of the connec-
tions matrix of any connection satisfying (8) has the residues in the interval [0, 1),

i.e. has M(nD̃k
i ) as its Deligne extension.

In the case when N = 1 the relation between the extensions M and M(nD̃k
i )

is particularly simple. Indeed, if ∇ is a logarithmic connection in a bundle M on
X̃ and B = ∑

bi D̃i is a divisor on X̃ having support on X̃ − X then ∇ induces a
connection ∇B on M ⊗ OX̃ (B). The residues Res(·) : M → M ⊗ OD̃ j

of two
connections related as follows:

ResD̃ j
(∇B) = ResD̃ j

(∇) − b j id|D̃ j
(10)

(cf. [15, Lemma 2.7]). In particular, for each member of the variation of the connec-
tion given by (6) the corresponding Delinge’s connection has the form M⊗OX̃ (B)

where the coefficients b j in B = ∑
b j D̃ j chosen so that the residues of ∇D̃ j

will

satisfy 0 ≤ ResD̃ j
(∇B) < 1. In the case or arbitrary N the above argument

shows that possible number of isomorphism classes of bundles on X̄ which are the
Deligne’s extensions of the connections (6) does not exceed:

∑

D̃k ,i

[sup(α1,...,αr )N D̃k
i (α1, . . . , αr ) − in f(α1,...,αr )N D̃k

i (α1, . . . , αr )] (11)

([..] is the integer part).
From the degeneration of the spectral sequence (2), it follows that

Gr p
F Hk(Vρ⊗χ ) = H p(X̃ ,%

k−p
X̃

(logD̃) ⊗ Vρ⊗χ )

Since the logarithms of characters χ yielding a given Deligne’s extension form
a polytope (8) in U and since the rank of Gr p

F Hk(Vρ⊗χ ) depends only on the
Deligne’s extension (and hence has only finitely many values bounded by the num-
ber of Deligne’s extensions of the local systems Vρ⊗χ ), we see that the collection
of αi having fixed values is a finite union of polytopes.

It follows from (7) and (8) that each polytope is given by inequalities:

N D̃k
i (V) ≤ β

D̃k
i (ρ) +

∑
αs ResD̃k

ωs < N D̃k
i (V) + 1

i = 1, . . . , rkV, k = 1, . . . , K (12)
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where N D̃k
i (V) are integers depending on the Chern classes of bundle V on X̃ . Since

classes ωs belong to H1(X, Z) ⊂ H1(X, C∗) one has ResD̃k
ωs ∈ Q for any k. It

follows that the linear subspaces in ˜Charu(π1(X)) spanned by the sets of solutions
of rkV ·K inequalities (12) for fixed V are given by equations with integer relatively

prime coefficients and constant terms having the form γ1β
D̃k
i + γ2 (γ1, γ2 ∈ Q).

⊓5

Corollary 2.2. Let ρ be a representation with abelian image and let ρ1, . . . , ρN ∈
Charuπ1(X) be its irreducible components. The isolated characters χ ∈ Charu

(π1(X)) for which dimHk(X, ρ ⊗ χ) ≥ l generate a subgroup of Charuπ1(X)

such that its subgroup generated by ρi (i = 1, . . . , N ) has finite index.

Proof. Since the system of inequalities (12) has only isolated solutions, the loga-
rithm of an isolated character χ as above, is the solution to a finite system of equa-
tions. As was remarked above, each linear subspace spanned by the sets of solutions
is given by equations with integer relatively prime coefficients and constant terms
which can be written as γ1β + γ2, (γ1, γ2 ∈ Q). Such subspace contains a point
(α1, . . . ,αr ) with coordinates having the form γ1β + γ2, (γ1, γ2 ∈ Q). The expo-
nential map takes such a point in ˜Charu(π1(X)) to a point in Charu(π1(X)) with
coordinates [e2π iβ ]γ1 e2π iγ2 . If the representation ρ has an abelian image then the
subgroup in Charu(π1(X)) generated by characters which are the irreducible com-
ponent of ρ is the subgroup of the points with the coordinates e2π iβ and the claim
follows. ⊓5

Corollary 2.3. The subsets

Sn
ρ,l = {χ ∈ Charuπ1(X)|dimHn(X, Lρ⊗χ ) ≥ l}

are unions of finite collections of translated subgroups. If ρ has an abelian image
and if ρ̄1, . . . , ρ̄N ∈ Charu(π1(X)) are the irreducible components of ρ, then trans-
lations can be made by points generating a subgroup of Charu(π1(X)) containing
the subgroup generated by ρ1, . . . , ρN as a subgroup of finite order.

Proof. The subsets Sn
ρ,l clearly are algebraic subsets of Charuπ1(X). On the other

hand it follows from Theorem 2.1 that Sn
ρ,l = ⋃

l0+···+ln=l ∩p=0,...,n Sn,p
ρ,l p

is a union
of polytopes. The Zariski closure in Charuπ1(X) of the image of a polytope is the
intersection of algebraic subvarieties of Charuπ1(X) containing this image. Since
a polytope spans a linear subspace in ˜Charuπ1(X), the Zariski closure is the image
of the exponential map restricted on the spanning subspace i.e. it is a translated
subgroup of Charuπ1(X). The claim about the translation points follows by the
argument identical with the one used in the proof of Corollary 2.2. ⊓5

Remark 2.4. The proof of the Theorem 2.1 yields an alternative proof of the results
in [1]. In [1] it is shown that (at least for trivial ρ) similarly defined subgroups of
the full group of characters of π1(X) are unions of finite collections of translated
subgroups. In particular the subgroups Sn

l in Charuπ1(X) determine completely
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the subgroups in Charπ1(X). The Corollary 2.3 shows that translation is by points
of finite order (rather than just the unitary ones cf. [1]). This also implies that the
polytopes Sn,p

ρ,l from the Theorem 2.1 for ρ = 1 determine the translated subgroups
of Charπ1(X) completely. In [24], a procedure was outlined for calculation of the
polytopes corresponding to p = 0 component of the Hodge filtration in some
geometrically interesting cases.

Remark 2.5. Proofs of the Corollaries 2.2 and 2.3 use as the essential step the fact
that the coordinates of translation characters belong to cyclotomic extension of

the field generated by e2π iβ
Dk
i for all Dk and i . This provides information about

translation points also in the case when Imρ is non-abelian.

Corollary 2.6. Let i : X1 → X2 be an embedding of quasiprojective submanifold
X1 into a quasi-projective submanifold X2. Let ρ be a unitary representation of
π1(X2). Then either

{χ ∈ Charuπ1(X2)|dim KerHn(X2,Lρ⊗χ ) → Hn(X1,Li∗(ρ⊗χ)) = l}

or

{χ ∈ Charuπ1(X2)|dim ImHn(X2,Lρ⊗χ ) → Hn(X1,Li∗(ρ⊗χ)) = l}

are the images of a union of polytopes in the universal cover of U.

Proof. Let us select a resolution of a pair (X1, X2) (i.e., the compactifying divisor
D2 of X2 is a normal crossings divisor and the closure of X1 in this compactification
has at infinity the divisor D1 which also is a normal crossings divisor). The Deligne
extension for the flat connection corresponding to the local system i∗(ρ ⊗ χ) is
restriction of the Deligne extension of connection of ρ ⊗χ . Hence the characters in
the corollary are the characters giving the Deligne extension for which the corres-
ponding map Hq(X2,%

p(logD2) ⊗ V) → Hq(X1,%
p(logD1) ⊗ V) has a fixed

dimension of the kernel (resp. image). ⊓5

3. Local translated subgroup theorem for complement to germs of
singularities and Hodge structure on cohomology of local systems

In this section we prove the local translated subgroups Theorem 1.1 and the local
counterpart of the Theorem 2.1.

We shall use the same notations as in introduction: X is a germ of a complex
space with an isolated singularity, D is a divisor on X with arbitrary singularities
having r irreducible components. Assume that the link of X , i.e. the intersection
with a small sphere about the singular point, is simply connected (cf. [11]). This
implies that:

H1(X − D, Z) = Zr (13)

(cf. [11,23]). As generators for H1(X − D, Z) one can take the classes of 1-cycles
each being the boundary of small disks transversal to D at a non-singular point of
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each component. In particular H1(X −D, C∗) = C∗r and hence the rank one local
systems are parameterized by the torus with a fixed coordinate system.

The main results of this section are the following two theorems (cf. Theorem
1.1 in the Introduction).

Theorem 3.1. Let (X ,D) be a germ of a pair where X has an isolated normal sin-
gularity with a simply connected link and D is divisor with r irreducible components
Di (i = 1, . . . , r). Let

Sn
l = {χ ∈ Charπ1(X − D)|Hn(X − D,Lχ ) ≥ l} (1 ≤ n ≤ dimX )

where Lχ is the local system corresponding to the character χ . Then Sn
l is a union

of a finite collection of translated subgroups for any n and l. More precisely, there
are (possibly trivial) subgroups Ti ⊂ Charπ1(X −D), (i ∈ I, Card I < ∞), and
torsion characters ρi such that

Sn
l =

⋃

i

ρi Ti

The arguments we are using in the proof of the Theorem 3.1 also yield the
existence of the mixed Hodge structure on the cohomology of the unitary local
systems extending the results of [1,31] to the local case:

Theorem 3.2. Let X be a germ of an analytic space having an isolated normal
singularity and let D be a divisor on X . Denote by ρ a unitary representation of
π1(X − D) and let Lρ be the corresponding local system. Then the cohomology
groups Hi (X − D,Lρ) support the canonical (C)-mixed Hodge structure compa-
tible with the holomorphic maps of pairs (X ,D) endowed with a local system on
the complement X − D.

We refer to [1,2] for a discussion of C-mixed Hodge structures. Before proving
these results, let us calculate the cohomology of local systems on the total space of
a fibration with the fibers homotopy equivalent to F = (C∗)k . Let π : T ∗ → E be
such a locally trivial fibration over a manifold E for which the associated Ck bundle
T → E is a direct sum of k line bundles L1, . . . , Lk . Denote by c1

1, . . . , ck
1 ∈ H2(E)

the first Chern classes of L1, . . . , Lk , respectively. Let ρE be a unitary local system
on E . Consider the homomorphisms:

κa,b : Ha(E,LρE ) ⊗ ,b(H1(C∗)) → Ha+2(E,LρE ) ⊗ ,b−1(H1(C∗)) (14)

given by:

κa,b(β ⊗ α1 ∧ · · · ∧ αk) =
∑

i

β ∪ c j
1 ⊗ α1 ∧ · · · α̂ j · · · ∧ αk (15)

and let

K a,b = Kerκa,b/Imκa−2,b+1 (16)
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Denote by I mπ1(F) the image of the homomorphism π1(F) → π1(T ∗) and
let ρ : π1(T ∗) → C∗ be a unitary representation of the fundamental group of T ∗.
The exact sequence:

0 → I mπ1(F) → π1(T ∗) → π1(E) → 0 (17)

shows that a representation ρ has trivial restriction on I mπ1(F) if and only if
ρ = π∗(ρE ) for some unitary representation ρE of π1(E).

Lemma 3.3. For any non-negative i one has the following:

dimHi (T ∗,Lρ)

=
{

0 if ρ|Imπ1(F) ̸= 1∑
a+b=i dimK a,b if ρ|I mπ1(F) = 1 or equivalently ρ = π∗(ρE ).

(18)

Proof. (of Lemma 3.3) (18) is clearly the case when E is a point which also yields
that the fiber of Rqπ∗(Lρ) for arbitrary E is either ,q(H1(F, C)) (if ρE is trivial)
or zero (otherwise). For a more general E , the lemma follows from the Leray
spectral sequence: H p(E, Rqπ∗(Lρ)) ⇒ H p+q(T ∗,Lρ) which degenerates in
the term E3. Indeed if ρ is not induced from E then E p,q

2 = 0, p, q ≥ 0 by (18). If
ρ = π∗(ρE ) for a local system ρE on E then, since the local systems Rqπ∗(C) are
trivial i.e. E p,q

2 = H p(E, ρE )⊗,q(H1(F, C)), the degeneration can be seen using
the compatibility property of differentials of a spectral sequence with products and
vanishing of di , i > 2 on E0.1

∗ . One arrives at the formula (18) for E3 = E∞ since
da,b

2 = κa,b as one can see using multiplicativity and the well-known identification
of d2 in the Leray spectral sequence of a circle bundle with the cup product with
the first Chern class of the associated line bundle. ⊓5
Remark 3.4. Local systems on C∗-fibrations over quasiprojective manifolds. Let
T ∗ be a (C∗)r -fibration over E such that the associated Cr -bundle T is a direct sum
of holomorphic line bundles and let:

Sn
l (T ∗) = {χ ∈ Charπ1(T ∗)|Hn(T ∗,Lχ ) ≥ l} (19)

If the base E is quasiprojective, then it follows from Lemma 3.3 and [1] that
Sn

l (T ∗) is a finite union of translated subgroups. Indeed, Sn
l (T ∗) is an invariant of

the homotopy type and, since T ∗ is homotopy equivalent to the complement in the
total space of T to union of total spaces of rank r − 1 subbundle of T which is also
quasiprojective, one can apply [1].

Similarly, let ρ be a unitary local system on a the total space of a fibration
T ∗. Assume again that the associated Cr bundle T is a direct sum of line bundles.
Then the cohomology H p(T ∗,Lρ) support the canonical C-mixed Hodge structure
defined has follows. By Lemma 3.3 we can assume that ρ = π∗(ρE ). Consider
the total space of bundle T = ⊕i=r

i=1Li . The complement to the union of divisors
⊕i ̸= j Li ( j = 1, . . . , r) has the homotopy type of T ∗ and the mixed Hodge structure
on H p(T ∗, ρE ) is obtained from the mixed Hodge structure constructed in [31],
[1] via the identification

H p(T ∗,π∗(ρE )) = H p(T − ∪ j ⊕i ̸= j Li ,π
∗(ρE )) (20)
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In the case when ρ is trivial this is compatible with the standard mixed Hodge
structure of a punctured neighbourhood.

The proofs of the theorems 3.1 and 3.2 use the following result on degeneration
of Mayer Vietoris spectral sequence generalizing the case of projective manifolds
discussed in [5] to quasiprojective situation with local systems.

Lemma 3.5. Let X̄ = ∪X̄i be a union of projective manifolds having only normal
crossings and let Di = ∪ j Di, j ⊂ X̄i be a normal crossing divisor such that Di, j ∪
X̄i ∩k ̸=i Xk is a normal crossing divisor on X̄i as well. Denote by Xi = X̄i −∪Di, j ,
Xi0,...,iq = Xi0 ∩ · · · ∩ Xiq and X [q] = ∐

Xi0,...,iq . Let ρ : π1(∪Xi ) → C∗ be
a local system on X and ρi0,...,iq be the local system on Xi0,...,iq induced by ρ.
Let H p(X [q],L[q]) = ⊕i0<···<iq H p(Xi0,...,iq ,Li0,...,iq ). This data determines a
spectral sequence:

E p,q
1 = H p(X [q],L[q]) ⇒ H p+q(X,L) (21)

degenerating in term E2.

Proof. Let Mi0,...,iq be the Deligne’s extension (cf. [6]) corresponding to the
local system Li0,...,iq and M[q] be the corresponding bundle on X [q]. The spec-
tral sequence in this lemma is the spectral sequence of the double complex

A•,• = Ap(X [q](log),M[q], (∇, δ)) (22)

with components being C∞ logarithmic forms on X̄ [q](= ∐
X̄i0,...,iq ) with the

poles along the intersections of components of Di with X̄i0,...,iq (twisted deRham
complex for the Deligne’s extension M[q]). The differentials respectively are the
differential ∇ : Ap,q → Ap+1,q of the connection and the differential δ : Ap,q →
Ap,q+1 which takes ω ∈ Ap,q having components ω(i0, . . . , iq) ∈ Ap(Xi0,...,iq

(log),L|Xi0,...,iq
) to δ(ω)(i0, . . . , iq+1) = ∑

(−1)kω(i0, . . . îk, . . . iq)|Xi0,...,iq+1
.

Clearly the term E p,q
1 of the spectral sequence of the double complex (22) coin-

cides with expression in (21). The abutment of this spectral sequence is H∗(X,L)

since the single complex (A•,•,∇ + δ) is a locally free acylic resolution of locally
constant vector bundle of the local system L. Acyclicity follows from the local
calculation which identifies for a sufficiently small open subset U ⊂ X the group
Hn(U,L) with the abutement of the spectral sequence having Eq,p

2 = Hq
δ H p

∇ and
vanishing of the latter: indeed for U over which L is not trivial one has H p

∇ = 0
and for U over which L is trivial E0,q

2 is the cohomology of the simplex (cf. [5]).
To show the E2-degeneration of (21) first let us consider the case when none

of the eigenvalues of the holonomy of the connection about the components of
Di ∩ X [q] is equal to one. In this case, for each component Xi0,...,iq one has:

Hi (Xi0,...,iq ,Li0,...,iq ) = Hi (X̄i0,...,iq , j∗Li0,...,iq ) = Hi
(2)(Xi0,...,iq ,Li0,...,iq )

(cf. [31,32]; here j is the embedding Xi0,...,iq → X̄i0,...,iq and L2-cohomology are
with respect to a complete metric on Xi0,...,iq asymptotic to the Poincare metric).
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Using the twisted analog of ∂∂̄ lemma (cf. [33]) as in compact case [5] one obtains
degeneration in ths case when all monodormies of Li0,...,iq are non trivial.

General case now can be deduced by induction over the number of components⋃
i Di for which L has non trivial monodormy. Let X ′ = (X1 − D) ∪ ⋃

i≥2 Xi i.e.
X ′ is a quasiprojective normal crossing having one more compactifying component
than does X . Let L be a local system on X ′ such that the holonomy about D is
trivial. The connection matrix of the flat connection corresponding to the local
system L|X1,i1,...,iq

has an integer residue along D since the holonomy is trivial
along D. Hence in the Deligne’s extension this residue is equal to zero along D. In
particular we have a well defined holomorphic connection on X and its restriction
to D. Then one has

0 → Ap(log)(X [q],M) → Ap(log)(X ′[q],M) → Ap−1(log)(D[q]) → 0 (23)

where the last term is the log complex of D[q] = D ∩ X [q−1]
̸=1 with X [q−1]

̸=1 is disjoint
union of intersections of irreducible components of X different from X1 and the
last map is the residue map of log-forms along D.

Recall that the degeneration of a spectral sequence of a differential graded
algebra A• filtered by a decreasing filtration F p(A) in term Ek is equivalent to
condition:

F p(A•) ∩ d A ⊂ d F p−k+1(A•) (24)

(cf. [26] Lemma (1.5) p.144 and [7], (1.3.2) and (1.3.4)) One sees directly, that
condition (24) for the endterms of (23) yields it for the middle terms as well. ⊓5

Proof. (of Theorem 3.1) Step 1. Identification of X − D with a union of torus
bundles. Let

⋃
i∈I Ei be the exceptional locus of a log resolution of the pair:

⎛

⎝X̃ ,
⋃

i∈I

Ei ∪
j=r⋃

j=1

D̃ j

⎞

⎠→ (X ,∪D j )

where D̃ j are the proper preimages of the components D j . Recall that a resolution
of a pair (X, D) where X is a normal variety is a morphism f : Y → X such that
the union of the exceptional locus of f and the proper preimage of D in Y is a
normal crossing divisor. Given (X, D) such a morphism f always exist (cf. [18]).
Let ∂T (∪Ei ) be the boundary of a regular neighborhood T (∪Ei ) of ∪Ei in X̃ . We
have the identification (homotopy equivalence)

∂T (∪Ei ) − ∂T (∪Ei ) ∩ ∪D̃ j = X − ∪D j

The (open) manifold ∂T (∪Ei ) − ∂T (∪Ei ) ∩ ∪D̃ j can be constructed inductively
as a union of tori bundles over quasiprojective varieties intersecting along unions of
tori bundles lower dimension. More precisely, consider the stratification of

⋃
Ei in

which each stratum is a connected component of a set consisting of points belonging
to exactly l components of this union. Complement to ∪D j in an intersection of
the boundaries ∂T (Ei ) of small regular neighborhoods in X̃ of Ei containing this
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stratum is a fibration with the fiber being the torus (S1)l . Here l is the number
of components Ei , i ∈ I containing this stratum. Each such torus fibrations has a
compact base if and only if the corresponding component Ei of the exceptional locus
has empty intersection with the proper preimage of D ⊂ X . One has a locally trivial
torus fibrations over the complement in an intersection of components E having non
empty intersection with the proper preimage of D due to normal crossing condition
on union of the exceptional locus and the proper preimage of E (note that we do
not need assumption that X has an isolated singularity).
Step 2. Translated subgroup property for each stratum. For each stratum S, the total
space T ∗(S) of this (S1)l -fibration is a subset of ∂T (∪Ei )− ∂T (∪Ei )∩∪D̃ j . The
collection of characters in T = Char(π1(∂T (∪Ei ) − ∂T (∪Ei ) ∩ ∪D̃ j )), which
when restricted on T ∗(S) yields a character with the corresponding local system
having Hn(T ∗(S),Lχ ) ≥ l, is a union of translated subgroups in T (cf. (19) or,
since S is quasiprojective, apply the remark after proof of lemma 3.3).
Step 3. Degeneration of Mayer-Vietoris spectral sequence for torus bundles. The
cohomology Hn(∂T (∪Ei ) − ∂T (∪Ei ) ∩ ∪D̃ j ,Lχ ) is the abutment of a Mayer
Vietoris spectral sequence:

E p,q
1 = H p(A[q],Lχ |A[q] ) ⇒ H p+q

(⋃
AiLχ

)
(25)

where A[q] is a torus bundle over a stratum of the above stratification. This spectral
sequence has trivial differentials di for i ≥ 2. Indeed, the degeneration of the
spectral sequence (25) in the case when A[0] are quasiprojective was shown in
Lemma 3.5. The case when A[q] are tori bundles over quasiprojective manifolds
follows from formulas in Lemma 3.3.
Step 4. End of the proof. Now let us consider the collection of quasi-affine subsets
T of the torus T with each quasi-affine subset being a finite union of subgroups of
T with a removed collection of translated subgroup of T (possibly empty). Each
collection of local systems with fixed dimension Hn(A, Lχ ), in the case when A
is quasiprojective, belongs to T and hence the collection χ for which each E p,q

2
term in the spectral sequence (25) has a fixed dimension also belongs to T as
follows from Corollary 5.7 (since d1 in (25) is the restriction map). This proves the
theorem. ⊓5

Proof. (of theorem 3.2) The main point is that, while making the calculation of
the cohomology of local system on resolution of X ,D using the isomorphism
Hi (X − D,Lχ ) = Hi (X̃ − (

⋃
i∈I Ei ∪ D̃)) where X̃ ,∪i∈I Ei ∪ D̃ is a resolu-

tion of pair X ,D, one can replace
⋃

i∈I Ei ∪ D̃ by the union of components Ei

such that the restriction of χ of π1(∂T (E◦
i ) − D̃) is a pull back of a character of

π1(E◦
i − D̃) with respect to projection ∂T (E◦

i ) − D̃ → E◦
i − D̃ (here E◦

i is the
locus of points of Ei which are nonsingular points of

⋃
Ei ; the set of indices of

Ei ’s labeling these components will be denoted Iχ ). In quasiprojective case this
corresponds to isolating components with trivial holonomy of the connection. (cf.
[1,31]). Moreover, in the case of C∗r -bundles we have the mixed Hodge structure
as described in the Remark 3.4. Then all steps used in [31] to derive the extension
of [7] with modifications as in local case of [13], i.e. constructing the Mixed Hodge
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complex yielding the Mayer Vietoris spectral sequence go through in our local case
as well.

More precisely, let E◦
i1,...,ik

be the locus of points of
⋃

i∈I Ei which belong
to the components Ei1 , . . . , Eik but do not belong to any other components of E
(recall that I denotes the set of indices of components of exceptional set). Let
∂T (E◦

i1,...,ik
) − D̃ be T (Ei1 ∩ · · · ∩ Eik ) − ⋃

Ei where T (Ei1 ∩ · · · ∩ Eik ) is a
tubular neighborhood in X . One has

∂T
(⋃

Ei

)
− D =

⋃

(i1,...,ik )⊂I

∂T (E◦
i1,...,ik

) − D̃ (26)

For each character χ ∈ Charπ1(X − D,L), let χ
∂T (E◦

i1,...,ik
)−D̃ be the induced

character of π1(∂T (E◦
i1,...,ik

)−D̃). Let, as above, Iχ be the collection of components
of exceptional divisor for which χ∂T (Ei ) is a pull back of a character χE◦

i −D∩E◦
i

(i.e., which restriction of the boundary of transversal to Ei circle is the trivial
character: cf. (3.3); we shall call such components fiber χ -trivial). The characters
of π1(E◦

i1,...,ik
− E◦

i1,...,ik
∩ D), i.e., classes in H1(E◦

i1,...,ik
− E◦

i1,...,ik
∩ D, C∗)

obtained from the characters of X̃ − ⋃
i∈I Ei ∪ D̃ (and hence compatible with

restrictions), define as a result of degeneration of Mayer Vietoris spectral sequence,
the characters of π1(

⋃
i∈Iχ Ei ) and hence the local system on T (

⋃
i∈Iχ Ei ) which

we also denote Lχ .
Two Mayer Vietoris spectral sequences:

E p,q
1 = H p

⎛

⎝
⋃

(i1,...,iq−1)∈I

∂T (E◦
i1,...,iq−1

) − D̃,LχT (E◦
i1,...,iq−1

)−D̃

⎞

⎠

⇒ H p+q
(
∂T

(⋃
Ei

)
− ∂T

(⋃
Ei

)
∩ D,Lχ

)
(27)

and

E p,q
1 = H p

⎛

⎝
⋃

(i1,...,iq−1)∈Iχ

∂T (E◦
i1,...,iq−1

) − D̃,LχT (E◦
i1,...,iq−1

)−D̃

⎞

⎠

⇒ H p+q

⎛

⎝∂T

⎛

⎝
⋃

i∈Iχ Ei

⎞

⎠− ∂T
(⋃

Ei

)
∩ D,Lχ

∂T (
⋃

i∈Iχ Ei
)−∂T

(⋃
Ei∈Iχ Ei

)
∩D

⎞

⎠

(28)

yield that it is enough to show the existence of the Mixed Hodge structure on the
cohomology of local systems of the boundary of the neighborhood only for those
components for which the restriction of χ on the boundary is the pullback from
this component.

In order to describe the cohomological C-Hodge complex (A, F, F̄, W ) on
X −D with cohomology being the cohomology of the abutment of the spectral seq-
uence (28) first let us describe the complex for each intersection ∂T (E◦

i1,...,iq−1
) − D̃
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and the local system Lπ∗(χ) pulled back to it from the base. If T(Ei1,...,iq−1) is defi-
ned as the projectivization of the total space of the direct sum of the normal bundle
to Ei1,...,iq−1 in X with OEi1,...,iq−1

and ιi1,...,iq−1 is the embedding of the neigh-
bourhood of Ei1,...,iq−1 in T(Ei1,...,iq−1) then T(Ei1,...,iq−1) is a compactification
of the total space of the normal bundle of Ei1,...,iq−1 in X . T(Ei1,...,iq−1) is also a
compactificaiton of C∗-fibration over E◦

i1,...,iq−1
− E◦

i1,...,iq−1
∩ D̃ and the comple-

ment in it to the total space of this fibration is a normal crossing divisor which
we denote as Di1,...,iq−1 ⊂ T(Ei1,...,iq−1). This fibration is homotopy equivalent
to the punctured neighbourhood of E◦

i1,...,iq−1
− D̃ in X . We can use the just des-

cribed compactification to construct (following [1]) log-complex associated with
the (Deligne’s extension) V̄ of the connection with the holonomy given by ρ. We
consider trifiltered real analytic log-complex:

A•
i1,...,iq

= (A•
T(Ei1,...,iq−1 )(logDi1,...,iq−1) ⊗ V̄ , F, F̄, W ) (29)

used in [1] and generalizing the complex considered in [27] in the case V̄ is trivial
and providing supporting conjugation analog on the log-complex with connection
constructed in [31]. The log-complex (29) is quiasiisomorphic to direct image of
its restriction on punctured neighbourhood T (Ei1,...,iq−1) (i.e. with deleted zero-
section) which we denote

( Ã•
i1,...,iq

⊗ V̄ , F, F̄, W ) (30)

Here F, F̄, W are the filtrations induced by corresponding filtrations of (29) One
has the maps δ : Ã•

i1,...,iq
→ Ã•

i1,...,iq ,iq+1
induced by inclusion of punctured neigh-

bourhoods which allow to form differential graded complex

Ã•,• = ⊕i1,...,iq−1 Ã•
i1,...,iq−1

(31)

The total complex T n = ⊕i+ j=n Ãi, j with the usual differential d + (−1) jδ j

and filtrations F pT n = ⊕i≥p,i+ j=n Ãi, j , F̄ p = ⊕ j≥p,i+ j=n, Wk T = ⊕Wk+i Ãi, j

(cf. [2,27]) is a C-mixed Hodge complex calculating the abuttment of the spectral
sequence (28) and hence (27) i.e. yielding the Mixed Hodge structure on the coho-
mology of the abutment. Compatibility with holomorphic maps follows form the
corresponding compatibility in quasiprojective case. ⊓5

Remark 3.6. Assume that one has an embedding (X ,D) ⊆ (X̄ , D̄) such that (X̄ , D̄)

is quasiprojective and such that χ is a pullback of a character of π1(X̄ − D̄). For a
germ on an isolated non-normal crossing in Cn , the extension of each irreducible
component D to an irreducible hypersurface in Cn yields such (X̄ , D̄). The mixed
Hodge structure of the Theorem 3.2 on Hi (Lχ ) where Lχ is the local system on
the boundary of a punctured neighbourhood of union of fiber χ -trivial exceptional
divisors minus D can be constructed using methods of [13] (by above, these coho-
mology coincide with Hi (X − D,Lχ )). Indeed, such a punctured neighbourhood
is the intersection of regular neighbourhood of union of fiber χ -trivial divisors and
X̄ − D̄. Both spaces support the canonical (C-) mixed Hodge structure. In particular,
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the cohomology of such a local system on the boundary of a neighborhood of union
of fiber χ -trivial exceptional divisors can be calculated using hypercohomology of
the mapping cone of the following bifiltered complexes of sheaves corresponding
to presentation T (

⋃
i∈Iχ Ei −D∩⋃

i∈Iχ Ei ) as an intersection of a quasiprojective

variety containing X̃ −D̃ (i.e., the resolution of singularities ˜̄X , ˜̄D of X̄ , D̄ in which
preimage of X ,D is X̃ , D̃) and a regular neighborhood of

⋃
i∈Iχ Ei −D∩⋃

i∈Iχ Ei
(this construction in a standard way can be upgraded to the level of mixed Hodge
complexes). The first complex has as its hypercohomology the the cohomology of
the regular neighborhood of T (

⋃
i∈Iχ Ei ) − D and is given by:

%·⋃
i∈Iχ Ei

(logD) = ⊕p+q=n(πq)∗%
p
E [q],i∈Iχ )

(log(D ∩ ∪E)) ⊗ Vχ (32)

i.e., the single complex associated to the double complex with components being
the push forward to

⋃
i∈Iχ Ei of log forms with the values in the induced (from ˜̄X )

the Deligne’s extension on all q + 1 fold intersections E [q] of Ei , i ∈ Iχ relative
to divisors on connected components of E [q] induced by intersections with D and
with differential given by the log-connection.

The second complex, having as its hypercohomology the cohomology of the
complement to

⋃
i∈Iχ Ei ∪ D in the resolution of singularities of quasiprojective

variety X̄ , is given by:

%·
˜̄X
(log ∪i∈Iχ Ei ∪ D) ⊗ Vχ (33)

The Hodge filtration and weight filtrations are given in the usual way (i.e., by
truncation and by considering forms with vanishing m-residues, respectively).

The construction in the theorem yields:

Corollary 3.7. The above mixed Hodge structure is functorial in the following
sense. Consider the homomorphism:

hk( f ) : Hk(X̃ − D,V) → Hk(X − D, f∗(V))

induced by an unbranched covering f : X̃ − D → X − D (here f∗(V) is the direct
image of the local system, corresponding to the induced character of subgroup
π1(X̃ − D) of π1(X − D)). Then hk( f ) is a morphism of mixed Hodge structures.

The above Proof of Theorem 3.1 allows one to deduce the following property
of the mixed Hodge structures described in Theorem 3.2:

Corollary 3.8. Let X ,D be as above. Then the subset of a fundamental domain in
the universal cover U of Charu(π1(X − D) given by:

{u ∈ U |dimGr p
F Hn(X − D, Vexp(u)) ≥ l} (34)

is a finite union of polytopes.



Non vanishing loci of Hodge numbers of local systems 19

Proof. It follows from the degeneration of the Mayer-Vietoris spectral sequence
mentioned in the Proof of Theorem 3.1, the compatibility of d1 in it with the mixed
Hodge structures and the theorem in the previous section. ⊓5

This extends the results of [22] on Hodge decomposition of characteristic varie-
ties of germs of plane curves where also examples of such “Hodge decomposition”
of S1,p

l in this case are given.

Remark 3.9. The construction of the mixed Hodge structure in the local case also
can be extended to the case of cohomology of a unitary local system, i.e. to the
context of [31]. The Theorem 3.1 can be modified in an obvious way to include a
twisting by a higher rank local system as in Theorem 2.1.

4. Isolated non-normal crossings

Now we shall apply the results of previous section to the case of isolated non-normal
crossings. First recall the following, already mentioned in the introduction:

Definition 4.1. (cf. [11,23]) An isolated non-normal crossing (INNC) is a pair
(X ,D) where X is a germ of a complex space X having dimX − 2-connected link
∂ B ∩X where B is a small ball about P ∈ D6 and where D is a divisor on X which
has only normal crossings at any point of X − P .

The global isolated-non normal crossings divisors were considered in [24]
where the homotopy groups of the complement were related to the local inva-
riants which are certain polytopes. The goal of this section is to relate them to the
polytopes discussed in this paper.

For the local INNCs as in 4.1, one has the following homotopy vanishing theo-
rem (cf. [23, Th.2.2], [11]):

Theorem 4.2. If (X ,D) is an INNC, dimX = n + 1 and r is the number of
irreducible components in D then:

π1(X − D) = Zr , πi (X − D, x) = 0 for 2 ≤ i ≤ n − 1

The main invariant of local INNCs is πn(X − D) considered as a π1(X − D)-
module. It follows from the Theorem 4.2 that this homotopy group is isomorphic as a
Z[π1(X −D)]-module to the homology of the infinite abelian cover Hn(X̃ − D, Z).
The π1(X − D)-module structure on the latter is given by the action of the funda-
mental group on the homology of the universal cover.

Definition 4.3. (cf. [20,21]) l-th characteristic variety of (X ,D) is the reduced
support of π1(X − D) module ,l(πn(X − D) ⊗Z C). In other words:

Sl(X ,D) = {℘ ∈ SpecC[π1(X − D)] = C∗r | (,l(πn(X − D) ⊗Z C))℘ ̸= 0}
(35)

(here subscript ℘ denotes the localization in the prime ideal ℘).

6 For example a germ of a complete intersection with isolated singularity.
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INNCs are reducible analogs of isolated singularities corresponding to the case
r = 1. The homotopy vanishing in Theorem 4.2 is equivalent to the Milnor’s
theorem asserting that the Milnor fiber of an isolated singularity of a hypersurface
having dimension n is (n − 1) connected (cf. [25]). Indeed, by Milnor’s fibration
theorem one has a locally trivial fibration: φ : X − D → S1. Clearly, the identities
of the Theorem 4.2 are equivalent to the requirement that the fiber F of φ satisfies:
πi (F) = 0 0 ≤ i ≤ n − 1. Moreover, in this case (i.e. when r = 1) the variety
S1 ⊂ C∗ is the collection of eigenvalues of the monodromy of Milnor fibration φ.

Note that since the universal cover X̃ − D of X − D is also a covering space
of the Milnor fiber and since the latter has the homotopy type of an n-complex, it
follows that the universal cover of X − D has the homotopy type of a bouquet of
n-spheres (cf. Remark 4.7 in [23]).

The characteristic varieties are equivalent to the loci considered in the
Theorem 3.1:

Proposition 4.4. [11,23] A local system χ ∈ Char(π1(X − D)),χ ̸= 1 cor-
responds to a point Sl ⊂ SpecC[π1(X − D)] after the canonical identification
Char(π1(X − D)) = SpecC[π1(X − D)] if and only if

dimHn(Lχ ) ≥ k

i.e. the jumping loci of the cohomology of local systems coincide with the supports
of the homotopy group πn.

As result we obtain the following:

Corollary 4.5. The components of characteristic variety are translated subgroups
by torsion points.

This corollary can be viewed as a generalization of the classical monodromy
theorem since in the case r = 1 this is equivalent to the claim that an eigenvalue of
the monodromy operator is a root of unity.

Next we shall interpret the results of previous sections in terms of mixed Hodge
theory of abelian covers.

As above, for a group G acting on a vector space V and a character χ ∈ CharG
we shall denote by Vχ the subspace {v ∈ V |g · v = χ(g)v}. The following is a
direct generalization of Prop. 4.5 and 4.6 in [23] on homology of branched and
unbranched covers and the relation with cohomology of local systems in the case
of curves discussed in [16,21].

Proposition 4.6. a) Let X = (X − D) ∩ ∂ B (where ∂ B is a small ball about the
point of non normal crossing of D). Let Um → X (m = (m1, . . . , mr )) be the
abelian covering corresponding to the homomorphism π1(X) = Zr → ⊕Z/mi Z.
For ω̄ = (. . . ,ωi , . . .) ∈ C∗r let

f (ω̄, X) = max{l|ω̄ ∈ Sl(X)} (36)

Then

Hk(Um, Z) = ,k(Zr ) (1 ≤ k < n) (37)

rkHn(Um, Q) =
∑

ω̄,ω
mi
i =1

f (ω̄, X) (38)
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b) Let Vm be the branched covering space of X ∩ ∂ B branched over D ∩ ∂ B. For
a character χ ∈ CharH1(X − D, Z) let

Iχ = {i |1 ≤ i ≤ r and χ(γ
ji

i ) ̸= 1 for some ji , 1 ≤ ji < mi } (39)

where γi ∈ H1(X − D, Z) is represented by the boundary of a small disk in X
transversal to the component Di of D. Then χ can be considered as the character
of H1(X − ∪i∈Iχ Di , Z) and

Hi (Vm, Z) = 0 1 ≤ i ≤ n − 1

Hn(Vm, Z) =
∑

χ∈Char(⊕i Z/mi Z)

f (χ ,X − ∪i∈Iχ Di ) (40)

If the components Di of D are zeros of holomorphic functions: fi for i =
1, . . . , r , respectively, and X ⊂ CN as above, then Vm has the realization as
the link of complex space Xm ⊂ X × Cr ⊂ CN × Cr = {(x, z1, . . . , zr )|x ∈
CN , (z1, . . . , zr ) ∈ Cr } such that:

zm1
1 = f1(x), . . . , zmr

r = fr (x), x ∈ X (41)

Proposition 4.7. Let G = ⊕Z/mi Z and let χ ∈ CharG ⊂ CharZr . The group G
acts on Hn(Um, Q) and

Hn(Um, Q)χ = Hn(Lχ ) (42)

If χ(γ
ji

i ) ̸= 1 for 1 ≤ i ≤ r where γi , ji as in the Proposition 4.6(b) then there is
canonical isomorphism:

Hn(Vm, Q)χ = Hn(Lχ ) (43)

Next we have the following corollary of the functoriality of the mixed Hodge
structure:

Proposition 4.8. The Mixed Hodge structure on the cohomology of an abelian
cover with a finite Galois group G of a complement X −D to an INNC determines
the mixed Hodge structure on the cohomology of essential (cf. [23]) local systems
of finite order via:

h p,q(X̃G)χ = h p,q
χ ((X − D)G) = h p,q(Lχ )

Here (X − D)G is the Galois cover with group G and X̃G is the corresponding
branched cover.

Proof. We have the isomorphism Hn((X − D)G)χ = Hn(Lχ ) (for example
one can use a chain description of the cohomology of local systems cf.[21] or
the next section for twisted version of it) which by Corollary 3.7 is compatible
with both filtrations. The first equality follows from the assumption that χ is
essential. ⊓5
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This yields the following calculation of the Hodge numbers of abelian covers:

Proposition 4.9. dimGr p
F Hn(Um)χ = max{ l |χ = exp(u) where u ∈ Sn,p

l }. If
χ is as in Proposition 4.7 then this is also equal to dimGr p

F Hn(Vm)χ .

In particular the function f (m1, . . . , mr ) = dimGr p
F Hn(Um) is polynomial

periodic with the degrees of polynomial depending on the dimensions of the poly-
topes Sn,p

l . This result for the Hodge groups H p,0 was obtained in [3].

5. Twisted characteristic varieties

In this section we describe a multivariable generalization (cf. Definition 5.1) of the
twisted Alexander polynomials considered in [4] and relate it to the subvarieties
Sn,l
ρ described in Theorem 2.1. It is similar to the way the characteristic varieties

generalize the Alexander polynomials (cf. [21]). The Theorem 5.4 extends the
cyclotomic property of the roots of Alexander polynomials of plane algebraic curves
(cf. [19]) to twisted case. We use Theorem 5.4 to describe a group theoretical
property of the fundamental groups which may not be shared by other groups. We
also use twisted characteristic variety to obtain information on the homology of
non unitary local systems (cf. Proposition 5.3).

Let X be a finite CW complex and X̃ (resp. X̃ab) denotes the universal cover
of X , (resp. its universal abelian cover). As usual π ′

1(X) = π1(X̃ab) be the com-
mutator of the fundamental group of X . Let C∗(X̃) be a chain complex of X̃ with
C-coefficients. We shall assume that each graded component is a right free
C[π1(X)]-module. For a C[π1(X))]-module M we shall denote by Mab the
C[π ′

1(X)]-module obtained by restricting the ring C[π1(X)] to C[π ′
1(X)]. A uni-

tary representation ρ : π1(X) → U (V ) yields the left C[π ′
1(X)]-module Vab

(here U (V ) is the unitary group of a hermitian vector space V ). The modules
C∗(X̃) ⊗π ′

1(X) Vab with the action of g ∈ π1(X, Z) given by g(c ⊗ v) = cg−1 ⊗
g · v form a complex of C[H1(X, Z)] modules which results in the structure of
a C[H1(X, Z)]-module on the homology of the abelian cover Hi (X̃ab, Vab) with
coefficients in the local system Vab (obtained by restriction of ρ on the commutator
of the fundamental group). Recall that we assume that H1(X, Z) is torsion free
and hence SpecC[H1(X, Z)] is connected: the general case requires only obvious
modifications.

Definition 5.1. The twisted by ρ l-th characteristic variety (in degree n) (denoted
as Chl

n) is the support of the module

,l Hn(X̃ab, Vab)

i.e., the subset of SpecC[H1(X, Z)] consisting of prime ideals ℘ in C[H1(X, Z)]
such that localization of ,l Hn(X̃ab, V ) at ℘ is non zero.

Let us in addition fix a surjection ϵ : π1(X) → Z, and denote π̄ = Ker ϵ. Let
ρ : π1(X) → U (V ) be a unitary representation. With such data one associates a
twisted Alexander polynomial and the homology torsion which both were studied
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in [4,17] (cf. references there for the prior work). The main geometric situations in
which these invariants appear are the case when X is a complement to a knot (cf.
[17]) and the case of the complement to a plane algebraic curve in P2 (cf. [4]).

Recall that the twisted Alexander polynomials and the torsion corresponding
to the data (X, ϵ, ρ) are defined as follows. Consider the covering space X π̄ cor-
responding to the subgroup π̄ and the local system Vπ̄ on the latter obtained by
restricting ρ to π̄ . The k-th Alexander polynomial 3k(t) is the order of the C[Z]-
module TorHk(X̃ π̄ , Vπ̄ ) with the convention that the order of a trivial module is 1
(cf. [17, Def. 2.3]). The homology torsion is defined as:

3ϵ,ρ(t) = 4k3k(t)(−1)k+1
(44)

In other words, 3k = 4ak,i (t) where TorHk(X̃ π̄ , Vπ̄ ) = ⊕i (C[Z]/(ak,i (t)))
(ak,i (t) divides ak,i+1(t)) is the cyclic decomposition.

If X has a homotopy type of a 2-dimensional complex such that H1(X, Z) = Z
(which is the case for the complements to irreducible algebraic curves in P2 or knots
in S3) and ϵ is the abelianization: π1(X) → H1(X, Z) (i.e. π̄ is the commutator
π ′

1), then the homology torsion is just 31(t)
30(t)

since the C[Z]- module Hk(X̃π ′
1
, Vπ ′

1
)

is free for k = 2 (and trivial for k > 2). To be more specific, the chain complex
calculating Hk(X̃π ′

1
, Vπ ′

1
) is given by:

0 → C2(X̃) ⊗π ′
1

Vπ ′ → C1(X̃) ⊗π ′
1

Vπ ′ → C0(X̃) ⊗π ′
1

Vπ ′ → 0 (45)

Since the cell structure of X̃ can be chosen so that all Ci (X̃) are free π1(X)-
modules and since the structure of C[Z]-module on C[π1(X)]⊗π ′

1
Vπ ′

1
yields a free

C[Z] module this implies that H2(X̃π ′
1
, Vπ ′

1
) ⊆ C2(X̃) ⊗π ′

1
Vπ ′

1
is also free. Hence

32(t) = 1. Moreover, 30(t) can be calculated in terms of ρ as follows. Denoting by
∂i : Ci (X̃) → Ci−1(X̃) the boundary operator of the chain complex of the universal
cover, one has H0(X̃) ⊗π ′

1
Vπ ′

1
= Coker∂1 ⊗ id, C0(X̃) = C[π1(X)], and Im∂1

is the augmentation ideal of the group ring C[π1(X)]. Hence H0(X̃π ′
1
) ⊗π ′

1
Vπ ′

1
=

C ⊗π ′
1(X) Vπ ′

1
where the action of π ′

1(X) on C is trivial. This implies that the latter
is isomorphic to π ′

1(X) covariants of V . The C[Z]-module structure is given by the
action of the generator of π1/π

′
1 on the π ′

1 covariants V π ′
1 of V . For example, if ρ

has an abelian image, i.e. π ′
1 ⊆ Kerρ, then V π ′

1 = V and 30 is the characteristic
polynomial of the generator of Z acting on V (cf. [17]).

Returning back to the case of an arbitrary CW-complex X , the relation between
the twisted Alexander polynomial and twisted characteristic varieties can be stated
as follows:

Proposition 5.2. Let X be a CW complex such that H1(X, Z) = Z, ρ : π1(X) →
U (V ) is a unitary local system and Chl

n ⊆ SpecC[Z] = C∗ is the collection
of characteristic varieties associated with (X, ρ) in Definition 5.1. For ξ ∈ C∗

let ln(ξ) = max{l |ξ ∈ Chl
n(X, ρ)} and bn = min{ln(ξ)|ξ ∈ SpecC[Z]}. Then

3n(ξ) = 0 if and only if ln(ξ) > bn.
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Proof. Let us consider the cyclic decomposition of R = C[t, t−1]-module
Hn(Xab, Vab):

Hn(Xab, Vab) = R⊕cn ⊕ R/( f s
n ) (46)

Then bn is equal to the rank cn . Moreover for ξ ∈ SpecR = C∗ the integer ln(ξ) is
equal to cn plus the number of torsion summands in (46) having ξ as its root. This
yields the claim. ⊓5

Proposition 5.3. If πi (X) = 0 for 2 ≤ i < k or if k = 1 then the dimension of the
homology group Hk(X, V ⊗ Lχ ) corresponding to a character χ ∈ Charπ1(X)

and a local system ρ is given by:
max{i |χ ∈ Chi

k(X, ρ)}

Proof. Using the identification C∗(X̃) ⊗π (V ⊗π Lχ ) = (C∗(X̃) ⊗π ′
1

V ) ⊗H1(X)

⊗Lχ (recall that C∗(X̃)⊗π ′
1
V has the structure of C[H1(X, Z)]-module: l(c⊗v) =

(cl̄−1⊗ l̄v) where l ∈ H1(X, Z) and l̄ is its lift to π1), the homology H∗(X, V ⊗Lχ )

can be obtained as the abutment of the spectral sequence:

Hp(H1(X, Z), Hq(C∗(X̃ab) ⊗π ′ V ) ⊗C Lχ ) ⇒ Hp+q(X, V ⊗ Lχ ) (47)

Considering the lower degree terms we have:

Hk+1(H1(X, Z), Lχ ) → Hk(X̃ab, V )χ ,H1(X,Z) → Hk(X, V ⊗π1 Lχ

→ Hk(H1(X, Z), Lχ ) (48)

Since for χ ̸= 1 one has Hk(H1(X, Z),χ) = 0. Using the interpretation of the
dimension of the middle term via Fitting ideals we obtain the result. ⊓5

Theorem 5.4. Let X = P2 −C − L where C is an irreducible curve and L is a line
at infinity. Let ρ be a unitary representation of the fundamental group and let F
be the extension of Q generated by the eigenvalues of ρ(γ ) where γ is a boundary
of a small disk transversal to C at its non singular point. Then the roots of 3ρ(C)

belong to a cyclotomic extension of F.

Proof. Let f = 0 be the equation of the curve and let ω = A d f
f be the matrix of

flat (logarithmic for a log resolution of the pair (P2, C ∪ L)) connection, i.e. in a
neighbourhood of any point in P2, except for those which are singularities of C , the
connection is given by ∇χ (·) = d · +ω ∧ ·. Assume first that for a loop γ having
the linking number with C equal to one we have:

χ(γ ) = exp 2π
√

−1α (49)

where α ∈ R, i.e. χ is unitary. If π : (X ′, E) → (P2, C ∪ L) is the log resolution
(i.e., E contains the exceptional set and the proper preimages of C and L) and
mi = multEi π

∗( f ) then the residue of log extension of flat connection on V ⊗ Lχ

is equal to mi (A(0) + α I ). Hence the jumping loci are

mi (ξi, j + α) = ni (50)
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for some integers ni . Hence (e2π
√−1α)ζmi = e2π

√−1ξi, j where ζ
mi
mi = 1 and the

claim follows.
If the character χ is not unitary, i.e. Imα ̸= 0, can one see that dim H1(V ⊗

Lχ ) = 0 as follows. First notice that the Deligne’s Hodge deRham spectral sequence
(2) has in E1 all terms equal to zero except possibly for the following:

H2(X ′,Vχ ) 0 0
H1(X ′,Vχ ) H1(X ′,%1(logE) ⊗ Vχ ) 0
H0(X ′,Vχ ) H0(X ′,%1(logE) ⊗ Vχ ) H0(X ′,%2(logE) ⊗ Vχ )

(51)

Indeed, the terms above the diagonal i + j = 2 are zeros which can be seen
as follows. This spectral sequence, for variable χ , depends only on the locally
trivial bundle supporting the Deligne’s extension of the connection corresponding
to local system V ⊗ Lχ . This extension in turn does not depend on imaginary part
Imα (but differential a priori may be dependent on the latter). Since in the case
α ∈ R these terms are trivial due to degeneration of this spectral sequence in term
E1 and vanishing of Hi (X, V ⊗ Lχ ) for i > 2 the claim follows. This spectral
sequence degenerates in term E1 even if χ is not unitary since the differential dα

1
in the spectral sequence corresponding to the character χ given by (49) is the map
induced on cohomology by the connection ∇χ : %i (logE)⊗V → %i+1(logE)⊗V
and hence depends on α linearly. Since it is trivial for α ∈ R (i.e. in the unitary
case) it is trivial for all α. The transgression dα

2 depends on α linearly also as can
be seen from the following description of dα

2 : since for a form η ∈ H1(X ′,Vχ ) the
differential dα

1 takes its class to zero and hence we have ∇χ (η) = dη̄ where η̄ is a
0-form in %1(logE) ⊗ Vχ and ∇χ (η̄) represents the transgression.

Remark 5.5. Hodge-deRham spectral sequence may not degenerate in term E1 for
non-unitary local system (cf. [28]).

Remark 5.6. If dimV = 1 (or, more generally, if I m(ρ) is abelian), the twisted
characteristic varieties coincide with the ordinary ones. If ξ = ρ(γ ) then the roots
of 3ρ(t) are ξ−1ϵ where ϵ is a root of ordinary Alexander polynomial (cf. also
[17]) and the claim of 5.4 is immediate.

One way to obtain a local system of higher rank is the following. Let X be a CW-
complex and let H be a normal subgroup of π = π1(X) such that rkH/H ′ < ∞
(H ′ is the commutator subgroup of H ). The action of π on H by conjugation
preserves H ′ and hence we obtain an action on H/H ′. Since for such action of π

the subgroup H ′ acts trivially we also have the action of π/H . We shall denote by
ρH the corresponding representation of π (or π/H ) on VH = (H/H ′) ⊗ C.

Theorem 5.7. Let H be a finitely generated normal subgroup of π = π1(C2 − C)

and γ ∈ π an element in the conjugacy class of a loop which is the boundary
of a small disk transversal to C. The eigenvalues of the action of γ on (π ′ ∩
H/(π ′ ∩ H)′)⊗C belong to a cyclotomic extension of the field F generated by the
eigenvalues of ρH (γ ) acting on (H/H ′) ⊗ C.
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Proof. Recall that if G is the covering group of a Galois cover f : Y → X and V
is a local system on X then one has the Leray spectral sequence

Hp(G, Hq(Y, f ∗(V ))) ⇒ Hp+q(X, V ) (52)

We shall consider the exact sequence of low degree terms corresponding to the
spectral sequence of G = π ′/π ′ ∩ H acting on the covering space Xπ ′∩H of Xπ ′

corresponding to the subgroup π ′ ∩ H ⊂ π ′:

Hp(G, Hq(Xπ ′∩H , f ∗(VH ))) ⇒ Hp+q(Xπ , VH ) (53)

After the identification H1(Xπ ′∩H , f ∗(VH )) = H1(Xπ ′∩H ) ⊗C VH and
H0(Xπ ′∩H ) = C (since the pullback of the local system VH on Xπ ′∩H is trivial
because the restriction of ρH on π ′ ∩ H is trivial) we have:

H2(G, C) → (H1(Xπ ′∩H ) ⊗C VH )G → H1(Xπ ′ , VH ) → H1(G, C) (54)

The eigenvalues of ρ(γ ) belong to the cyclotomic extension of F and since the
action of G is trivial on H1(Xπ ′∩H )) we obtain the claim. ⊓5

Remark 5.8. In the case when π/H is finite this result is not new: if so, then H is
the fundamental group of a quasiprojective variety and the Alexander polynomial
is cyclotomic in this case [24]. On the other hand this theorem imposes restrictions
on finitely generated subgroups of the fundamental group and this appears to be a
non-trivial restriction on this class of groups for which there exist a plane curve C
such that π = π1(P2 − C).

6. Examples

6.1. Points in P1

Let us consider the case when X is the complement to r+1 distinct points in P1. Then
π1(X) the free group on r generators and Charπ1(X) = C∗r . Let (α1, . . . ,αr ) ∈ U
(cf. (3)) and not all αi = 0. Let [−(

∑
i αi )] = −k (1 ≤ k ≤ r ). The Deligne’s

extension then is OP1(−k). We have:

dimH0(%1(log D)(−k)) = dimH0(O(−2 + r + 1 − k)) = r − k (55)

dimH1(O(−k)) = k − 1 (56)

Hence the dimensions of the graded components of Hodge filtration take constant
values within the polytopes:

k <
∑

αi ≤ k + 1 (57)

with dimH1(Lχ ) = r − 1.
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6.2. Generic arrangement in P2

The cohomology of a non-trivial local system on the complement X to generic
arrangement of r + 1 lines are given as follows:

rkH2(X,Lχ ) = 1 + r2 − 3r
2

rkHi (X,Lχ ) = 0 (i ̸= 2)

Together with the degeneration of the Hodge spectral sequence (2) this yields
that each of the bundles of this spectral sequence in this case has only one non-
vanishing cohomology group, i.e.

H p(%q(logD) ⊗ V) = (−1)pe(%q(logD) ⊗ V) (58)

where e(A) denotes the holomorphic euler characteristic of a bundle A. Let us
consider a local system for which the residues along r lines are α1, . . . , αr and

k − 1 <
∑

αi ≤ k (59)

Then the Deligne’s extension is O(−k) and we have:

e(P2,O(−k)) = (k − 1)(k − 2)

2
(60)

e(P2,%2(logD)(−k)) = e(P2,O(r − 2 − k)) = (r − k − 1)(r − k)

2
(61)

For the calculation of e(P2,%1(logD)(−k)) let us use the Riemann-Roch. The
logarithmic bundle has the following Chern polynomial (where h ∈ H2(P2, Z) is
the generator and c(A) = ∑

ci (A)t i and ci (A) are the Chern classes):

c(%1(logD)) = (1 − ht)−r+2 (62)

(cf. [8]). Therefore we have the following expression for the Chern character:

ch(%2(logD)(−k) = 2 + (r − 2 − 2k)h +
(

k2 − (r − 2)k − r − 2
2

)
h2 (63)

Hence, since the Todd class td(P2) = 1 + 3
2 h + h2, the Riemann Roch yields:

e(P2,%1(logD)(−k)) = k2 + r − k − rk (64)

Hence we obtain the following:

Theorem 6.1. For the generic arrangement in P2 one has the following:

dimGr0
F = (k − 1)(k − 2)

2
, dimGr1

F = rk + k − r − k2,

dimGr2
F = (r − k − 1)(r − k)

2
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6.3. Cone over generic arrangements

In the case of the cone over r points in P1 we obtain an ordinary plane curve sin-
gularity of multiplicity r which is the case discussed already in [22]. Consider now
the cone over the generic arrangement in P2 considered in the previous example,
i.e. the arrangement CA of r + 2 planes in P3 with r + 1 planes H1, . . . , Hr+1
forming an isolated non-normal crossing and the remaining plane H∞ (at infinity)
being transversal to the first r + 1 planes. One can make calculations on the blow
up of P3 at the non-normal crossing point of the arrangement but from

0 → Z → π1(P3 − CA) → π1(P2 − A) → 0

one has the identification of Charπ1(P2 − A) with the subgroup of Charπ1
(P3 − CA) in the standard coordinates in the latter given by

x1 · · · xr+1 = 1

From the Gysin sequence associated with H∞ − ∪i=r
i=1 Hi ∩ H∞ ⊂ P3 − ∪i=r

i=1 Hi
we have the identification of the Hodge structures:

H3(P3 − CA,Lχ ) = H2(H∞ − H∞ ∩ ∪Hi ,Lχ ) (65)

Hence the polytopes S2
k are given by α1 + · · · + αr+1 = k and in each of these

polytopes we have the value of dimGrk
F given by the Theorem 6.1.

6.4. Arrangement from a pencil of plane quadrics

Consider the arrangement of six lines L1, . . . , L6 composed of the three sides of
triangle and the three cevians in it. Let H∞ be the line at infinity. Charπ1(P2 −
∪Li ∪ H∞) = C∗6. The characteristic variety is given by

xi1 · xi2 · xi3 = 1 (66)

where (i1, i2, i3) runs through triples having a triple point in common (cf. [21]).
This is a two dimensional sub-torus in the torus of characters. Let us consider the
characters exp(u) where u = (α1, . . . , α6) such that

∑
αi1 + αi2 + αi3 = p + 1

(p = 0, 1) (i1, i2, i3) as in (66). Let P̃2 be the blow up of P2 at the vertices of the
triangle. The Deligne’s extension is O(

∑
i (p + 1)Ei − 2pH∞). We have using

KP̃2 = ∑
Ei − 3H∞ and Serre duality

H1

(

P̃2,O
(

∑

i

2Ei − 4H∞

))

= H1
(
P̃2,O

(
−

∑
Ei + H∞

))

= H1(P2,JB(H∞)) = 1

where JB is the ideal sheaf of the set of the vertices of the triangle (the last equality
follows from the Cayley-Bacharach theorem, cf. [21]). Similarly one obtains (V is
the Deligne’s extension):

Gr0
F = dimH0(P̃2,%1(log ∪ Ei ∪ H∞) ⊗ V) = 1
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6.5. Arrangement from a net of quadrics in P3

Consider the arrangement D8,4 = ∪i=1,...,8 Hi of eight planes in P3 introduced in
[24]. Recall that these eight planes split in four pairs forming 4 quadrics belonging
to a net. This net has eight base points which are the only eight non-normal crossings
in the arrangement. Let H∞ be a generic hyperplane in P3. One has Charπ1(P3 −
D8,4 ∪ H∞) = C∗8. Consider the subset in U (cf. Sect. 2.1) given by

S̄2
3 : αi1 + · · · + αi4 = 3 (67)

where (i1, . . . , i4) runs through eight unordered collections of indices such that
Hi1 , . . . , Hi4 form a quadruple of planes containing one of eight non-normal cros-
sings points. Note that the dimension (over R) of the set of solutions is equal to three
and the Zariski closure of this set is support of the homotopy group Suppπ2(P3 −
D8,4) ⊗ C considered in [24]. We claim that for any u = (α1, . . . ,α8) ∈ S̄2

3 and
for the corresponding character exp(u) one has

dimGr3
F H2(P3 − D8,4 ∪ H∞,Lexp(u)) = 1 (68)

Indeed let P̃3 be the blow up of P3 in eight base points and E1, . . . , E8 the corres-
ponding exceptional components. For a character exp(u), where u belongs to (67),
the Deligne’s extension is O(3E1 + · · · + 3E8 − 6H∞), since each of the eight
planes in the arrangement contains four base points. The canonical class of P̃3 is
2E1 + · · · + 2E8 − 4H∞ and therefore we have:

dimGr3
F H2(P3−D8,4 ∪ H∞,Lexp(u))=dimH2(O((3E1+ · · · +3E8−6H∞)

(69)

(using Serre duality)

= dimH1(O(−E1 − · · · − E8 + 2H∞) = dimH1(P3,JB(2H))

where JB is the ideal sheaf of the base locus. Since B is the complete intersection
of three quadrics in P3, the claim (68) follows from the Cayley-Bacharach theorem.
In fact dimGr p

F = 1 for p = 0, 1 as well and the corresponding characters are the
exponents of u for which αi1 = · · · = αir = p + 1.
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