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MULTIVARIABLE HODGE THEORETICAL
INVARIANTS OF GERMS OF PLANE CURVES I

PIERRETTE CASSOU-NOGUÈS AND ANATOLY LIBGOBER

Abstract. We describe methods for calculation of polytopes of
quasiadjunction for plane curve singularities which are invariants
giving a Hodge theoretical refinements of the zero sets of multi-
variable Alexander polynomials. In particular we identify some
hyperplanes on which all polynomials in multivariable Bernstein
ideal vanish.

1. Introduction

The purpose of this paper is to study Hodge theoretical invariants of
local systems on the complements to germs of plane curve singularities.
These invariants, called the faces of quasiadjunction, yield a refinement
for the multivariable Alexander polynomial of a link of isolated singu-
larity or, more precisely, for the characteristic varieties associated with
the homology of universal abelian covers of the complements to a germ
of plane curve. We develop algorithmic methods for calculation of these
Hodge theoretical invariants in terms of combinatorics of defining equa-
tions of germs and to use them to study distributions of polytopes for
all germs of plane curves.
While a multivariable Alexander polynomial is a product of factors

of the form tm1

1 ...tmr
r − ω where ω = e2π

√
−1α is a root of unity (i.e.

α,α ∈ Q), the faces of quasiadjunction are subsets of the union of hy-
perplanes of the form

∑
mixi = α + k, k ∈ Z and are related to the

zero set of the Alexander polynomial via the exponential map. Faces
of quasiadjunction for links of plane curve singularities were defined in
[8], [9] using adjunction conditions for the abelian covers of germs. In
these papers they were related to the cohomology of the finite order
local systems of the complements. Here we show that faces of quasi-
adjunction can be defined entirely in terms of Mixed Hodge structure,
described in [12], on the cohomology of local systems (non necessarily
of finite order) on the complement to the germ: they parametrize the
unitary local systems with the dimension of a Hodge component having
a fixed value. In particular the families of (unitary) local systems on
the complement to a link with fixed Hodge data have a linear structure
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and form polytopes of various dimensions in the universal covering of
the space of unitary local systems. This description of the Mixed Hodge
structure on the local systems in terms of log-resolution of the germ
provides first approach to calculations of faces of quasiadjunction.
The second approach discussed in this paper is based on the relation

of faces of quasiadjunction with the spectrum of non reduced singu-
larities (cf.3.10). Below we show that “most” local systems with non
vanishing Hodge numbers correspond to eigenvalues of the (semi-simple
part of) the monodromy acting on graded vector space associated with
limit Hodge filtration on the cohomology of the Milnor fiber of the non-
reduced singularity of the form fa1

1 · .... · far
r . Another technical result

which makes calculations more effective shows that while the definition
of faces of quasiadjunction describes them in terms of multiplicities of
pull backs of defining equations and differentials along the exceptional
curves, this data corresponding only to curves having at least three
intersection points with other exceptional curves suffices. This can be
viewed as an extension of what was known previously in uni-branched
case and in the case of multivariable Alexander polynomials (cf. also
related result which concerns the log-canonical thresholds [17]).
We start with review in section 2 of the definitions of the polytopes

and ideals of quasiadjunction, multiplier ideals and their basic proper-
ties. In section 3 we show the connection with the Arnold-Steenbrink
spectrum of non reduced singularities. As an application we show in
section 4 that all multivariable Bernstein polynomials, i.e. the poly-
nomials b(s1, ..., sr) for which there exist a differential operator P such
that b(s1, ..., sr)f

s1
1 · ... · f sr

r = Pf s1+1
1 · .... · f sr+1

r are vanishing on hy-
perplanes containing codimension one faces of quasiadjunction.
The part II of this paper ([2]) develops methods for calculations of

the ideals and polytopes of quasiadjunction from defining equations of
the germs. The main technical tool are the Newton trees introduced by
the first named author. The Newton trees are very close to Eisenbud
and Neumann diagrams. Moreover we introduce a partial resolution of
singularity of the germ of a pair (C2, D) which we call Newton space
and which is a toroidal morphism C̃2 → C2 of the space C2 having only
quotient singularities. The attractive feature of the Newton space is
that it has canonical construction in terms of Newton tree and does not
involve choice (while classically used in this context resolutions do). A
byproduct of this construction is the fact that only the divisors in the
resolution which intersect at least three other divisors appear in the
computation of the polytopes of quasiadjunction. A subsequent paper
also describes application of these methods to a study of the polytopes
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of quasiadjunction and spectrum at infinity which serve as refinements
of the studied earlier the Alexander polynomials at infinity. Part II (cf.
[2]) also includes several explicit examples of calculation of polytopes
and ideals of quasiadjunction.
First name author wants to thank Radcliffe Institute at Harvard

University where the work on this project began. She was supported by
MTM2007-67908-CO2-01 and MTM2007-67908-CO2-02. The second
named author wants to thank University of Bordeaux, where work
on this project continued, for warm hospitality and support. He was
supported MTM2007-67908-CO2-01 and by NSF grant.

2. Ideals of quasiadjunction and multiplier ideals

The ideals and polytopes of quasiadjunction, which are the main
objects of this paper, are closely related to other invariants, i.e. the
multiplier ideals, which recently attracted much attention. We shall
briefly review their main properties relevant to this work. To describe
them, let X be a smooth complex affine variety of dimension n and
a an ideal in C[X ]. A log-resolution of a is a proper birational map
µ : Y −→ X whose exceptional locus is a divisor E such that

(1) Y is non singular
(2) aOY = OY(−F) with F =

∑
riEi an effective divisor,

(3) F + E has simple normal crossing support.

Consider the relative canonical divisor κY/X = κY −µ∗κX , and write
κY/X =

∑
biEi.

For every rational number c ≥ 0 the multiplier ideal of the ideal a
with exponent c is

ℑ(ac) = {h ∈ C[X]|ordEi
(µ∗h) ≥ [cri]− bi, ∀i}

where [ ] is the round down operation. The definition is independent
of the chosen resolution.
More generally one can consider the jumping numbers of a = (f)

i.e. one can prove that there exists an increasing sequence of rational
numbers

0 = ξ0 < ξ1 < ξ2 < · · ·

such that ℑ(ac) is constant on ξi ≤ c < ξi+1, and ℑ(aξi) ≠ ℑ(aξi+1) .
The numbers ξi are called the jumping numbers of (f). If f has

isolated singularity at the origin. It follows from [13] that if α ∈ (0, 1],
then α belongs to the Arnold-Steenbrink-Hodge spectrum of f if and
only if α is a jumping number.
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Moreover, Ein, Lazarfeld, Smith and Varolin (cf.[5]) have shown that
if ξ is a jumping number of f in (0, 1], then bf (−ξ) = 0 where bf (s) is
the Bernstein polynomial of f .
In this paper we are interested in more general multiplier ideals,

called the mixed multiplier ideals. Let a1, · · · , at be ideals in C[X ] and
c1, · · · , ct be positive numbers and consider a log resolution of a1 · · ·at.
We write aiOY = OY(−Fi) with Fi =

∑
ri,jEj, then

ℑ(ac1
1 · · ·act

t ) = {h ∈ C[X]|ordEj
(µ∗h) ≥ [c1r1,j + · · ·+ ctrt,j]− bj, ∀j}

Again the definition does not depend on the chosen resolution. We will
restrict ourselves to the case where the ideals ai = (fi) are principal.
It turns out that the mixed multiplier ideals coincide with the ideals

of quasiadjunction (cf. [9]). For these ideals there is a notion of “jump-
ing numbers” which in this case are the faces of quasiadjunction referred
to earlier. There is also a notion of log canonical threshold. In this pa-
per we focus on the case where n = 2.
Now let us review the definition of ideals and polytopes of quasi-

adjunction. Let B be a small ball about the origin in C2 and let C
be a germ of a plane curve having at 0 a singularity with r branches.
Let f1(x, y) · · ·fr(x, y) = 0 be a local equation of this curve (each fi is
assumed to be irreducible). An abelian cover of type (m1, · · · , mr) of
∂B is the link of complete intersection surface singularity:

(1) Vm1,··· ,mr : z
m1

1 = f1(x, y), · · · , zmr
r = fr(x, y)

The covering map is given by p : (z1, · · · , zr, x, y) → (x, y).
An ideal of quasiadjunction of type (j1, · · · , jr|m1, · · · , mr) is the

ideal in the local ring of the singularity of C consisting of germs φ such
that the 2-form:

(2) ωφ =
φzj11 · · · zjrr dx ∧ dy

zm1−1
1 · · · zmr−1

r

extends to a holomorphic form on a resolution of the singularity of
Vm1,··· ,mr .
An ideal of log-quasiadjunction (resp. ideal of weight one

log-quasiadjunction) of type (j1, · · · , jr|m1, · · · , mr) is the ideal in the
same local ring consisting of germs φ such that the 2-form ωφ extends
to a log-form (resp. weight one log-form) on a resolution of the same
singularity. We shall denote the ideal of quasiadjunction, (resp. log-
quasiadjunction, resp. weight one log-quasiadjunction 1) corresponding

1recall that a form ω on a complement to a divisor ∪Ei with normal crossings
has weight w if in a local coordinates near a point where Ei is given by zi = 0 one

has ω = f · dzi1
zi1

∧ ... ∧ dziw
ziw

∧ dziw+1
...
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to (j1, · · · , jr|m1, · · · , mr) as A(j1, · · · , jr|m1, · · · , mr)
(resp. A′′(j1, · · · , jr|m1, · · · , mr), resp. A′(j1, · · · , jr|m1, · · · , mr)).
We have

A(j1, · · · , jr|m1, · · · , mr) ⊆

A′(j1, · · · , jr|m1, · · · , mr) ⊆ A′′(j1, · · · , jr|m1, · · · , mr)

Proposition 2.1. For any germ with f1 · ... · fr = 0 there are finitely
many ideals of quasiadjunction (and log-quasiadjunction)

Proof. Let E1, ..., Ek, ...(k ∈ K) be the collection of exceptional com-
ponents of a resolution π of this germ. For each map Θ : K → N+ one
can define the ideal AΘ = {φ ∈ O0,C2|multEk

π∗(φ) ≥ Θ(k)}. We shall
call Θ coherent (resp. log-coherent) if there exist (x1, ..., xr) 0 ≤ xi < 1
such that Θ(k) =

∑
ak,ixi − ck (resp. Θ(k) =

∑
ak,ixi − ck − 1); other

notations are as in [9]) for all k ∈ K. For each k there is an inte-
ger Nk such that for all k and and coherent (or log-coherent) Θ one
has Θ(k) ≤ Nk. The ideals of quasiadjunction are the ideals AΘ corre-
sponding to coherent Θ. There are at most ΠkNk coherent Θ and hence
the claim follows. This proposition reduces calculation of the ideals of
quasiadjunction to calculation of the ideals corresponding to valuations
and identifying those among them which correspond to coherent Θ.

!

It is proved in [9], Remark 2.6 that A(j1, · · · , jr|m1, · · · , mr) is equal
to ℑ(ac1

1 · · ·acr
r ), where ai = (fi) and ci = 1− ji+1

mi
for all i.

Let

U = {(x1, · · · , xr) ∈ Rr, 0 ≤ xi < 1}
be the unit cube with coordinates corresponding to f1, · · · , fr.

Proposition 2.2. Let A be an ideal of quasiadjunction. There is a
unique polytope P(A) open subset in U such that: For (m1, · · · , mr) ∈
Zr and (j1, · · · , jr) ∈ Zr with 0 ≤ ji < mi, 1 ≤ i ≤ r

A ⊆ A(j1, ..., jr|m1, ..., mr) ⇔ (
j1 + 1

m1
, · · · , jr + 1

mr
) ∈ P(A)

A face of quasiadjunction is a face of the boundary of the polytope
P(A). It follows that it can be characterized as follows. Let Ei be the
exceptional curves of an embedded resolution π : C̃2 → C2 of f1 ·...·fr =
0. Let ai,k = multEk

π∗(fi) be the multiplicity of pullback of fi to C̃2,
ck = multEk

π∗(dx ∧ dy) and for a germ φ ∈ OO, ek(φ) = multEk
π∗(φ).

Then the face of quasiadjunction containing ℘ = ( j1+1
m1

, ..., jr+1
mr

) ∈ U is
the face α of the boundary of the set of points satisfying:
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(3)
∑
i

ai,kxi >
∑
i

ai,k − ek(φ)− ck − 1

for all φ in the ideal of quasiadjunction A(j1, .., jr|m1, ..., mr) (and such
that ℘ ∈ α). In particular for (j′1, ..., j

′
r|m′

1, ..., m
′
r) for which the corre-

sponding point satisfies (3) the form ωφ extends over all Ei. However
for (j′1, ..., j

′
r|m′

1, ..., m
′
r) on the face itself there exist φ in the ideal of

quasiadjunction for which ωφ has pole on one of the exceptional curves.
An intrinsic interpretation of the cube U is as follows (cf. [12]).

Consider the map exp : U → C∗r where the target is identified with
the group of characters of the fundamental group π1(B−C). Its image
consists of the unitary characters. The characters of the Galois group of
the covering map p : Vm1,..,mr → C2 form a finite subgroup in exp(U) ⊂
Charπ1(B − C). A pull back of the multivalued form ωφ given by (2)
is single-valued on Vm1,...,mr −p−1(C) and is an eigenform for the action
of the Galois group of (Vm1,...,mr −p−1(C))/(B−C). If loop γi is defined
by the condition that it has linking number with fi = 0 (resp. fj = 0)
in B equal to one (resp. zero) then this character is given by:

(4) χ(γi) = exp(2π
√
−1

ji + 1

mi
)

The condition that φ belongs to the ideal of quasiadjunction is equiv-
alent to the condition that ωφ represents the zero cohomology class
in H1(Vm1,..,mr − C). The condition that φ belongs to the ideal log-
quasiadjunction (resp. weight 2 log-quasiadjunction) is equivalent to
the condition that ωφ has logarithmic singularities along the excep-
tional divisor of the resolution of singularities of Vm1,...,mr induced by
the resolution of f1 · ... · fr = 0 (resp. is a weight 2 logarithmic form).

3. Faces of quasiadjunction and spectrum

In this section we shall describe a relationship between the faces of
quasiadjunction and the spectrum. For this we need to reinterpret the
elements of faces of quasiadjunction in terms of the cohomology of local
systems on B − C. Recall first the definitions from [9] and [12]. One
has H1(S3 − L,Z) = Zr with generators given by the classes of the
loops γi described in just above (4). In particular the local systems
on S3 − L are parametrized by a torus of characters C∗r. For a fixed
rank one local system χ : H1(S3−L,Z) → C∗, the cohomology groups
H1(S3−L,χ) support a mixed Hodge structure (cf. [12]) and we need
a description of the polytopes of quasiadjunction in terms of this mixed
Hodge structure.
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3.1. Mixed Hodge structure on the cohomology of a local sys-
tem on a complement to a link. Let us describe the mixed Hodge
structure onH i(S3−L,χ), which is a slight modification of construction
in [12] and method for calculating the Hodge numbers of this mixed
Hodge structure in this particular case of local systems on the com-
plement to a germ of plane curve. First we shall select a resolution of
singularity of a germ D given by f1 · ... ·fr = 0. Denote the collection of
exceptional curves Ei (as in the proof of Prop. 2.1). We shall identify
the 3-sphere S3 about the origin with the boundary ∂T (∪Ei) of a regu-
lar neighborhood T (∪Ei) of the exceptional set ∪Ei. IfD∗ is the proper
preimage of D for selected resolution then ∂T (∪Ei)∩D∗ = S3∩D = L.
In particular one obtains the identification:

(5) S3 − L = (
⋃
i

∂T (Ei))−D∗

The set ∪Ei ∪ D∗ has the canonical stratification with one dimen-
sional (over C) strata E◦

i and zero dimensional strata Ei ∩ Ej , or
Ei ∩ D∗. This induces the decomposition of (

⋃
i ∂T (Ei)) − D∗ into

a union of open 3-dimensional (over R) manifolds each being a circle
bundle over E◦

i which we denote ∂T (E◦
i ). The intersection of any two

such manifolds is a product of two punctured disks which we shall de-
note ∂i,j (it is empty unless Ei ∩ Ej ≠ ∅). One has the embeddings
φi,j : ∂i,j → ∂T (∪kEk) − D∗ each being either of the compositions
∂i,j → ∂T (E◦

i ) → T (∪kEk) − D∗ or ∂i,j → ∂T (E◦
j ) → T (∪kEk) −D∗.

Given a character χ ∈ Char(π1(S3 − L)) we denote by φ∗
i,j(χ) the pull

back of χ to ∂i,j .
We shall start by describing the mixed Hodge structure on the coho-

mology of local systems on each ∂T (E◦
i ) and then show how they yield

the Hodge numbers of the MHS on the union. We can deal only with
the case of non trivial local systems χ ∈ Charπ1(∂ ∪i T (Ei) − D∗) =
Charπ1(S3 − L) since the case χ = 1 dealt with in [4].
Let

(6) θ : ∂T (E◦
i ) → E◦

i

be the canonical circle fibration and let γEi
be the class of the fiber of

the latter in H1(∂T (E◦
i )).

Notice that H i(∂T (E◦
i ),χ) = 0 for any i unless χ(γEi

) = 1. This
follows from Leray spectral sequence:

Ep,q
2 = Hp(E◦

i , R
qθ∗(χ)) ⇒ Hp+q(∂T (E◦

i ),χ)

since for a non trivial local system χ on a circle one has H i(S1,χ) = 0.
7



From now on we assume that χ(γi) = 1 i.e. that the local system,
on which cohomology we want to construct a mixed Hodge structure,
is the pullback θ∗(χ) of a local system on E◦

i . Notice that Rqθ∗(C) are
trivial local systems since circle fibrations over E◦

i are restrictions of
the circle fibrations over Ei and π1(Ei) = 0. Leray spectral sequence,
which is a sequence of MHS (cf. [1] for a similar statement) has the
term Ep,q

2 as follows:

(7)
H0(E◦

i , R
2θ∗(C)⊗ χ) 0 0

H0(E◦
i , R

1θ∗(C)⊗ χ) H1(E◦
i , R

1θ∗(C)⊗ χ) 0
H0(E◦

i , R
0θ∗(C)⊗ χ) H1(E◦

i , R
0θ∗(C)⊗ χ) H2(E◦

i , R
0θ∗(C)⊗ χ)

It yields hence:

(8) H2((∂T (E◦
i ), θ

∗(χ))) = H1(E◦
i , R

1θ∗(C)⊗ χ) = H1(E◦
i ,χ)(−1)

(the Tate twist is the contribution of R1θ∗(C) i.e. a shift of weight by
2) and
(9)
0 → H0(E◦

i , R
1θ∗(C)⊗ χ) → H1(∂T (E◦

i ), θ
∗(χ)) → H1(E◦

i ,χ) → 0

We can assume that χ ∈ Charπ1(E◦
i ) is non trivial since the case

χ = 1 was treated in [3]. If χ ≠ 1 then H0(E◦
i ,χ) = 0 and the above

exact sequence shows that the MHS on the cohomology of ∂T (E◦
i ) with

coefficients in a local system coincides with the MHS on the cohomology
of E◦

i :

(10) H1(∂T (E◦
i ), θ

∗(χ)) = H1(E◦
i ,χ)

The MHS on the cohomology of local systems on a quasiprojective
manifolds and relevant MHC were constructed in [19].
To obtain MHS on (

⋃
i ∂T (Ei))−D∗ we first observe that

(11) H i((
⋃
i

∂T (Ei))−D∗,χ) = H i((
⋃
i

∂T (E ′
i))−D∗ −

⋃
E ′′

i ,χ)

where E ′
i are the components such that χ(γE′

i
) = 1 and E ′′

i are the
components such that χ(γE′′

i
) ≠ 1. Indeed, the Mayer Vietoris spectral

sequences calculating the cohomology of the union in both sides of (11)
coincide. These spectral sequences are respectively

(12) Ep,q
2 = Hp((∂T (E◦

i )−D∗)[q],χ) ⇒ Hp+q((
⋃
i

∂T (Ei))−D∗,χ)

8



and
(13)

Ep,q
2 = Hp((∂T (E ′

i
◦)−D∗−

⋃
E ′′

i )
[q],χ) ⇒ Hp+q((

⋃
i

∂T (E ′
i))−D∗−

⋃
E ′′

i ,χ)

Here the superscript ·[q] denotes a q + 1-fold intersections. In our case
these intersections are empty if q = 2 and for q = 1 they are equivalent
to the products of punctured disks denoted earlier as ∂i,j . Notice that
we denoted by E ′◦ a non singular stratum of stratification of the union
of components E ′ =

⋃
iE

′
i for which χ(γE′

i
) = 1 and that one obvious

identity
⋃

i E
◦
i =

⋃
E ′

i
◦−

⋃
E ′′

i yields the identification of the terms E2

(and differentials d2) of the above spectral sequences.
On the other hand the local system on (

⋃
i ∂T (E

′
i)) − D∗ −

⋃
E ′′

i )
(as a consequence of χ(γE′

i
) = 1) is the pullback of a local system on

(
⋃

i T (E
′
i))−D∗ −

⋃
E ′′

i ). Next take a projective surface Z containing⋃
i T (Ei) and extend the unitary connection corresponding to the local

system on (
⋃

i T (E
′
i)) − D∗ −

⋃
E ′′

i ) from (
⋃

i T (E
′
i)) − D∗ −

⋃
E ′′

i )
to a meromorphic connection on Z. Then the complement Z◦ to the
polar set of this connection is a quasiprojective manifold, containing
(
⋃

i T (E
′
i))−D∗−

⋃
E ′′

i ) and supporting unitary local system extending
the local system χ on (

⋃
i ∂T (E

′
i))−D∗ −

⋃
E ′′

i ). Now one applies the
same construction of MHC calculating the cohomology of local system
χ as in [3] so that the following Mayer-Vietoris sequence is a sequence
of MHSs (we denote by the same letter χ the extensions of local system
on (

⋃
i ∂T (E

′
i))−D∗ −

⋃
E ′′

i ):

(14) → H i((
⋃
i

∂T (E ′
i))−D∗ −

⋃
E ′′

i ,χ) →

H i(Z◦ −
⋃

E◦
i
′,χ)⊕H i((

⋃
i

T (E ′
i))−D∗ −

⋃
E ′′

i ,χ) → H i(Z◦,χ) →

To obtain the Hodge numbers of the mixed Hodge structure on the
cohomology of the union H∗(∂T (

⋃
i E

◦
i )) we use the Mayer-Vietoris

spectral sequence which since all triple intersections are empty becomes
the exact sequence:

(15)

⊕i,j H
0(∂i,j,φ

∗
i,j(χ)) → H1(∂T (

⋃
i

E◦
i ),χ) → ⊕iH

1(∂T (E◦
i ),φ

∗
i (χ)) →

→ ⊕i,jH
1(∂i,j ,φ

∗
i,j(χ))

Note that H1(C∗) = H1,1(C∗) = C and hence H1(∂i,j ,φ∗
i,j(χ)) (which

is non zero only if φ∗
i,j(χ) is trivial) has pure Hodge structure of weight

9



2. Moreover, the map

(16) W2/W1(⊕iH
1(∂T (E◦

i ),φ
∗
i (χ)) → ⊕i,jH

1(∂i,j ,φ
∗
i,j(χ))

is injective since the classes of weight 2 correspond to the cohomology
of the fiber of the map ∂T (E◦

i ) → E◦
i i.e. the term H0(E◦

i , R
1θ∗(C)⊗χ)

in (9).
Hence we obtain the following exact sequence which determines the

Hodge numbers of H1(S3 − L,χ):
(17)

⊕i,jH
0(∂i,j ,φ

∗
i,j(χ)) → H1(∂T (

⋃
i

E◦
i ),χ) → W1(⊕iH

1(∂T (E◦
i ),φ

∗
i (χ))) → 0

We shall sum up the above discussion in following

Proposition 3.1. The isomorphism (10) and exact sequence (17) of
MHS determine for the MHS on H1(S3−L,χ) the only non zero Hodge
numbers hp,q,1(S3−L,χ) (0 ≤ p+q ≤ 1) uniquely. Moreover, the Hodge
numbers hp,q,1(S3−L,χ) with p+q = 1 depend only on the Hodge struc-
ture on ⊕i∈RH1(∂T (E◦

i ),φ
∗
i (χ)) where R is the set of components of E

which are intersected by at least three other components of exceptional
divisor while h0,0,1(S3−L,χ) depends on the cohomology (of dimension
zero) of pair (∂T (

⋃
i∈R Ei), ∂T (

⋃
i∈R Ei ∩

⋃
i/∈R Ei))

The last part which concerns the components with at least three
intersections with remaining ones follows from the exact sequence (17)
since for the component with only two intersections the curve E◦

i is
homotopy equivalent to a circle and hence

H1(∂T (E ′
i
◦,φ∗(χ))) = H1(E ′◦

i ,χ)) = 0

for non trivial χ while for trivial χ one has weight two Hodge structure
also does not contribute to the cohomology of link.

Remark 3.2. In [9] the MHS on the cohomology of local systems of
finite order was obtained from the MHS on the finite abelian branched
cover (cf. Prop. 3.3).

3.2. Depth of Characters. In this subsection we relate the ideals
of quasiadjunction (cf. section 2), and specifically dimA′′/A′ and
dimA′/A to the dimensions of GrpFGrWq H1(Lχ). Here Lχ is the local
system corresponding to the character χ of the local fundamental group
of the complement to the germ C taking the value exp(2π

√
−1 ji+1

mi
) on

the generator γi ∈ π1(S3 − L) corresponding to factor fi (cf. Prop.
3.3).

10



Recall (cf. [9]) that depth of χ ∈ Char(π1(S3 −L)) is the dimension
dimH1(S3 − L,χ) of the cohomology of the complement with the co-
efficients in the rank one local system corresponding to χ. The data
of dimGrpFGrWq H1(Lχ) determines the Hodge theoretical refinement
of the depth (cf. 3.7) which depends only on the data of ideals of
quasiadjunction. We show how this data (determined by the ideals of
quasiadjunction) yields the depth of a character χ.

Proposition 3.3. Let φ : Zr → ⊕i=r
i=1Z/mi be the surjection and let

∂Vm1,..,mr be the corresponding covering space of S3 branched over the
link L which we view as the link of singularity (cf. (1)).
Let χ be a character belonging to the image of the embedding: Char⊕i=r

i=1

Z/mi → CharZr induced by φ. Assume that χ(γi) ≠ 1 for any
i = 1, ..., r. Then
(a) H1(S3 − L, Lχ) = {v ∈ H1(∂Vm1,...,mr)|g · v = χ(g)v} and
(b) the mixed Hodge structure on H1(S3 − L, Lχ) is induced by the

mixed Hodge structure on H1(∂Vm1,...,mr)

Proof. This proposition can be deduced from the following two lemmas.

Lemma 3.4. Let Gi = ⊕j=i
j=1Z/mj and let Gr acts freely on a CW-

complex X and Xi = X/Gi. Let χ ∈ Hom(G,C∗) be such that χi =
χ|Gi

is non-trivial. Let Lχi
be the local system on Xi induced by χi.

Then H1(Xi+1, Lχi+1
) is the eigenspace of the generator of Gi+1/Gi

acting on H1(Xi, Lχi
).

Lemma 3.5. Let Um1,...,mr ⊂ ∂Vm1,..,mr be the complement to the branch-
ing locus of the map

π(m1, ..., mr) : ∂Vm1,..,mr → S3.

Let χ ∈ Charπ1(S3 − L) such that χ(γi) ≠ 1. Then H1(∂Vm1,...,mr) →
H1(Um1,...,mr) corresponding to the embedding induces an isomorphism
of χ-eigenspaces.

Indeed,(a) in the proposition 3.3 follows by applying 3.4 to the sub-
groups Gi = Z/m1 ⊕ ... ⊕ Z/mi of the Galois cover ∂Vm1,...,mr → S3.
Part (b) follows since the embedding in lemma 3.5 is a morphism of
mixed Hodge structures and the deck transformation preserves MHS
on H1(Um1,...,mr) since they are induced by holomorphic maps.
In order to show 3.4 consider the exact sequence of chain complexes

of G/Gi+1-modules in which we view C∗(Xi) = C∗(X)Gi as G/Gi-
module and in which the left map is induced by the multiplication by
t−χi+1(δi+1) where δi+1 is a generator of the cyclic group Gi+1/Gi and
t is the generator of C[Gi/Gi+1]:

(18) 0 → C∗(Xi)⊗χi
C → C∗(Xi)⊗χi

C → C∗(Xi+1)⊗χi+1
C → 0

11



This yields the corresponding cohomology sequence:

(19) H0(Xi, Lχi
)
t−χi(δi)−→ H0(Xi, Lχi

) →

H1(Xi+1, Lχi+1
) → H1(Xi, Lχi

)
t−χi(δi)→ H1(Xi, Lχi

)

The map in the upper line is surjective since χi(δi) ≠ 1 and the
lemma 3.4 follows.
To show lemma 3.5 let us consider the exact sequence:

(20) H1(∂Vm1,...,mr , Um1,...,mr) → H1(∂Vm1,...,mr) → H1(Um1,...,mr)

→ H2(∂Vm1,...,mr , Um1,...,mr)

of the pair (∂Vm1,...,mr , Um1,...,mr). Denoting by T (π(m1, ..., mr)−1(Br))
the regular neighborhood of the ramification locus of π(m1, ..., mr) and
by ∂π(m1, ..., mr)−1(Br)) its boundary, we have the Galois equivariant
identification of the relative cohomology:

(21) H i(∂Vm1,...,mr , Um1,...,mr) =

H i(T (π(m1, ..., mr)
−1(Br)), ∂π(m1, ..., mr)

−1(Br))

= H3−i(∂π(m1, ..., mr)
−1(Br))

For an element in the last group, corresponding to the component of
the branching locus given by fi = 0 the action of γi on it is trivial.
Hence the map:

(22) H1(∂Vm1,...,mr)χ → H1(Um1,...,mr)χ

is an isomorphism for a character χ which that χ(γi) ≠ 1 for all i. !

Remark 3.6. Proposition 3.3 is closely related to Prop. 4.5 in [10]. A
different type of relation (only for certain Hodge components) between
cohomology of branched and unbranched covers of quasiprojective man-
ifolds is given in [11]

Proposition-Definition 3.7. Let a belongs to the fundamental do-
main of H1(S3 − L,Z) acting on the universal cover of the torus of
unitary characters Charu(π1(S3 − L)). The holomorphic weight one
depth of χ = exp(2πia) (denoted dh(χ)) is the dimension of vector
space Gr1FGrW1 H1(Lχ). The weight zero depth of a character χ is the
dimension vector space GrW0 H1(Lχ). We denote it as d0(χ). An inte-
ger w = 0, 1 is a weight of χ if d0(χ) ≠ 0 (resp. dh(χ) ≠ 0). Total
depth of χ is d(χ) = dh(χ) + d0(χ).
The value of the depth (resp. holomorphic depth) of a character

exp(2πia) where a belongs to the interior of the face is independent
of a and is called the depth (resp. holomorphic depth) of the face of
quasiadjunction.

12



Proof. For the characters of finite order, it follows from the identifica-
tion of the holomorphic depths with quotients of ideals of quasiadjunc-
tion since the ideals of quasiadjunction themselves depend only on the
face of quasiadjunction. This and the definition of MHS for infinite
order characters yields the claim in general. !

We have the following.

Proposition 3.8. If the values of character χ are ±1 then the depth
of a character χ can be calculated as follows:

dh(χ) + dh(χ̄) + d0(χ)

where χ̄ is the conjugate character. Otherwise the depth is equal to:

dh(χ) + dh(χ̄) + d0(χ) + d0(χ̄)

Proof. Since the action of the Galois group acting onGrW1 = H1,0⊕H0,1

preserves this direct sum decomposition one has (GrW1 )χ = H1,0
χ +H1,0

χ̄ .
The vector space GrW0 is defined over Z and hence the eigenspaces cor-
responding to conjugate characters contribute for d0(χ) + d0(χ̄) unless
the characters take values ±1 in which case the dimension of eigenspace
will be d0(χ) !

Remark 3.9. This proposition is closely related to Prop. 3.2 in [9].
The contribution of characters for which d0(χ̄) ≠ 0 is missing there
however i.e. the sum in 3.2 should have the term dimA′′

Σ/A′
Σ for χ

taking values ≠ ±1.

Example (cf.[9]) Consider the singularity xr − yr = 0. Faces of
quasiadjunction are hyperplanes Hl : x1 + ... + xr = l (l = 1, ..., r − 2)
where the holomorphic depth of Hl is r − l − 1. If χ = exp(2πia)
and a ∈ Hl then χ̄ = exp(2πiā) where ā ∈ Hr−l. Hence by above
proposition the depth of any character in t1 · · · tr = 1 is equal r − l −
1 + r − (r − l)− 1 = r − 2.

3.3. Spectrum and faces of quasiadjunction. Next let us consider
the relation between Arnold-Steenbrink spectrum and the cohomology
of local systems. Let us fix the zero set of a germ of holomorphic
function:

(23) fa1
1 · ... · far

r = 0

in a ball Bϵ : z1z̄1 + z2z̄2 ≤ ϵ and denote it Z(f1, ..., fr). Let γi be
the standard generators of H1(Bϵ − Z(f1, ..., fr),Z) = Zr used earlier
(i.e. given by oriented loops having linking number with the germ of
fi equal to +1).

13



Let U ⊂ C∗ denotes the group of complex numbers having modulus
one. For any ξ ∈ U, let χξ be the local system given by χξ(γi) = ξai . As
already mentioned, the cohomology H1(Bϵ −Z(f1, ..., fr),χξ)) support
a mixed Hodge structure (cf. [12]).
Consider the Milnor fiber M(a1, ..., ar) of the singularity (23) and

the mixed Hodge structure on H1(M(a1, ..., ar)) defined by [18]. Recall
that the multiplicity of a spectral pair (α, w) where −α = n−p−β, 0 ≤
β < 1,α /∈ Z is the dimension of the eigenspace with the eigenvalue
exp(2π

√
−1α) of the semi-simple part of the monodromy acting on

Hn of the Milnor fiber of an n-dimensional singularity. Moreover, the
eigenvalues corresponding to the Jordan blocks of size 1×1 (resp. 2×2)
of the monodromy appear in the action of the semi-simple part of the
monodromy Ts

2 on GrW1 (resp. GrW0 and GrW2 (cf. [18]).
The multiplicity of the eigenvalue of the monodromy is related to

the cohomology of local systems as follows:

Proposition 3.10. Let mξ denotes the multiplicity of ξ as the eigen-
value of the semi-simple part of the monodromy of singularity (23)
acting on Gr0FH

1(M(a1, ..., ar)) Then

mξ = d(χξ)

Proof. We shall use the following Steenbrink-Wang sequence of mixed
Hodge structure on the semi-stable reduction i.e. finite degree covering
of the base ∆∗

s → ∆∗ of the map F : Bϵ − Z(f1, ..fr) → ∆∗ such that
the pullback of (23) (Bϵ−Z(f1, ..fr))s → ∆∗

s has multiplicity one along
components of the exceptional set. We have the sequence of MHS (cf.
[15], p.275):

(24)

H1((Bϵ−Z(f1, ..fr))s → H1(M(a1, ..., ar))
log(Tu−I)→ H1(M(a1, ..., ar))(−1)

The left term, which is the cohomology of punctured neighborhood,
on semi-stable reduction of a resolution, has the MHS defined in terms
of the log-complex associated with exceptional divisor (cf. [18], [15]).
The two remaining terms have the limit Mixed Hodge structure with
the weight filtration given in terms of the monodromy (cf. [18]). Both,
the cohomology of local system as in proposition and the multiplicity
of the eigenspace of Ts have the same description in terms of H1((Bϵ−
Z(f1, ..fr))s) compatible with the MHS. Indeed, the mixed Hodge struc-
ture on Bϵ − Z(f1, ..fr)s together with action of the deck transforma-
tion, which is holomorphic and hence preserves MHS, yields the MHS

2i.e. one has T = TsTu where Ts is semi-simple and Tu is unipotent
14



on Bϵ − Z(f1, ..., fr). The same expression takes place for the relation
between the MHS on Milnor fiber and on semi-stable reduction. More
precisely, one has the commutative diagram comparing the two rows of
(24):

(25)
0 → H1((Bϵ − Z(f1, ..fr))s) → H1(M(a1, ..., ar))

T − λI ↓ Ts − λI ↓
0 → H1((Bϵ − Z(f1, ..fr))s) → H1(M(a1, ..., ar))

where Ts is the semi-simple part of the monodromy acting on the Milnor
fiber and T is the (holomorphic deck transformation). The cokernel of
the left map yields the cohomology of the local system corresponding
to λ and cohomology of the right is the λ-eigenspace of the semi-simple
part of the monodromy acting on the cohomology of Milnor fiber. Since
the horizontal maps are the maps of MHS we obtain the claim. !

Now we shall describe the faces of quasiadjunction of f1 · · · fr in
terms of faces of quasiadjunction of functions fa1

1 · · · far
r . We shall

use only collections (a1, ..., ar) ∈ Zr
+ for which gcd(a1, .., ar) = 1 i.e.

for which the Milnor fiber is connected. Let us consider the subgroup
⊕(aiZ) ⊂ Zr where aiZ is the subgroup of index ai. If U is the unit
cube in Rr, which we view as the fundamental domain of Zr acting
on Rr via translations, then the fundamental domain of ⊕(aiZ) is the
union of Πai unit cubes i.e. the subset of Rr given by:

{(x1, ...., xr) ∈ Rr|0 ≤ xi ≤ ai}

We shall denote this subset of Rr by U(a1, ..., ar) or U(a). Each face
of quasiadjunction via translations yields Πai corresponding polytopes
in U(a). The collection of translates of a face F in U(a) we shall denote
F (a).

Proposition 3.11. The rational numbers ∈ (0, 1) belongs to the spec-
trum of singularity Πfai

i iff (a1s, ..., ars) belongs to a translate F ′ ∈
F (a) ⊂ U(a) for some face of quasiadjunction F . Moreover the multi-
plicity of s in the spectrum is the depth of the face which translate the
segment La = (a1t, ..., art) (t ∈ (0, 1)) intersects at the point corre-
sponding to t = s.
Vice versa, a face of quasiadjunction of depth k is a connected compo-

nent of closure of points (b1, .., br) ∈ U∩Q such that for some s ∈ (0, 1)
and (a1, .., ar) ∈ Zr

+ (gcd(ai) = 1) one has bi = ais and s is an element
of the spectrum of singularity Πfai

i having multiplicity k.
15



Proof. This proposition follows from the relation between Betti
numbers or ranks of Hodge groups of local systems and faces of quasi-
adjunction. Recall that that the local system corresponding to the
character χ,χ(γi) = ξi has non vanishing cohomology iff (ξ1, ..., ξr)
belongs to the characteristic variety (cf. remark 3.13 below). Simi-
larly, (s1, .., sr), 0 < si < 1 has the dimension of Hodge group equal k
if (s1, ..., sr) is in the face of quasiadjunction of depth k. The Milnor
fiber of the singularity Πfai

i is homotopy equivalent to the infinite cyclic
cover of S3−L with the Galois group having the characters which when
viewed as the characters of π1(S3 − L) have the form (ta1 , ..., tar) for
some t. By proposition (3.10) we can identify an element of spectrum
(with multiplicity) in (0, 1) with the element of the universal cover of
the torus of characters which exponent is the local system with non van-
ishing GrF0 H

1(S3 − L, Lξ) (of dimension equal to multiplicity). Hence
spectrum of Πfai

i consists of s such that (a1s mod1, ....., ars mod1) be-
longs to a face of quasiadjunction. This is equivalent to the description
of the relation between the spectrum and the faces of quasiadjunction
given in the proposition.

Remark 3.12. Similarly, the elements of the spectrum in (−1, 0) can
be obtained as intersections of lines (a1s, ..., ars) with conjugates of
translates of faces of quasiadjunction. Indeed, the elements of the
spectrum (−1, 0) characterized by the property that exp(2π

√
−1α) are

the eigenvalues on the semi-simple part of the monodromy acting on
GrW1 (F 0∩F̄ 1)H1(M(a1, ..., ar)). On the other hand GrW1 (F 0∩F̄ 1) is the
conjugate of GrW1 F 1 ∩ F̄ 0 = GrW1 Gr1F (since H1 = F 0H1, F 2H1 = 0).

Remark 3.13. If Π(tm1

1 ...tmr
t −ω) is the multivariable Alexander poly-

nomial of f1...fr then the Alexander polynomial of Πfai
i is given by

(t−1)Π(ta1m1+...+armr −ω). This follows from an extension of the clas-
sical relation between multivariable and one variable Alexander polyno-
mial (cf. [20]).

In particular one obtains a relation between the faces of quasiad-
junction of f1 · · · fr and the spectrum of corresponding singularity as
follows.

Corollary 3.14. A rational ξ ∈ (0, 1) belongs to the spectrum of f1 ·
... · fr if and only if

(26) (ξ, ..., ξ)

belongs to a face of quasiadjunction. Moreover the multiplicity of ξ in
the spectrum is the holomorphic depth of the character χγi given by
χγi = e2π

√
−1ξ. In particular the number of faces of quasiadjunction
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intersecting the line in U given by points (26) is equal to the number
of elements in the spectrum of f1 · · · fr.

The Milnor number of f1 · · · fr is related to the depths of faces of
quasiadjunction as follow. If dimGrW0 H1(Lχ) = 0 for any χ which is
the exponent of (26) then

(27) µ = (r − 1) + 2
∑
F

dh(F )

where summation is over faces of quasiadjunction containing points
of the form (26) and extra r − 1 is due to the fact that this is the
difference between the Betti number of finite branch and unbranched
cover of S3 −L; the second part of (27) calculates the Betti number of
branched covering of S3.

Example The situation in which the number of faces of quasi-
adjunction coincides with the number of elements in the spectrum
comes up in cases (x2 + y3)(y2 + x3). For the singularity xr − yr = 0
the sum of the depths of all faces is (r−1)(r−2)

2 and (**) translates to

r − 1 + 2 (r−1)(r−2)
2 = (r − 1)2

Remark 3.15. One may conjecture the following method to calculate
faces of quasiadjunction. Let exp : U → CharuH1(S3 − Z(f1, ..fr)) be
the universal covering map of the group of unitary characters restricted
to the unit cube U ⊂ Rr. The subset of U which is the preimage of the
zero set of the multivariable Alexander polynomial in CharuH1(S3 −
Z(f1, ..fr)) is a union of hyperplanes. Consider the stratification of this
union in which each stratum consists of points belonging to the same
collection of hyperplanes. The conjecture is that holomorphic depth is
constant on each stratum and hence the faces of quasiadjunction are
the strata of this stratification with positive holomorphic depth.
In particular, in the case of two branches V1 is a union of segments

and Vk with k ≥ 2 are union of isolated points. The holomorphic depth
of each point (α1,α2) (αi ∈ Q) (e.g. a component of the zero dimen-
sional stratum of the preimage of the zero set of Alexander polynomial)
is the multiplicity of exp(2πit) of the singularity fa1

1 fa2
2 = 0 where

α1/α2 = a1/a2 (here a1, a2 are relatively prime integers and t ∈ Q is
determined from αi = ait.

4. Faces of quasiadjunction and Bernstein polynomials

Recall a definition of the multivariable Bernstein ideal following
[16] and [6]. Consider the collection of polynomials b(s1, ..., sr) ∈
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C[s1, ..., sr] and differential operators P (s1, .., sr) ∈ D[s1, ..., sr] such
that:

(28) P · f s1+1
1 · .... · f sr+1

r = b(s1, ...sr)f
s1 · ... · f sr

r

where f1, ...fr are the germs of plane curves as in section 2. Such
polynomials b form an ideal Bf1,...,fr in C[s1, ..., sr]. This ideal is a
non-zero ideal (cf. [16]). In the case r = 1 the monic generator of it
(uniquely defined) is called the Bernstein polynomial of germ f . The
goal of this section is to show the following:

Theorem 4.1. Let P be the product of linear forms Li(s1+1, ..., sr+1)
where Li runs through linear forms vanishing on (r − 1)-dimensional
faces of of polytopes of quasiadjunction corresponding to a germ with r
irreducible components f1, ..., fr. Then any b ∈ Bf1,...,fr is divisible by
P.

Proof. Let Lφ be the equation of a face of quasiadjunction correspond-
ing to a germ φ ∈ A and let ωφ be the form (2). Using relation (1) we
have:

(29) ωφ = φ · f
j1+1

m1
−1

1 ....f
jr+1

mr
−1

r dx ∧ dy

This form extends over the exceptional locus of the resolution of
singularity (1) if and only if ωφ is L2-form (cf. [14]). It follows from
the definition of an ideal of quasiadjunction that the integral of form
(29) (over a small compact ball B about the origin and a test function
ψ on B):

(30)

∫
B

|φ|2|f1|2(
j1+1

m1
−1) · ... · |fr|2(

j1+1

m1
−1)ψ

converges for all test functions ψ and all φ in the ideal of quasiadjunc-
tion corresponding to a face given by L(x1, ...xr) = 0 provided that
L( j1+1

m1
, ... jr+1

mr
) > 0 and if L( j1+1

m1
, ... j1+r

mr
) = 0 then there is φ in this

ideal of quasiadjunction for which the integral diverges.
On the other hand we have:

(31)

|b(s1, ..., sr)|2|φ|2|f1|2s1 · ... · |fr|2srψ = PP̄ |f1|2
s1+1 · .... · |fr|2

sr+1|φ|2ψ

since holomorphic and anti-holomorphic differential operators commute
(as above, ψ is a test function). Hence integrating over B both sides
of (31) yields
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(32) |b(s1, ..., sr)|2
∫
B

|φ|2|f1|2s1 · ... · |fr|2srψ =

∫
PP̄ |f1|2(s1+1) · .... · |fr|2(sr+1)|φ|2ψ

Applying this to φ for which integral (30) diverges for si =
ji+1
mi

− 1

where ji+1
mi

is on the face of quasiadjunction we obtain that the mero-
morphic function of (s1, ..., sr) given by either side of (32) when we
approach to any point on the face of quasiadjunction right hand side is
holomorphic in s1, ..sr while the integral in the left hand side has pole.
Hence b(s1, ...sr) must vanish on L(s1 + 1, ..., sr + 1) = 0. !

Example 4.2. The hyperplanes containing the faces of quasiadjunction
of singularity (x2 + y3)(x3 + y2) = 0 are 6x1 + 4x2 = 1, 3, 5 and 4x1 +
6x2 = 1, 3, 5 (cf. [2] and [9]). Hence polynomials in Bernstein ideal
are vanishing on 6s1 + 4s2 + k = 0, 4s1 + 6s2 + k = 0, k = 5, 7, 9.
In fact according calculations of A.Leykin using SINGULAR (private
communication) the Bernstein ideal for this singularity is principal with
generator:

(s1 + 1)(s1 + 1)Πk=5,7,9,11,13(4s1 + 6s2 + k)(6s1 + 4s2 + k)

Remark 4.3. Similar to theorem 4.1 result, i.e. an identification of
the faces of quasi-adjunction with the zeros of polynomials in the multi-
variable Bernstein ideal can be shown for isolated non normal crossibgs
singularities discussed in [10]. The details will appear in a forthcoming
publication.
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