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Development of the theory of Alexander invariants in
Algebraic Geometry

Anatoly Libgober

ABSTRACT. This is an informal overview of the origins and history of the study
of Alexander invariants in algebraic geometry.

As I am neither a historian nor an
archeologist of mathematics, I shall
merely present my idea of major
contributions in the subject..

S.Lefschetz!

1. Introduction.

The study of Alexander polynomials is a very active area of mathematics play-
ing an important role in many topological problems. Starting with the seminal
paper of James Wadell Alexander [2], as of the date of this writing, a MatSciNet
search generates 826 entries. There has been extensive research of the history of
Alexander invariants in topology (cf. [28, 41, 91]). In this paper I will try to
review the role of the Alexander polynomial and their generalizations in algebraic
geometry.

In the latter, the Alexander polynomial is primarily a tool for understanding
the topology of the complements to plane algebraic curves. Describing the ori-
gins of the studies of the complements one should probably start with the work of
Enriques (cf. [27]) on multi-valued algebraic functions of several variables (or equiv-
alently the finite covering spaces) since, it seems, they contain the earliest results
on their fundamental groups of the complements. Enriques work was prompted
by the search for a higher dimensional extension of the Riemann existence theo-
rem. In the one variable case, Riemann showed the existence of a unique algebraic
multivalued function on a projective line with a given branching locus and an ar-
bitrary assignment of permutations o; of branches, except for being constrained
by universal relation o; - .... - 0, = 1. In modern language, the reason for this
single constraint is that the fundamental group of the complement to n points in
P{ is a free group with presentation containing n generators and a single relation

Lef. [45]
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4 ANATOLY LIBGOBER

stating that product of generators is the identity. Enriques realized that in order
to define a multivalued function of two variables branched along a curve C' C P2,
similarly to Riemann’s case, one also need to assign permutations to intersections
of C' and the generic line. Now, however, besides the triviality of the product one
has to satisfy additional relations among these permutations. Today we recognize
Enriques relations among the permutations as the same as the relations satisfied by
the generators of the fundamental group 71 (P? — C') which are also the generators
of m (P! — C' NPY) where P! is a generic line in P2. These relations correspond
to relation resulting from moving this generic line within a generic pencil along
loops surrounding the lines in the pencil which are either tangent to C' or contain
singular points of C. Enriques work showed the subtlety of fundamental groups of
the complements in algebraic geometry, albeit “algebraic” fundamental groups in
the sense of Grothendieck, since Enriques was concern only with existence of finite
coverings.

In his 1929 paper [93] O.Zariski, pursuing the program to study finite cyclic
covers, showed the vanishing of irregularity, i.e., the absense of holomorphic 1-
forms, of an n-fold cover of a projective plane branched over a singular curve in
the case when n is a power of a prime. This work used constructs clearly bearing
the appearance of knot polynomials. It is possible that he anticipated, and was
occasionally ahead of topologists in sensing the role of polynomial invariants in the
study of the complements (the idea of the formula for the first Betti number of a
branched cyclic covering of a sphere should be credited to Zariski) but Alexander
polynomials and their relation with the fundamental groups of complements did
not enter his work. Though Zariski was under the strong influence of Lefschetz and
met Alexander in November 1927 (cf. [77] chapter 6), he either learned about the
Alexander polynomial only in March 1932 2 from a rather roundabout source or
preferred to avoid its use. In the footnote to [95] he writes:

After having communicated this theorem 3 at a meeting of American Mathe-
matical Society in March 1932, I learned from Professor Lefschetz that the same
theorem is proved by Werner Burau and that Burau’s paper entitled “Kennzeichnung
der Schlauchknoten” is being published in the forthcoming issue of the Abhandlungen
aus dem Mathematischen Seminar der Hamburgischen Universitdt. The polynomial
F(z) in section (5) of this paper also obtained by Burau as the Alexander polynomial
of of the knot (see. J.W.Alexander, “Topological invariants of Knots and Links”,
Transactions of American Mathematical Society, vol 30 (1928) p.273- 306.) This
was to be expected since the connection between the homology characters of the k-
sheeted manifolds with the knot as branch curve and the Alexander polynomial of
the knot was clearly pointed out by the Alexander in his quoted paper.

Conceding priority to Mr. Burau, I publish only outline of my proof. I do
this especially because of the additional result arrived at in the course of the proof
of the effect that the Betti number Ry of the k-sheeted Riemann manifold is the
number of roots of the polynomial F(x) which are also roots of the equation z* =
1. Whether this is a general property of the Alexander polynomial or holds only

2i.e. this was four years after the appearance of Alexander’s paper and after Zariski most

fundamental papers on the topology of singular curves.
‘3Stating that the fundamental group of a plane curve singularity determines the Puiseux
pairs.
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ALEXANDER INVARIANTS IN ALGEBRAIC GEOMETRY 5

for particular knots connected with algebraic singularities- is a question which is
worthwhile considering. *

Papers [93, 94, 95] reveal that Zariski viewed the tower of cyclic covers with
a given branch locus and its elements as the topological invariant of the branching
locus. This point of view is rather natural for a practitioner of algebraic funda-
mental groups °. He saw the existence of covering spaces with a non-vanishing first
Betti number as a manifestation of non-commutativity of the fundamental group
of the complement but the connection with the structure of the fundamental group
and the role of the Alexander polynomial as an intermidiary between covers and
the group of the complement were not realized in his work.

D.Mumford [67] and B.Mazur [10] in the mid 60s were pointing out the sim-
ilarities between the Alexander polynomial and Zariski constructs. In particular,
Mumford posed a question about the role of the Alexander polynomial in his ap-
pendix to 1972 edition of Zariksi’s Algebraic surfaces (cf. [67]) and B.Mazur asked
about the relation between Alexander polynomials of links of singularities of a
plane curve and the topology of the complement. These questions contributed to
the development of the theory of Alexander invariants in algebraic geometry °.

2. Alexander polynomials

The Alexander polynomial in its explicit form made first appearance in alge-
braic geometry in the paper [46].” The study of the fundamental groups of the
complements to projective plane singular curves was largely stagnant for about 40
years between 1935 and the late 70s. Zariski’s deep and fundamental discoveries
prior to mid 30s included finding the presentation of the fundamental group of a
plane curve in terms of generators and relators which now is known as the Zariski-
van Kampen theorem, (the result which is parallel to the much earlier Wirtinger’s
knot groups presentation), finding examples of curves with non-abelian fundamen-
tal groups, namely the curve f2(x,y, ) + f3(z,y, 2) = 0 where f,(z,y, 2) is generic
form of degree m, dual curves to rational nodal curves, 8 the calculation of the
irregularity of resolutions of singularities of curves branched over plane curves with
nodes and cusps and finally initiating the local study of singularities of plane curves
(see detailed analysis of Zariksi work in [10]). As was already mentioned above,
Zariski saw one of the main merits of his remarkable paper [94] in its geometric
method (i.e. using the position of cusps as an input) to show the non vanishing

4This problem posed by Zariski was addressed shortly thereafter by Goeritz in his paper in
Amer. Journ. of Math. 56 (1934) no.1-4, 194-198 (who, following Reidemeister, calls F'(z) an
L-polynomial rather than the Alexander polynomial) and was refined further by R.Fox, Hosokawa-
Kinoshita and De Witt Sumners (for higher dimensional links). On interactions between Princeton
or Viennese schools including Reidemeister, Wirtinger, and Goeritz cf. [28].

5A similar viewpoint is expressed by Alexander in footnote on p.303 in [2].

6 Another tantalizing suggestion by Mazur on realtion between the Alexander polynomials
and Iwasawa theory was not to date successfully pursued.

"Here we mean, of course, the global Alexander polynomial. As it was mentioned earlier, the
Alexander polynomials of links of algebraic singularities were extensively studied starting from
works of Burau and Goertz. Some of these developments are mentioned below.

8If C is dual to rational nodal curve of degree d then 7(P? — C) is isomorphic to the braid
group of sphere on d-strings; Zariski argument extremely beautiful and elementary. This was
the first appearance of braid groups in an essentially algebro-geometric problem. 50 year later,
B.Moishezon discovered how pervasive braid groups are in these problems [66].
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6 ANATOLY LIBGOBER

of irregularity of cyclic branched coverings and by this detecting that the funda-
mental group of the complement to branching locus is non-abelian. The precise
relation between irregularity and the fundamental group, or rather its Alexander
polynomial, was worked out in [46].

Important results between Zariski and the revival of interest in the study of
plane singular curves before the 80s include [62], [88] and calculation of the funda-
mental group of the complement to f + f? = 0 (cf. [71]). Often overlooked is the
important work of Chisini and his school which, however, more or less dissipated
without much follow up in the mid 50s. Very important was the vast development
of local theory of singularties and in particular singularities of plane curves in 60s
and 70s (which cannot be overviewed in this note). It provided one of the most
beautiful interactions between algebraic geometry and topology with inspiration
coming from works of Brieskorn on consruction of exotic spheres using singularities
as well as from Milnor’s book [65]. Much of it is summarized in the influential
collection [76], and the book [5] with the case of curves discussed in [13] and a
little later in [26]. Among many other results, the Alexander polynomial of a link
of a singularity was identified with the characteristic polynomial of the monodromy,
([65]) the later already presented itself as the central tool in the local study of the
topology of singularities. This allowed one to better understand many of Zariski’s
local results. For example in (cf. [61]) the results of Brauner, Zariski and Burau
were strengthened by showing that not just the fundamental group but the Alexan-
der polynomial of the knot alone determines the topological type of an algebraic
knot.

Revival of interest in the global study of plane singular curves in [46] is due in
large extent to Fulton-Deligne solution to the so-called Zariski problem.? In the late
70s this problem was perceived as the main question in the theory of plane singular
curves: the question asked if the fundamental group of the complement to a plane
curve, having ordinary nodes as the only singularities, is abelian. Zariski derived
this statement from his calculation of the fundamental group of the complement
to a union of r mutually transversal lines in P? (which is Z""1), and the Severi
assertion in [83], that the system of plane curves of fixed degree with nodes as the
only singularities is irreducible. Severi’s reasoning was incomplete but an actively
sought-after proof of the missing point was finally found in [37]. Fulton’s ([34])
and Deligne’s ([21]) proofs follow different lines and their arguments deal directly
with fundamental groups.

After Fulton and Deligne’s work it was quite natural to turn to non abelian
cases. Zariski-van Kampen theorem, proved in the 30s (cf. [89], [16]), though a
very beautiful and important fact, sometimes gives the wrong impression that the
problem of fundamental groups of the complements is solved. In fact, it says very
little about the properties or structure of fundamental groups and even for such
natural problems as commutativity for curves with mild singularities by itself it is
not too helpful. Even establishing if Enriques result mentioned above ([27]) gives
complete information of the fundamental group depends on whether the topological

9Porhaps one should mention another “missed opportunity” for a systematic study of the
topology of the complements. There was much interest among physicists in a study of ramification
of integrals in connection with Feynmann integrals and Landau singularities of S-matrix which
generated many interesting calculations (Fotiadi, Froissart, Regge) but not a systematic theory
cf. [78] (there were, of course, many very fruitful interactions with singularity theory)
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ALEXANDER INVARIANTS IN ALGEBRAIC GEOMETRY 7

fundamental group is residually finite '° : if not, then monodromy groups of finite
covers branched over singular curves described by Enriques miss information in the
intersection of the subgroup of finite index in the topological 7.

With this state of affairs, it appeared reasonable to try to find “manageable”
invariants of fundamental group of complements to algebraic curves. The definition
of Alexander modules ([38]) which in 70s were mainly invariants of knot or link
groups, worked for any group which is finitely generated, finitely presented and has
surjective homomorphisms ¢ : G — Z. In this case, the Alexander module is defined
as the quotient Ker(¢)/Ker(¢)' (i.e. of a kernel by its commutator) considered as
the module over the group ring of Z i.e. the ring of Laurent polynomials. Given a
presentation of the fundamental group by generators and relators, one can find the
presentation of Ker¢ using the Reidemeister-Schreier method and hence calculate
the abelianization (with the action of G/Ker¢ on it).

For an algebraic curve in P? with r components of degrees di, ..., d,, one has

(1) H\(P?> - C,Z) =7"/(dy, ..,d,)

(quotient by cyclic subgroup generated by the element (dy, ..., d,)) Hence if one of
the components has a degree one, i.e., if we consider a curve in affine plane, then
H; of the complement is free abelian and knot theory construction does apply. One
even has preferred surjection 71 (C2—C) — Z given by the total linking number with
C. As in knot theory, one can remedy the fact that Z[t,t~1] is not a principal ideal
domain by considering Ker(¢)/Ker(¢)' ® C as C[t,t~!] module. The order of this
Cl[t,t~]-module is called the Alexander polynomial Ac(t). This global Alexander
polynomial gives an answer to the above mentioned problem raised by Artin and
Mazur in (cf. [10]): provide reasonable conditions for regularity (equivalently,
the vanishing of the first Betti number) of cyclic multiple planes in terms of local
Alexander polynomials. It was shown in [46] that a n-fold cyclic cover of P? is
regular if none of the roots of local Alexander polynomials of links of singularities
of the branching locus is a root of cyclotomic polynomial ¢ — 1. For example,
in the case considered in Zariski paper [94] which was a motivation for [10], the
irregularity (i.e., %1) of non-singular birational model of a cyclic branched over of P2
branched over curves with nodes and cusps as the only singularities vanishes unless
the degree is divisible by 6 and, of course, it is well-known that the local Alexander
polynomial of a cusp z? + 4> = 0 is t? — ¢ + 1 vansihing at the primitive roots of
unity of degree 6. The proof in [94] is very ingenious and based on the theory of
adjoints with input from a topological result from his previous work [93] and in fact
anticipated many distant developments including the theory of multiplier ideals (see
below). Conditions for the regularity of cyclic multiple planes in [46] were obtained
by purely topological means inspired by Deligne’s arguments (cf [21]). Later the
arguments were simplified and corrected using ideas in Nori’s fundamental work on
the complements to algebraic curves on projective surfaces (cf. [70]). The regularity
of coverings of degrees which are powers of a prime, proven by Zariski prior to [94]
1 and played a crucial role in the argument in the latter paper, received in [46, 47]
a proof similar to the proof of the vanishing of the first Betti number of branched
coverings of S of a degree equal to a power of a prime.

10T his still remains to be open.
HThis is one of the cases when Zariski was clearly ahead of developments in knot theory.
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8 ANATOLY LIBGOBER

Method of [94] for calculation of irregularity of cyclic multiple planes was gen-
eralized in [48] so that it can be applicable to curves with arbitrary singulari-
ties. Work [94] uses 2" = f(x,y) as a biregular model of cyclic multiple plane V,,
branched over f(x,y) = 0 and then applied the theory of adjoints to calculate the
geometric genus of this model. Since the holomorphic Euler characteristic depends
only on combinatorial data of f(x,y) = 0 this gives the irregularity of V,,. By re-
stricting adjoint surfaces of V;, to projective plane containing branching locus [94]
obtains that irregularity of V,, is the sum of a linear functionof n and a periodic
function having possibly a non zero value equal to the superabundance of curves
of degree d — 3 — % passing through the cusps of the branching curve only for 6|n.
Here the superabundance is the difference between the dimension of the space of
curves of a given degree passing through the cusps and the dimension which is ex-
pected (i.e. the dimension of the space of curves of fixed degree minus the number
of cusps). Since from [93] it was known already that the irregularity of multiple
planes for n being a power of prime is zero the implication was that the linear term
is absent.

Analysis of Zariski arguments, results of which were described in paper [48],
yielded that if the branching curve has singularities more complicated than cusps,
then one has to make the following generalization. The irregularity of a cyclic
multiple plane can be expressed in terms of the superabundances of certain linear
systems of plane curves specified by the degree and the condition that the local
equations of the curves in the system must belong to the ideals depending on the
local type of the singularities (rather than, as in the case of cusps, just passing
through the singular points). In fact the calculation gives logarithms of roots of the
global Alexander polynomial which, by the divisibility theorem of [46], are rational
numbers k such that each exp(27ik) is a root of the local Alexander polynomial.
These logarithms are among the members of collections of rational numbers as-
sociated with each singular point and defined as follows. For each ¢ in the local
ring of the singular point, one considers the minimal x = % such that the 2-form
7%@5(%’3{&“@, defined on non-singular locus surface of z” = f, extends on a res-
olution of singularities of the latter to a holomorphic form. Moreover, the set of
@’s, yielding the value of k(¢) > k form the ideal in the local ring depending on .
The rational number k was called in [48] the constant of quasi-adjunction and the
above ideal of corresponding ¢ was called the ideal of quasi-adjunction. Shortly af-
ter [48], in [63] the constants of quasi-adjunction were identified with the spectrum
of singularity defined using the Hodge theory.

The main result in [48] is that the root of unity exp(27/—1k) is a root of the
global Alexander polynomial if and only if dimH"'(P?, Jging(d — 3 — dk) # 0. Here
dsing C Opz is the ideal sheaf which has a stalk different from the local ring only at
the singular point and the stalk at such point is the ideal of ¢’s such that k(¢) > &.
The condition of extendability of wy in [48] is obtained by using a resolution of the
normalization of the fiber product V,, X2 C2, where V,, is the cyclic multiple plane
and 7 : C2 — C2 is an embedded resolution of germ of f near a singular point. If Ej,
are exceptional loci of such a resolution, ar = ordg, 7*(f), cx, = ordg,7*(dx A dy)
and er(¢) = ordg,7*(¢), then the extendability condition is ¢ + 1 — ex(¢) >
ar(1 = 1). The constant of quasi-adjunction r(¢) above is the minimal solution to
the above inequality and the ideal of quasi-adjunction is 7. (O(Kg2 ez — £(f)O¢2)
which since mid 90s became known as the multiplier ideal of divisor kD (where
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ALEXANDER INVARIANTS IN ALGEBRAIC GEOMETRY 9

D = (f) is the zero divisor of f). The collection of constants of quasi-adjunction is
now also known as the collection of jumping numbers (cf. [68], [43]).

Besides paper [46], Zariski’s result on the dependence of topology on the po-
sition of singularities was reconsidered in the work ([29]). This paper deals with
the Milnor fibers of homogeneous polynomials which are the defining equations of
plane singular curves and used the cyclic coverings trick as in [90]. The Alexander
polynomial via such use of Milnor fiber was considered also in [79]. A little later an
interpretation of Alexander polynomial in terms of differential forms were obtained
in ([42]).

Since the late 70s or early 80s, B.Moishezon initiated his program of calcu-
lation of the fundamental groups of the complements to the branching loci of
generic projections of surfaces in PV. He made explicit calculations for the case
of generic projection of non-singular surfaces in P3. In [66] it was shown that
71 (P2 — C,,) = B,,/(A?). Here C,, is the branching curve of generic projection of a
non-singular surface in P3 having degree n (degC,, = n(n — 1), the number of cusps
is n(n — 1)(n — 2) and the number of nodes is in(n — 1)(n — 2)(n — 3)), B, is the
Artin braid group on n-strings and A? is the generator of its center. Moishezon’s
program subsequently was carried on also after Moishezon’s death, (cf. [86] and
references therein). Moreover, later the techniques of braid monodromy, i.e. the
monodromy with the values in a braid group, turned out to be useful in the study
of symplectic subvarieties (cf. [11]). In [49], it was found that braid monodromy
determines the homotopy type of the complement to the plane singular curve and
in [50] it was shown how to calculate Alexander polynomials in terms of braid
monodromy. The latter suggested that there are polynomial invariants of the com-
plements associated with any linear representation of braid over a principal ideal
domain (the Alexander polynomial corresponds to a reduced Burau representation
but the study of invariants corresponding to other representations was not pursued
so far).

The Alexander polynomial continues to play a role in the classification of plane
singular curves. The possibility that Alexander polynomial distinguishes connected
components of equisingular families of plane curves was disproved in [6], though
for sextics (with cusps on conic and in general position) the Alexander polynomial
separates components (cf. also [72, 84]). The classification of Alexander polyno-
mials of sextic curves was started in [73, 31, 74] and completed in [19]. Numerous
examples of Alexander polynomials for curves with Ay singularities were given in
[17]. The dependence of Alexander polynomials on the line at infinity was studied
in [75]. An extension to non abelian cases was made in [44].

3. Characteristic varieties

Characteristic varieties were introduced in [53] as zero sets of the Fitting ideals
of Hy(Xap,C) where X, is the infinite abelian cover of a CW-complex X. As
such, they appeared as affine algebraic subvarieties of the torus SpecC[H;(X,Z)].
Equivalently, they are the support loci of C[H1(X,Z)]-modules A"H; (X, C). The
problem which at the time had been addressed by characteristic varieties was to
find a multi-variable generalization of the Alexander polynomial, keeping in multi-
variable setting to the extent possible the divisibility theorems and the relation
with the homology of abelian covers i.e., to find an abelian generalization of the
theory of Alexander polynomials. In topology, the study of multivariable Alexander
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10 ANATOLY LIBGOBER

polynomials goes back to R.Fox but earlier occurances are in works of Reidemester-
Shumann and Burau (cf. references in [87]).

Complications relative to one variable case come from the fact that the group
ring (even over C) of the Galois group of a universal abelian covering, i.e. C[H; (X, Z)],
is not a principle ideal domain unless the latter covering is cyclic. In the case of the
complement to links, the first Fitting ideal of the homology of an infinite abelian
cover considered as a module over Hi, is non-principal, but has a closely related
principal ideal (cf. [33]). This allows one to define (cf. [38]) non-trivial multivari-
able Alexander polynomial of links.

Higher Fitting ideals of links are very far from being principal and therefore
there were no multivariable higher Alexander polynomials and no classical formulas
in knot theory for the homology of finite abelian cyclic coverings. In the case of
m1(P? — C) where C is as in (1) even the first Fitting ideal is very far from being
principal in general. The work [53] resolved these issues. The characteristic vari-
eties, as the Fitting ideals, depend only on the fundamental group G = w1 (X, zg).
Of course, replacement of Alexander module but its support results in a loss of a
lot of important data about the module G'/G"” but what is retained is enough to
keep track of substantial amount of information on the fundamental group. For ex-
ample, characteristic varieties contain enough information to control Betti numbers
of unbranched (cf. [53] for an explicit formula) and branched coverings (cf. [82])
and allows one to derive an analog of divisibility theorem of Alexander polynomial
at infinity by the global Alexander polynomial (cf. [53]).

At the time, additional motivation was coming from the work of P.Sarnak who
in his study of representations asked for the type of growth of Betti numbers in
the tower of finite abelian covers. Together with Adams (cf. [1]) he had shown,
using the so-called Lang conjecture, that rkH; growth is polynomially periodic, i.e.
can be expressed as polynomial > a;, . 4, (n1, ..,nk)ni1 L n?j with coefficients
being periodic in n, ..., n;. In the case of knots, one has ordinary periodicity since
rkHy (V) (Vi is a cyclic branched covering) is the number of common roots of
cyclotomic polynomial t* — 1 and higher Alexander polynomials associated with
the knot. Polynomial growth of Betti numbers for branched covering of P? was
proved by E.Hironaka ([39]). As already mentioned, the formula in [82] works
for branched covering spaces in a much more general context than coverings of
3-spheres on P?. In the case of plane curves or links it expresses the homology
of the abelian cover in terms of characteristic varieties of sublinks of branching
locus or characteristic varieties of complements to reducible curves which formed
by collections of components of a given reducible curve. It also plays a role in
establishing polynomial periodicity of Betti numbers.

The paper [40], relates the characteristic varieties to the cohomology of rank
one local systems. The local systems of rank one are by definition just the characters
of the fundamental groups and one can use them to define twisted cohomology
HY(X,x) (x € Charmi(X)). This is very important since cohomology of local
systems are amenable to the study using methods of deRham and Hodge theory
(i.e., using deRham complex depending on the flat connection corresponding to the
local systems). This theory originated by Deligne as part of his solution to the 21th
Hilbert problem on Riemann-Hilbert correspondence (cf. [20]).
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In particular one could apply results of [4], which first appeared very soon after
characteristic varieties were introduced in [53], and which extended to the quasi-
projective case a long series of results going back to deFranchis, Castelnuovo and
more recently Beauville, Catanese, Green-Lazarsfeld, Deligne and Simpson. No-
tice that these authors were working in the projective case and with moduli space
of topologically trivial holomorphic bundles corresponding to unitary connections.
Some implications for the fundamental groups of projective manifolds were pointed
out in these works but the goals and applicability of these studies were markedly
different from the study of characteristic varieties (cf.[85]). For example, the prob-
lem of the dependence of the characteristic varieties of P2 — C on the properties of
C does not have a counterpart in the study of the jumping loci for cohomology of
line bundles on projective varieties. The results of [4] were applied systematically
to the study of characteristic varieties in [55] and played there a key role. Firstly,
they elucidated the structure of the connected components by describing them as
cosets of subgroups of SpecC[H1(X,Z)] = Charm(X) and secondly by relating the
components of characteristic varieties of positive dimension to holomorphic maps
on hyperbolic curves (or irrational pencils in the projective case). More recently
there were related to rational orbifold pencils (cf. [9]).

The work [55] provided an algorithmic procedure for calculation of the essential
components of the characteristic varieties 2. This procedure is a generalization
of the method used to get results of [48] in turn generalizing [94]. The results
in [55] describe the essential components of characteristic varieties in terms of
local data which consists of new invariant of local singularities with several, say r,
branches. Each component is obtained as a Zariski closure in Charm(P? — C') of
the image of a polytope in the universal cover of the group of unitary characters of
Charmy(P? — C). These global polytopes are intersections of polytopes defined in
terms of local data of a collection of singularities of C. The local data of singularities
in turn is a set of polytopes belonging to the fundamental domain of Hy(B—BNC, Z)
(here B is a small ball about a singularity of C') acting on the universal cover of
Char,m (B — BN (). One can think of this fundamental domain as the unit cube
in R" where r is the number of branches of a germ of C. In the case of irreducible
germs, these polytopes are the elements of the spectrum of singularity of the germ
which belong to [0,1) C R (cf. [63]; see [5] for discussion of spectrum in other
problems of local singularity theory). Once “a candidate” for global polytope is
selected one still has to decide if the Zariski closure of the image in Charm (P? —C')
will be an actual component of characteristic variety. For this one needs to check a
global condition, similar to the condition in the case of irreducible curve, and which
is non-vanishing of

(2) HY(P?, Jging(d — 3 —1)).

Here Jging C Op2 is the ideal sheaf having stalks non-equal to the full local ring
only at the singular points of C' and the ideals at singular points are the ideals of
quasi-adjunction corresponding to the local polytopes used to generate the global
candidate. Also, in (2) d is the total degree of C and | € Z is given in terms of
combinatorial data of local polytopes generating this candidate. The proof in [55]
is an inductive one and represents essentially the calculation of p, of the abelian

12They are essential in the sense that they do not come from a component of characteristic
variety on a curves obtained by deleting some components of the given curve.
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covers. An alternative argument for calculation of p, of abelian covers using [30]
was given recently in [14].

Applications of characteristic varieties in [55] and, shortly after that [56], in-
cluded the study of topology of complex hyperplane arrangements. These works
provide the relations between characteristic varieties and the purely combinatorial
cohomology of Orlik-Solomon algebra. In paper [56] for the first time there started
to emerge a possibility of classifying arrangements according to the type of char-
acteristic varieties. This gave an impetus to further classification of pencils in [32]
and [92].

Study of characteristic varieties, since they were introduced in 1992, devel-
oped into a particularly vast subject in the context of arrangements. Numerous
calculations were made, for example, using braid monodromy [18, 81]. Character-
istic varieties of quasi-projective varieties and arrangements were compared with
characteristic varieties of related CW-complexes and groups (cf. [23]) and even-
tually led to characterization of Kéhler groups which are the fundamental groups
of 3-manifolds in [24]. This was, to date, the culmination of the progress started
with the use of cyclotomic property of Alexander polynomials to show that certain
groups cannot appear as the fundamental groups of certain class of algebraic va-
rieties (cf. [51]). Alexander invariants were used [7] to show that arrangements
constructed in [80], though combinatorially equivalent, have non-isomorphic fun-
damental groups. Important progress was made in understanding the components
of characteristic varieties which are cosets of subgroups not belonging to charac-
teristic variety (cf. [25]). An outstanding remaining problem in the topology of
arrangenents is whether characteristic varieties depend only on combinatorial in-
formation about arrangements (cf. [59]).

4. Alexander invariants and homotopy groups

Early 90s, saw the start of developments of higher dimensional, i.e. correspond-
ing to higher homotopy groups, counterparts of Alexander invariants. In the work
[52] it was shown that for hypersurfaces in P"*! with isolated singularities for n > 2
one has the following;:

(3) i (P"T — V) is abelian, m(P"™' -V)=0 2<i<n-1

Moreover, the group 7, (P"*! — V) considered as the module over 7 (P"*! — V)
plays the role of the Alexander module. Many essential features of theory of curves
were generalized to higher dimensions (cf. [54]). They include the dependence of
7o (P — V) on the local type of singularities, the possibility of calculations based
on an appropriate generalization of Zariski-van Kampen theorem, the relation of
(P — V) with the Hodge number h™? of the cyclic branched over V' coverings
of P! 13 etc. The role of the Zariski sextic is played by the hypersurfaces corre-
sponding to n + 1-tuples of pairwise integers p1, ..., pp4+1 (here P = H?;Lllpi and fy
is a generic form of degree k in n + 2 variables):
(4) M+ + M =0

P1 Pn41
Moreover there is an abelian generalization of these results (i.e. based on the study
of abelian rather than cyclic coverings). The condition on a reducible hypersur-
face which assures properties (3) is that components of V' will have transversal

1?’Irrcgularity is equal to h9" for n = 1.
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intersections everywhere except for a finite number of points (i.e., V has isolated
non-normal crossings (INNC) cf. [58], [60]). The characteristic variety of interest
is the support of 7, (P"™ — V) ® C and much of the theory of characteristic vari-
eties can be extended to higher dimensions (cf [58]). In particular, there is close
connection with the jumping loci of local systems which were studied in [60] and
more recently in [14]. There is a local situation providing a counterpart to many
results in the local theory of isolated singularities (cf. [57, 22]). The case where the
degrees of all components of reducible hypersurfaces are equal to one yields a link
with the theory of arrangements. The classification of INNC arrangements with
characteristic varieties having components of a positive dimension can be achieved
with results having their counterpart in the theory of line arrangements.

Realization problems provide the biggest challenge in development of this the-
ory: which polynomials can appear as the Alexander polynomials of plane alge-
braic curves or orders of m,(P"™! — V) where V is a hypersurface with isolated
singularities? Similar questions are wide open in the case of components of charac-
teristic varieties of 7, (P"*! — V) where V is reducible hypersurface with isolated
non-normal crossings. More connections with other areas of singularity theory are
very likely (cf. [15]) for a connection between the polytopes of quasi-adjunction
and Bernstein-Sato ideals of germs of plane curves. Algebro-geometric theory of
Alexander invariants continue to be an actively developing area.

References

[1] S.Adams, P.Sarnak, Betti numbers of congruence groups. With an appendix by Ze’ev Rud-
nick. Israel J. Math. 88 (1994), no. 1-3, 31-72.

[2] Alexander, J. W. Topological invariants of knots and links. Trans. Amer. Math. Soc. 30
(1928), no. 2, 275-306.

[3] D.Arapura, Higgs line bundles, Green-Lazarsfeld sets, and maps of Khler manifolds to curves.
Bull. Amer. Math. Soc. (N.S.) 26 (1992), no. 2, 310-314.

[4] D.Arapura, Geometry of cohomology support loci for local systems. I. J. Algebraic Geom. 6

(1997), no. 3, 563-597.

V.Arnold, A.Varchenko, S.Gussein Zade Singularities of differentiable maps. Vol. 1. The clas-

sification of critical points, caustics and wave fronts. Vol. II. Monodromy and asymptotics of

integrals. Translated from the Russian by lan Porteous and Mark Reynolds. Monographs in

Mathematics, 82. Birkhuser Boston, Inc., Boston, MA, 1985, 1988.

E.Artal Bartolo, R.J.Carmona Ruber, Zariski pairs, fundamental groups and Alexander poly-

nomials. J. Math. Soc. Japan 50 (1998), no. 3, 521-543.

[7] E.Artal Bartolo, R.Carmona, J.I.Cogolludo, M.Marco Buzunriz, Invariants of combinatorial

line arrangements and Rybnikov’s example. Singularity theory and its applications, 1-34,

Adv. Stud. Pure Math., 43, Math. Soc. Japan, Tokyo, 2006.

E.Artal Bartolo, J.Carmona, J.I.Cogolludo. Essential coordinate components of characteristic

varieties. Math. Proc. Cambridge Philos. Soc. 136 (2004), no. 2, 287-299. (check!)

E.Artal-Bartolo, J.I.Cogolludo-Agustin, D.Matei, Characteristic varieties of quasi-projective

manifolds and orbifolds arxive 1005.4761.

[10] M.Artin and B.Mazur, Introduction to O.Zariski, Collected papers. Vol. III. Topology of
curves and surfaces, and special topics in the theory of algebraic varieties. Mathematicians
of Our Time. The MIT Press, Cambridge, Mass.

[11] D.Auroux, S.Donaldson, L.Katzarkov. M. Yotov, Fundamental groups of complements of plane
curves and symplectic invariants. Topology 43 (2004), no. 6, 1285-1318.

[12] A.Beauville, Annulation du H! pour les fibrs en droites plats. (French) [Vanishing of H?! for
flat line bundles] Complex algebraic varieties (Bayreuth, 1990), 1-15, Lecture Notes in Math.,
1507, Springer, Berlin, 1992.

[13] E.Brieskorn, H.Knérer, Ebene algebraische Kurven. Birkhuser Verlag, Basel-Boston, Mass.,
1981.

5

6

8

[9

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



14 ANATOLY LIBGOBER

[14] N.Budur, Unitary local systems, multiplier ideals, and polynomial periodicity of Hodge num-
bers. Adv. Math. 221 (2009), no. 1, 217-250.

[15] P.Cassou-Nogues, A.Libgober, Multivariable Hodge theoretical invariants of plane algebraic
curves, Arxive. 9004.1030. To appear in Journal of Knot theory and ramifications.

[16] D.Cheniot, Une dmonstration du thorme de Zariski sur les sections hyperplanes d’une hyper-
surface projective et du thorme de Van Kampen sur le groupe fondamental du complmentaire
d’une courbe projective plane. Compositio Math. 27 (1973), 141-158.

[17] J.I.Cogolludo, Fundamental group for some cuspidal curves. Bull. London Math. Soc. 31
(1999), no. 2, 136-142.

[18] D.Cohen, A.Suciu, The braid monodromy of plane algebraic curves and hyperplane arrange-
ments. Comment. Math. Helv. 72 (1997), no. 2, 285-315.

[19] A.Degtyarev, Oka’s conjecture on irreducible plane sextics. J. Lond. Math. Soc. (2) 78 (2008),
no. 2, 329-351.

[20] P.Deligne, Differential equations Equations differentielles e points singuliers reguliers. Lecture
Notes in Mathematics, Vol. 163. Springer-Verlag, Berlin-New York, 1970.

[21] P.Deligne Le groupe fondamental du complment d’une courbe plane n’ayant que des points
doubles ordinaires est ablien (d’aprs W. Fulton). Bourbaki Seminar, Vol. 1979/80, pp. 1-10,
Lecture Notes in Math., 842, Springer, Berlin-New York, 1981.

[22] A.Dimca, A.Libgober, Local topology of reducible divisors. Real and complex singularities,
99-111, Trends Math., Birkhuser, Basel, 2007.

[23] A.Dimca, S.Papadima, A.Suciu, Quasi-K&hler Bestvina-Brady groups. J. Algebraic Geom.
17 (2008), no. 1, 185-197.

[24] A.Dimca, A.Suciu, Which 3-manifold groups are Kéhler groups? J. Eur. Math. Soc. 11 (2009),
no. 3, 521-528.

[25] A.Dimca, On admissible rank one local systems. J. Algebra 321 (2009), no. 11, 3145-3157.

(26] D.Eisenbud, W.Neumann. Three-dimensional link theory and invariants of plane curve sin-
gularities. Annals of Mathematics Studies, 110. Princeton University Press, Princeton, NJ,
1985.

[27] F.Enriques, Sulla construzione delle funzioni algebriche di due variabili possendenti una data
curve diramzione, Annali di Matematica pure ed applicata, Ser. 4, Vol. 1, 1923, p.185-198.

[28] M.Epple, Knot invariants in Vienna and Princeton during the 1920s: epistemic configurations
of mathematical research. Sci. Context 17 (2004), no. 1-2, 131-164.

[29] H.Esnault, Fibre de Milnor d’un cne sur une courbe plane singulire. Invent. Math. 68 (1982),
no. 3, 477-496.

[30] H.Esnault, E.Viehweg, Lectures on vanishing theorems. DMV Seminar, 20. Birkhuser Verlag,
Basel, 1992.

[31] C.Eyral,M.Oka, Fundamental groups of the complements of certain plane non-tame torus
sextics. Topology Appl. 153 (2006), no. 11, 1705-1721.

[32] M.Falk, S.Yuzvinsky, Multinets, resonance varieties, and pencils of plane curves. Compos.
Math. 143 (2007), no. 4, 1069-1088.

[33] Fox, R. H. A quick trip through knot theory. 1962 Topology of 3-manifolds and related topics
(Proc. The Univ. of Georgia Institute, 1961) pp. 120-167 Prentice-Hall, Englewood Clifs,
N.J.

[34] W.Fulton On the fundamental group of the complement of a node curve. Ann. of Math. (2)
111 (1980), no. 2, 407-409.

[35] A.Gluchoff, and F.Hartmann, On a “much underestimated” paper of Alexander. Arch. Hist.
Exact Sci. 55 (2000), no. 1, 1-41.

[36] M.Green, R. Lazarsfeld, Deformation theory, generic vanishing theorems, and some conjec-
tures of Enriques, Catanese and Beauville. Invent. Math. 90 (1987), no. 2, 389-407. Higher
obstructions to deforming cohomology groups of line bundles. J. Amer. Math. Soc. 4 (1991),
no. 1, 87-103.

[37] J.Harris On the Severi problem. Invent. Math. 84 (1986), no. 3, 445—461.

[38] J.Hillman, Alexander ideals of links. Lecture Notes in Mathematics, 895. Springer-Verlag,
Berlin-New York, 1981.

[39] E.Hironaka, Polynomial periodicity for Betti numbers of covering surfaces. Invent. Math. 108
(1992), no. 2, 289-321.

[40] E.Hironaka, Alexander stratifications of character varieties. Ann. Inst. Fourier (Grenoble) 47
(1997), no. 2, 555-583.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



ALEXANDER INVARIANTS IN ALGEBRAIC GEOMETRY 15

[41] I.M.James, Editor, History of topology. Edited by I. M. James. North-Holland, Amsterdam,
1999.

[42] T.Kohno, An algebraic computation of the Alexander polynomial of a plane algebraic curve.
Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 3, 94-97.

[43] R.Lazarsfeld, Positivity in algebraic geometry. I. Classical setting: line bundles and linear
series. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern
Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of
Modern Surveys in Mathematics|, 48. Springer-Verlag, Berlin, 2004.

[44] Leidy, Constance; Maxim, Laurentiu Higher-order Alexander invariants of plane algebraic
curves. Int. Math. Res. Not. 2006, Art. ID 12976, 23 pp.

[45] S.Lefschetz, The early development of algebraic geometry. Amer. Math. Monthly 76 1969
451-460.

[46] A.Libgober, Alexander polynomial of plane algebraic curves and cyclic multiple planes. Duke
Math. J. 49 (1982), no. 4, 833-851.

[47] Libgober, A. Alexander modules of plane algebraic curves. Low-dimensional topology (San
Francisco, Calif., 1981), 231-247, Contemp. Math., 20, Amer. Math. Soc., Providence, R.I.,
1983.

[48] Libgober, A. Alexander invariants of plane algebraic curves. Singularities, Part 2 (Arcata,
Calif., 1981), 135-143, Proc. Sympos. Pure Math., 40, Amer. Math. Soc., Providence, RI,
1983.

[49] Libgober, A. On the homotopy type of the complement to plane algebraic curves. J. Reine
Angew. Math. 367 (1986), 103-114.

[50] A.Libgober, Invariants of plane algebraic curves via representations of the braid groups.
Invent. Math. 95 (1989), no. 1, 25-30.

[51] A.Libgober, Groups which cannot be realized as fundamental groups of the complements to
hypersurfaces in CN. Algebraic geometry and its applications (West Lafayette, IN, 1990),
203-207, Springer, New York, 1994.

[62] Libgober, A. Homotopy groups of the complements to singular hypersurfaces. II. Ann. of
Math. (2) 139 (1994), no. 1, 117-144. also: Homotopy groups of the complements to singular
hypersurfaces. Bull. Amer. Math. Soc. (N.S.) 13 (1985), no. 1, 49-52.

[53] A.Libgober, On the homology of finite abelian coverings. Topology Appl. 43 (1992), no. 2,
157-166.

[54] A.Libgober, Position of singularities of hypersurfaces and the topology of their complements.
Algebraic geometry, 5. J. Math. Sci. 82 (1996), no. 1, 3194-3210.

[55] A.Libgober, Characteristic varieties of algebraic curves. Applications of algebraic geometry
to coding theory, physics and computation (Eilat, 2001), 215-254, NATO Sci. Ser. II Math.
Phys. Chem., 36, Kluwer Acad. Publ., Dordrecht, 2001.

[56] A.Libgober, S.Yuzvinski, Cohomology of the Orlik-Solomon algebras and local systems. Com-
positio Math. 121 (2000), no. 3, 337-361.

[57] A.Libgober, Isolated non-normal crossings. Real and complex singularities, 145-160, Con-
temp. Math., 354, Amer. Math. Soc., Providence, RI, 2004

(58] A.Libgober, Homotopy groups of complements to ample divisors. Singularity theory and its
applications. 179-204. Adv. Stud. Pure Math. 43. Math. Soc. Japan. Tokyo, 2006.

[59] A.Libgober, Problems in topology of the complements to plane singular curves. Singularities
in geometry and topology, 370-387, World Sci. Publ., Hackensack, NJ, 2007.

[60] A.Libgober, Non vanishing loci of Hodge numbers of local systems. Manuscripta Math. 128
(2009), no. 1, 1-31.

[61] Le Dung Trang, Sur les noeuds algebriques. Compositio Math. 25 (1972), 281-321.

[62] M.Lehr, Regular Linear Systems of Curves with the Singularities of a Given Curve as Base
Points. Amer. J. Math. 54 (1932), no. 3, 471-488.

[63] F.Loeser, Vaquié M. The Alexander polynomial of a projective plane curve. Topology 29
(1990), no. 2, 163-173.

[64] Maxim, Laurentiu Intersection homology and Alexander modules of hypersurface comple-
ments. Comment. Math. Helv. 81 (2006), no. 1, 123-155.

[65] J.Milnor, Singular points of complex hypersurfaces. Annals of Mathematics Studies, No. 61
Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo 1968.

[66] B.Moishezon, Stable branch curves and braid monodromies. Algebraic geometry (Chicago,
I1l., 1980), pp. 107-192, Lecture Notes in Math., 862, Springer, Berlin-New York, 1981.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



16 ANATOLY LIBGOBER

(67] D.Mumford, Appendix in O.Zariski, Algebraic surfaces, Springer, 1972.

[68] A.M. Nadel, Multiplier ideal sheaves and Kéahler- Einstein metrics of positive scalar curvature,
Ann. Math, 132, (1990), 549-596.

[69] Naie, Daniel The irregularity of cyclic multiple planes after Zariski. Enseign. Math. (2) 53
(2007), no. 3-4, 265-305.

[70] M.Nori, Zariski’s conjecture and related problems. Ann. Sci. Ecole Norm. Sup. (4) 16 (1983),
no. 2, 305-344.

[71] M.Oka, Some plane curves whose complements have non-abelian fundamental groups. Math.
Ann. 218 (1975), no. 1, 55-65.

[72] M.Oka, A new Alexander-equivalent Zariski pair. Dedicated to the memory of Le Van Thiem
(Hanoi, 1998). Acta Math. Vietnam. 27 (2002), no. 3, 349-357.

[73] M. Oka, Alexander polynomial of sextics, J. Knot Theory Ramifications 12 (2003), 619-636.

[74] M.Oka, A survey on Alexander polynomials of plane curves. Singularits Franco-Japonaises,
209-232, Smin. Congr., 10, Soc. Math. France, Paris, 2005.

[75] M.Oka, Tangential Alexander polynomials and non-reduced degeneration. Singularities in
geometry and topology, 669-704, World Sci. Publ., Hackensack, NJ, 2007.

[76] Singularities. Part 1 and Part 2. Proceedings of the Summer Research Institute on Singu-
larities held at Humboldt State University, Arcata, Calif., July 20-August 7, 1981. Edited
by Peter Orlik. Proceedings of Symposia in Pure Mathematics, 40. American Mathematical
Society, Providence, R.I., 1983.

[77] C.Parikh, The unreal life of Oscar Zariski. With a foreword by David Mumford. Springer,
New York, 2009.

[78] F.Pham, Singularits des processus de diffusion multiple. Ann. Inst. H. Poincar Sect. A (N.S.)
6 1967 89-204.

[79] Randell, R. Milnor fibers and Alexander polynomials of plane curves. Singularities, Part 2
(Arcata, Calif., 1981), 415-419, Proc. Sympos. Pure Math., 40, Amer. Math. Soc., Providence,
RI, 1983.

[80] G.Rybnikov, On the fundamental group and triple Massey’s product. arXiv:math/9805061.

[81] A.Suciu, Fundamental groups of line arrangements: enumerative aspects. Advances in al-
gebraic geometry motivated by physics (Lowell, MA, 2000), 43-79, Contemp. Math., 276,
Amer. Math. Soc., Providence, RI, 2001.

[82] M.Sakuma, Homology of abelian coverings of links and spatial graphs. Canad. J. Math. 47
(1995), no. 1, 201-224.

[83] F.Severi, Vorlesungen iiber Algebraische Geometrie, Leipzig, 1921.

[84] I.Shimada, A note on Zariski pairs. Compositio Math. 104 (1996), no. 2, 125-133.

[85] C.Simpson, A weight two phenomenon for the moduli of rank one local systems on open va-
rieties. From Hodge theory to integrability and TQFT tt*-geometry, 175-214, Proc. Sympos.
Pure Math., 78, Amer. Math. Soc., Providence, RI, 2008.

[86] M.Teicher, Braid monodromy type invariants of surfaces and 4-manifolds. Trends in singu-
larities, 215222,

[87] Guillermo Torres, On the Alexander Polynomial, Annals of Mathematics, Vol. 57, No. 1 (Jan.,
1953), pp. 57-89.

[88] Turpin, W. S. On the Fundamental Group of a Certain Class of Plane Algebraic Curves.
Amer. J. Math. 59 (1937), no. 3, 529-544.

[89] E.R.Van Kampen, On the fundamental group of an algebraic curve, Amer. J. of Math. 55
(1933) p. 255-260.

[90] E.Viehweg, Vanishing theorems. J. Reine Angew. Math. 335 (1982), 1-8.

[91] C.Weber, On the topology of singularities, Singularities II, Geometric and Topological As-
pects, Contemporary Mathematics, vol. 475, AMS, 2008.

[92] Yuzvinsky, S. A new bound on the number of special fibers in a pencil of curves. Proc. Amer.
Math. Soc. 137 (2009), no. 5, 1641-1648.

[93] O.Zariski On linear connection index of the algebraic surfaces 2™ = f(z,y). Proc. National
Acad. Sci. USA. vol.15 (1929).

[94] O.Zariski, On the irregularity of cyclic multiple planes. Ann. of Math. (2) 32 (1931), no. 3,
485-511. Multiple planes.

[95] Zariski,O On the Topology of Algebroid Singularities. Amer. J. Math. 54 (1932), no. 3, 453—
465.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



ALEXANDER INVARIANTS IN ALGEBRAIC GEOMETRY 17

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS, CHICAGO, IL 60607
E-mail address: 1ibgober@math.uic.edu

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



