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SEQUENCES OF LCT-POLYTOPES

Anatoly Libgober and Mircea Mustaţă

Abstract. To r ideals on a germ of smooth variety X one attaches a rational polytope
in Rr

+ (the LCT-polytope) that generalizes the notion of log canonical threshold in the
case of one ideal. We study these polytopes, and prove a strong form of the Ascending
Chain Condition in this setting: we show that if a sequence (Pm)m≥1 of LCT-polytopes
in Rr

+ converges to a compact subset Q in the Hausdorff metric, then Q =
⋂

m≥m0
Pm

for some m0, and Q is an LCT-polytope.

1. Introduction

Let X be a smooth algebraic variety over an algebraically closed field k, of charac-
teristic zero. To a nonzero ideal a on X, and to a point x in the zero locus of a one
associates the local log canonical threshold lctx(a). This positive rational number is
an invariant of the singularities of a at x that plays a fundamental role in birational
geometry (see, e.g., [Kol2] and [EM]).

To r ideals a1, . . . , ar on X, and to a point x that lies in the zero locus of each ai we
associate the LCT-polytope LCTx(a1, . . . , ar). This is a rational convex polytope in
Rr

+ that describes the log canonical thresholds at x of all products am1
1 · · · amr

r . More
precisely, it consists of those (λ1, . . . , λr) ∈ Rr

+ such that the pair (X, aλ1
1 · · · aλr

r ) is log
canonical at x. In the case r = 1, the polytope LCTx(a) is the segment [0, lctx(a)].
These polytopes are a special case of the polytopes of quasi-adjunction introduced
and studied by the first author in [Lib1] and [Lib2]. Even if one is only interested
in the singularities of one ideal a, studying the LCT-polytopes LCT(a, b) for various
auxiliary ideals b gives important information.

Shokurov conjectured in [Sho] that log canonical thresholds in fixed dimension
satisfy the Ascending Chain Condition. The conjecture is made in a general setting
in which the ambient variety is allowed to have log canonical singularities. Birkar
related the general form of the conjecture to the Termination of Flips conjecture (see
[Bir] for the precise statement). In the special setting of smooth ambient varieties,
Shokurov’s conjecture was proved by de Fernex, Ein and the third author in [dFEM],
building on ideas and results from [dFM] and [Kol1].

In this note, we consider the Ascending Chain Condition for LCT-polytopes. In
particular, we show that given any sequence of LCT-polytopes in Rr (corresponding
to ideals on smooth n-dimensional varieties) P1 ⊆ P2 ⊆ · · · , the sequence is eventually
stationary. In fact, we prove a much stronger assertion.

We consider the polytopes in Rr as elements in the space Hr of all compact subsets
of Rr endowed with the Hausdorff metric. This is a complete metric space, and the
subsets lying in a given compact subset K ⊂ Rr form a compact subspace of Hr. It is
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easy to see that every LCT-polytope as above is contained in the cube [0, n]r ⊆ Rr. It
follows that every sequence of LCT-polytopes has a convergent subsequence to some
compact subset Q ⊆ [0, n]r.

Our main result says that if a sequence of LCT-polytopes (Pm)m≥1 converges
to the compact set Q in the Hausdorff metric, then there is m0 such that Q =
∩m≥m0Pm. Furthermore, Q is a rational convex polytope. In fact, there are ideals
a1, . . . as ⊂ K[[x1, . . . , xn]] (for some s ≤ r and some field extension K of k) such that
Q = LCT(a1, . . . , as) (under a suitable linear embedding in Rr). If the ground field
k has infinite transcendence degree over Q (for example, if k = C), then we may take
K = k.

The proof uses the result in [dFEM] about the ACC property of log canonical
thresholds on smooth varieties of fixed dimension. In fact, we use in an essential way
also the ideas and the constructions in loc. cit. We give an introduction to the basic
properties of LCT-polytopes in the following section, emphasizing the analogy with
the case r = 1. The main theorems are proved in the last section.

2. Basics of LCT-polytopes

In this section we present some basic results about LCT-polytopes. We always work
over an algebraically closed field k, of characteristic zero. We denote by R+ the set of
nonnegative real numbers, and by N the nonnegative integers. Our ambient space X
is either a smooth variety over k, or Spec(k[[x1, . . . , xn]]). We assume that the reader
is familiar with the results about the usual log canonical threshold, for which we refer
to [Kol2], Section 8 for the finite type case, and to [dFM] for the case of formal power
series.

Let X be a regular scheme, as above, and a1, . . . , ar nonzero ideal sheaves on X.
We put

LCT(a1, . . . , ar) = {λ = (λ1, . . . , λr) ∈ Rr
+ | (X, aλ1

1 · · · aλr
r ) is log canonical}.

We will mostly be concerned with a local variant of this definition: if x ∈ X is a
closed point, then

LCTx(a1, . . . , ar) = {λ = (λ1, . . . , λr) ∈ Rr
+ | (X, aλ1

1 · · · aλr
r ) is log canonical at x}.

If the ideals a1, . . . , ar are principal, with ai generated by fi, then we simply write
LCT(f1, . . . , fr) and LCTx(f1, . . . , fr).

The above sets can be explicitly described in terms of a log resolution, as follows.
Suppose that π : Y → X is a log resolution of a1, . . . , ar. Recall that this means that
Y is nonsingular, π is proper and birational, and we have a simple normal crossings
divisor

∑N
j=1 Ej on Y such that

KY/X =
N∑

j=1

κjEj and ai · OY = OY

⎛

⎝−
N∑

j=1

αi,jEj

⎞

⎠, for 1 ≤ i ≤ r.

The existence of such a log resolution in the formal power series case is a consequence
of the results in [Tem].
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It follows from the description of log canonical pairs in terms of a log resolution
that LCT(a1, . . . , ar) consists precisely of those λ ∈ Rr

+ such that

(1)
r∑

i=1

αi,jλi ≤ κj + 1 for 1 ≤ j ≤ N.

Similarly, LCTx(a1, . . . ar) is cut out by the equations in (1) corresponding to those
j such that x ∈ π(Ej).

It follows from the above description that both LCT(a1, . . . , ar) and LCTx

(a1, . . . , ar) are rational polyhedra (that is, they are cut out in Rr by finitely many
affine linear inequalities, with rational coefficients). We call LCT(a1, . . . , ar) and
LCTx(a1, . . . , ar) the LCT-polyhedron of a1, . . . , ar, and respectively, the LCT-poly-
hedron at x of a1, . . . , ar.

Remark 2.1. The above polyhedra are r-dimensional. Indeed, note that they contain
the origin, as well as λei for 0 < λ ≪ 1 (here e1, . . . , er is the standard basis of Rr).

The following lemma follows immediately from the description of LCT-polyhedra
in terms of a log resolution.

Lemma 2.2. Given the nonzero ideals a1, . . . , ar, there are closed points x1, . . . , xm ∈
X such that

LCT(a1, . . . , ar) =
m⋂

j=1

LCTxj (a1, . . . , ar).

Because of this lemma, from now on we will focus on the local LCT-polyhedra.

Lemma 2.3. Let a1, . . . ar be nonzero ideals on X.
(i) If x ∈ Supp(V (ai)), then {λi | λ ∈ LCTx(a1, . . . , ar)} is bounded.
(ii) If x ̸∈ Supp(V (ar)), then LCTx(a1, . . . , ar) = LCTx(a1, . . . , ar−1) × R+.

Proof. With the notation in (1), we see that if x ∈ Supp(V (ai)), then there is j with
αi,j > 0, and such that x ∈ π(Ej). It follows that if λ ∈ LCTx(a1, . . . , ar), then
λi ≤ (κj + 1)/αi,j , which gives (i). The assertion in (ii) is clear. !

In light of this lemma, it is enough to study the sets LCTx(a1, . . . , ar) for x ∈
⋂

i
Supp(V (ai)). In this case, we see that the LCT-polyhedron at x of a1, . . . , ar is
bounded, hence it is a polytope. We will henceforth refer to it as the LCT-polytope
at x of a1, . . . , ar.

Remark 2.4. A related construction, giving polyhedra as invariants of tuples of
divisors, was used in [Lib2] and [Lib1]. Consider a collection of germs

f1(x1, . . . , xn+1), . . . , fr(x1, . . . , xn+1),

of reduced local equations of divisors Di = V (fi) at a point P ∈ X = Cn+1, that we
assume to have isolated non-normal crossings (cf. [Lib2]). With each ϕ ∈ OP one
associates the top degree form:

ωϕ(j1, . . . , jr|m1, . . . , mr)

= f
j1−m1+1

m1
1 · . . . · f

jr−mr+1
mr

r ϕ(x1, . . . , xn+1)dx1 ∧ . . . ∧ dxn+1,(2)
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on the unramified covering Xm1,...,mr of X !
∑

i Di with Galois group ⊕ iZ/miZ.
The form ωϕ extends to a holomorphic form on a resolution of singularities of a
compactification Xm1,...,mr of Xm1,...,mr if and only if ( j1+1

m1
, . . . , jr+1

mr
) ∈ Rr satisfies a

system of linear inequalities, i.e., it belongs to a polytope P(ϕ|f1, . . . , fr). This system
can be described in terms of a log-resolution π : Y → X of the principal ideal (f1 · · · fr)
as above, using the resolution of Xm1,...,mr given by a resolution of the quotient
singularities of the normalization of Xm1,...,mr × X Y . This leads to the following
explicit collection of inequalities describing when λ = (λ1, . . . , λr) ∈ P(ϕ|f1, . . . , fr)
(cf. [Lib1, (4)]):

(3)
r∑

i=1

αi,j(1 − λi) ≤ κj + 1 + ej(ϕ) for 1 ≤ j ≤ N.

Here αi,j , κj are as in (1), and ej(ϕ) is the multiplicity of π∗(ϕ) along Ej .
Vice versa, for a fixed ( j1+1

m1
, . . . , jr+1

mr
) with 0 ≤ ji < mi for all i, the set of ϕ ∈ OP

such that the given point lies in P(ϕ|f1, . . . , fr) is an ideal A(j1, . . . , jr|m1, . . . , mr) ⊂
OP (an ideal of quasi-adjunction).

Allowing ϕ to run over all elements in OP produces a finite collection of polytopes
in the [0, 1]r. We similarly have a finite collection of ideals of quasi-adjunction. More-
over, every ideal of quasi-adjunction A can be written as A = A(j1, . . . , jr|m1, . . . , mr)
for some point ( j1+1

m1
, . . . , jr+1

mr
) that can be chosen in the boundary of a polytope (3).

The subset of the boundary consisting of those ( j1+1
m1

, . . . , jr+1
mr

) defining a particular A
is a polyhedral subset (face of quasi-adjunction). Therefore one has a correspondence
between faces F of the polytopes P(ϕ|f1, . . . , fr) and certain ideals A(F) in OP .

The polytope (3) corresponding to ϕ = 1 coincides with the image of the LCT-
polytope (1) for ai = (fi) via the affine map (λi) → (1 − λi). An ideal of quasi-
adjunction A(F) associated to a point ( j1+1

m1
, . . . , jr+1

mr
) ∈ F coincides with the mul-

tiplier ideal of the divisor
∑

µiDi, where µi = 1 − ji+1
mi

− ε, with 0 < ε ≪ 1.
Indeed, strict inequality in the conditions (3) is equivalent to ϕ being a section of
π∗(KY/X − ⌊

∑
i(1 − λi)π∗(Di)⌋). In the case r = 1, each polytope (3) is a segment

[α, 1], and the face of quasi-adjunction α is a jumping coefficient for the multiplier
ideals of f = f1. If the singularity of f at P is isolated, the collection of such α
coincides with the subset of the spectrum of the singularity of f in the interval [0, 1].

Example 2.5. If r = 1, then LCT(a) = [0, lct(a)], and LCTx(a) = [0, lctx(a)].

Example 2.6. If ai = (xqi,1
1 · · ·xqi,n

n ) ⊆ k[x1, . . . , xn], then

LCT(a1, . . . , ar) =

{
λ = (λ1, . . . , λr) ∈ Rr

+

r∑

i=1

qi,jλi ≤ 1 for 1 ≤ j ≤ n

}
.

Example 2.7. One can generalize the previous example to the case of arbitrary
monomial ideals. This extends Howald’s Theorem from [How], which is the case r = 1.
Suppose that a1, . . . , ar are nonzero ideals in k[x1, . . . , xn] generated by monomials.
Let Pai denote the Newton polyhedron of ai, that is, Pai is the convex hull of {u ∈
Nn | xu ∈ ai}. Here, if u = (u1, . . . , un) ∈ Nn, we denote by xu the monomial
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xu1
1 · · ·xun

n . By taking a toric resolution of a1 · . . . · ar, it is easy to see that

LCT(a1, . . . , ar) = LCT0(a1, . . . , ar) =

{
(λ1, . . . , λr) ∈ Rr

+ e ∈
r∑

i=1

λiPai

}
,

where e = (1, . . . , 1) ∈ Rn.
Example 2.8. In the case of plane curves, readily available explicit resolutions allow
the computation of LCT-polytopes. In terms of the polytopes of quasi-adjunction
considered in [Lib1], the LCT-polytope is the image of the polytope “farthest” from
the origin along the line x1 = . . . = xr under the change of variables (λi) → (1− λi).

a) If f = x, g = x − y2 ∈ k[x, y], then

(4) LCT0(f, g) = {(λ1, λ2) ∈ R2
+ | λ1 ≤ 1, λ2 ≤ 1, λ1 + λ2 ≤ 3/2}.

b) If f = x2 + y5, g = x5 + y2 ∈ k[x, y], then LCT0(f, g) is the intersection of
the unit square and of the half planes

(5) 10λ1 + 4λ2 ≤ 7, 4λ1 + 10λ2 ≤ 7.

Remark 2.9. Even if one is interested in the singularities of an ideal a, considering the
LCT-polytopes for several ideals gives interesting information. Suppose, for example,
that a is a nonzero ideal on X, and x ∈ X is a closed point in Supp(V (a)). One defines
a function ϕ : R+ → R+ by ϕ(t) = lctx(a · mt

x)−1, where mx is the ideal defining x.
This is a convex nondecreasing function that encodes useful information about the
singularities of a at x. For example, one can show that the right derivative ϕ′

r(0) is
equal to lctx(a)−1 · max ordE(mx)

ordE(a) , where the maximum is over all divisors E over X

that compute lctx(a).
Note that ϕ is determined by P := LCTx(a, mx), and conversely. Indeed, ϕ(t) = α

if and only if lct(a1/α · m
t/α
x ) = 1. Therefore ϕ(t) is characterized by the fact that

(1, t) lies on the boundary of ϕ(t) · P .
We record in the following proposition some general properties of LCT-polytopes.

We denote by e1, . . . , er the standard basis in Rr. For λ = (λi) and µ = (µi) in Rr
+,

we put λ ≼ µ if λi ≤ µi for all i. We also put λ ≺ µ if λi ≤ µi for all i, with strict
inequality when µi > 0.

Proposition 2.10. Suppose that a1, . . . , ar are nonzero ideals on X, and x ∈ X is a
closed point such that x ∈ Supp(V (ai)) for all i.

(i) If m1, . . . , mr are positive integers, then the polytope LCTx(am1
1 , . . . , amr

r ) is
equal to the image of LCTx(a1, . . . , ar) by the map (u1, . . . , ur) → (u1/m1, . . . ,
ur/mr).

(ii) If a′i ⊆ ai for every i, then LCTx(a′1, . . . , a′r) ⊆ LCTx(a1, . . . , ar).
(iii) LCTx(a1, . . . , ar) ⊆

∏r
i=1[0, lctx(ai)] ⊆ [0, n]r, where n = dim(X).

(iv) The simplex {
λ ∈ Rr

+

∣∣∣∣∣

r∑

i=1

1
lctx(ai)

λi ≤ 1

}

is contained in LCTx(a1, . . . , ar).
(v) If λ, λ′ ∈ Rr

+ are such that λ ≼ λ′, and λ′ ∈ LCTx(a1, . . . , ar), then λ ∈
LCTx(a1, . . . , ar).
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Proof. All assertions immediately follow from definition, and from familiar facts about
singularities of pairs, see [Kol2] and [dFM]. The assertion in (iv) follows from the fact
that LCTx(a1, . . . , ar) is convex, and the fact that the origin, as well as each lctx(ai)ei

lies in LCTx(a1, . . . , ar). !
Remark 2.11. Suppose that X is a nonsingular affine algebraic variety. It follows
from Proposition 2.10 (iv) that if f1, . . . , fr ∈ O(X), then LCT(f1, . . . , fr) is contained
in the cube [0, 1]r. On the other hand, if a1, . . . , ar are ideals on X, and if for every
i, gi ∈ ai is a general linear combination of some fixed set of generators of ai, then an
argument based on Bertini’s Theorem as in [Laz, Proposition 9.2.28] gives

LCT(g1, . . . , gr) = LCT(a1, . . . , ar) ∩ [0, 1]r.

Remark 2.12. If a1, . . . , ar are ideals on a smooth variety X, and if x ∈ X, then
LCTx(a1, . . . , ar) = LCT(a1 · ÔX,x, . . . , ar · ÔX,x). This follows easily from [dFM,
Proposition 2.7], that treats the case of log canonical thresholds. Since ÔX,x ≃
k[[x1, . . . , xn]], it follows that in order to study the possible LCT-polytopes in a given
dimension n, we may restrict to the case when X = Spec(k[[x1, . . . , xn]]).

Lemma 2.13. If a1, . . . , ar are nonzero ideals on X, and if mx is the ideal defining
a closed point x ∈ X, then

LCTx(a1, . . . , ar) =
⋂

q≥1

LCTx(a1 + mq
x, . . . , ar + mq

x).

Proof. The inclusion “⊆” is trivial, so let us suppose that λ = (λi) lies in the
above intersection. It is enough to show that every λ′ ∈ Qr

+ with λ′ ≼ λ lies in
LCTx(a1, . . . , ar). Therefore, we may assume that λ ∈ Qr

+. Choose N such that all
Nλi are integers. By assumption, we have lct((a1 +mq

x)Nλ1 · · · (ar +mq
x)Nλr ) ≥ 1/N .

Let τ := min{λi | λi > 0}. Since the ideals aNλ1
1 · · · aNλr

r and (a1+mq
x)Nλ1 · · · (ar +

mq
x)Nλr are congruent modulo mqNτ

x , it follows that

lctx((a1 + mq
x)Nλ1 · · · (ar + mq

x)Nλr ) − lctx(aNλ1
1 · · · aNλr

r ) ≤ n

qNτ
,

where n = dim(OX,x) (see [dFM, Corollary 2.10]). We conclude that lctx(aλ1
1 · · · aλr

r )≥
1 − n

qτ . Letting q go to infinity, this gives λ ∈ LCTx(a1 . . . , ar). !

The above lemma and the previous remark can be used to reduce proving results
about LCT-polytopes on Spec(k[[x1, . . . , xn]]) to proving the similar results on An. In
order to illustrate this, we give the following

Proposition 2.14. If H ⊂ X is a smooth hypersurface containing x, and if ai are
ideals on X such that all aiOH are nonzero, then

LCTx(a1OH , . . . , arOH) ⊆ LCTx(a1, . . . , ar).

Proof. When X is a nonsingular variety over k, this follows easily from Inversion of
Adjunction (see [Kol2, Theorem 7.5]). If X = Spec(k[[x1, . . . , xn]]), after a change of
coordinates we may assume that H = (x1 = 0). In this case, by Lemma 2.13 it is
enough to prove the proposition when we replace ai by ai +mq

x. Since there are ideals
a′i in k[x1, . . . , xn] such that ai + mq

x = a′i · k[[x1, . . . , xn]], we conclude using the case
of ideals in An via Remark 2.12. !
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Remark 2.15. If X is a nonsingular variety over k, it is sometimes convenient to
phrase the description of LCTx(a1, . . . , ar) in the language of mixed multiplier ideals,
for which we refer to [Laz, Chapter 9]. Recall that the pair (X, aλ1

1 · · · aλr
r ) is klt at

x ∈ X if and only if the mixed multiplier ideal J (X, aλ1
1 · · · aλr

r ) is not contained in
the ideal mx defining x. We deduce using the definition of the LCT-polytopes that
λ ∈ LCTx(a1, . . . , ar) if and only if for every µ = (µi) ∈ Rr

+ with µ ≺ λ, we have
J (X, aµ1

1 · · · aµr
r ) ̸⊆ mx.

The following proposition is the generalization to the case r > 1 of [Kol2, Propo-
sition 8.19]. As above, we denote by mx the ideal defining the closed point x ∈ X.

Proposition 2.16. Let b, a1, . . . , ar be nonzero ideals on X. If λ = (λj) lies in
LCTx(a1, . . . , ar), and N is a positive integer such that ai + mN

x = b + mN
x for some

i, then
λ − min{n/N, λi}ei ∈ LCTx(a1, . . . , b, . . . , ar),

where b appears on the ith component and n = dim(X).

Proof. By Lemma 2.3, we may assume that ai vanishes at x. After replacing ai

by ai + mN
x , we may also assume that ai = b + mN

x . Arguing as in the proof of
Proposition 2.14, we see that it is enough to prove the statement when X is a smooth
variety over k. In this case, it is convenient to use the language of mixed multiplier
ideals; see Remark 2.15. Let us consider any µ = (µj) ∈ Rr

+, with µ ≺ λ, so by
assumption the mixed multiplier ideal J (X, aµ1

1 · · · aµr
r ) is not contained in mx.

By the Summation Theorem (for the version that we need, see [JM, Corollary 4.2]),
we have

J (X, aµ1
1 · · · (b + mN

x )µi · · · aµr
r ) =

∑

α+β=µi

J (X, aµ1
1 · · · bαmNβ

x · · · aµr
r ).

It follows that for some α, β ≥ 0 with α + β = µi we have

J (X, aµ1
1 · · · bαmNβ

x · · · aµr
r ) ̸⊆ mx.

If µi > n
N , then using J (mn

x) ⊆ mx we deduce Nβ < n, and therefore
(
µ1, . . . , µi −

n

N
, . . . , µr

)
∈ LCTx(a1, . . . , b, . . . , ar).

We conclude that µ − min{n/N, µi}ei ∈ LCTx(a1, . . . , b, . . . , ar) (note that we have
(µ1, . . . , 0, . . . , µr) ∈ LCTx(a1, . . . , ai, . . . ar) by hypothesis, hence (µ1, . . . , 0, . . . , µr)∈
LCTx(a1, . . . , b, . . . ar)). Since this holds for every µ ≺ λ, we get the conclusion of
the proposition. !

An iterated application of the proposition gives the following result improving
Lemma 2.13.

Corollary 2.17. Let ai, bi be ideals on X, for 1 ≤ i ≤ r, and let N be a positive
integer such that ai + mN

x = bi + mN
x for all i. If λ = (λi) ∈ LCTx(a1, . . . , ar), then

λ′ = (λ′
i) ∈ LCTx(b1, . . . , br), where λ′

i = max
{
λi − n

N , 0
}

for all i.

Recall that on the space Hr of all nonempty compact subsets in Rr we have the
Hausdorff metric, defined as follows. If K ⊂ Rr is an arbitrary compact set, for
every x ∈ Rr we put d(x, K) = miny∈K d(x, y), where d(x, y) denotes the Euclidean
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distance between x and y. The Hausdorff distance between two compact sets K1 and
K2 is defined by

δ(K1, K2) := max
{

max
x∈K1

d(x, K2), max
x∈K2

d(x, K1)
}

.

The set of all nonempty compact subsets of Rr thus becomes a complete metric space.
Furthermore, the subspace of Hr consisting of all compact subsets of a fixed compact
set K in Rr is compact. For some basic facts about the Hausdorff metric, see [Mun,
p.281]. Using this notion, we deduce from Corollary 2.17 the next

Corollary 2.18. Suppose that ai, bi are ideals on X, and x∈X lies in
⋂

i Supp(V (ai)).
If N is a positive integer such that ai + mN

x = bi + mN
x for all i, then

δ(LCTx(a1, . . . , ar), LCTx(b1, . . . , br)) ≤
n
√

r

N
.

Example 2.19. Let a1, . . . , ar be proper nonzero ideals on X = Spec(k[[x1, . . . , xn]]).
If b1, . . . , br are the inverse images of these ideals on X ′ = Spec(k[[x1, . . . , xn, y]]) via
the canonical projection, then LCT(b1 + (yd), b2, . . . , br) is equal to

(6) {(λ1 + t, λ2, . . . , λr) | (λ1, . . . , λr) ∈ LCT(a1, . . . , ar), 0 ≤ t ≤ 1/d}.

Indeed, note first that by Lemma 2.13 (or Corollary 2.17), it is enough to prove
the above assertion when we replace each ai by ai + (x1, . . . , xn)ℓ, for all ℓ ≥ 1.
It follows from Remark 2.12 that it is enough to prove the similar equality when
the ai are nonzero ideals on Spec(k[x1, . . . , xn]) vanishing at the origin, we have
bi = ai · k[x1, . . . , xn, y], and we compute the LCT-polytopes at the origin. In this
case it is again convenient to use the language of mixed multiplier ideal sheaves.
Recall that by Remark 2.15, we have λ ∈ LCT0(a1, . . . , ar) if and only if for every
µ = (µi) ∈ Rr

+ with µ ≺ λ, we have J (An, aµ1
1 · · · aµr

r ) ̸⊆ (x1, . . . , xn). It follows from
the Summation Theorem (see [JM, Corollary 4.2]) that for every µ1, . . . , µr ∈ R+, we
have

J (An+1, (b1 + (yd))µ1bµ2
2 · · · bµr

r ) =
∑

α+β=µ1

J (An+1, bα
1 ydβbµ2

2 · · · bµr
r )

=
∑

α+β=µ1

(y⌊dβ⌋) · J (An, bα
1 bµ2

2 · · · bµr
r ),

where the second equality follows from [Laz, Remark 9.5.23]. Therefore, this ideal is
not contained in (x1, . . . , xn, y) if and only there is β ∈ R+ with β1 < 1/d such that
J (An, bµ1−β

1 bµ2
2 · · · bµr

r ) is not contained in (x1, . . . , xn). The description in (6) easily
follows.

3. Limits of LCT-polytopes

Recall that by Remark 2.12, in order to study the possible LCT-polytopes in a given
dimension n, we may restrict to the case when X = Spec(k[[x1, . . . , xn]]). Of course,
in this case it is not necessary to include the closed point in the notation.

Remark 3.1. Note that if k ⊂ K is a field extension of algebraically closed fields,
and if a1, . . . , ar are nonzero proper ideals in k[[x1, . . . , xn]], and if we put
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a′i = ai · K[[x1, . . . , xn]], then LCT(a1, . . . , ar) = LCT(a′1, . . . , a′r). Indeed, by Lemma
2.13 it is enough to show that for all N ≥ 1 we have

(7) LCT(a1 + mN , . . . , ar + mN ) = LCT(a′1 + (m′)N , . . . , a′r + (m′)N ),

where m and m′ are the maximal ideals in k[[x1, . . . , xn]] and K[[x1, . . . , xn]]. Let us
fix N . There are ideals bi in k[x1, . . . , xn] such that bi · k[[x1, . . . , xn]] = ai + mN for
every i. If b′i = bi · K[x1, . . . , xn], then b′i · K[[x1, . . . , xn]] = a′i. It is easy to see that
LCT0(b1, . . . , br) = LCT0(b′1, . . . b′r), using a log resolution of b1 · . . . · br to compute
the left-hand side of the equality, and the base-extension of this log resolution to
Spec(K) to compute the right-hand side (see for example [dFM, Proposition 2.9] for
the case of one ideal). The assertion in (7) is now a consequence of Remark 2.12.
Therefore every LCT-polytope of ideals in k[[x1, . . . , xn]] is an LCT-polytope of ideals
in K[[x1, . . . , xn]].

Remark 3.2. If k is an algebraically closed field having infinite transcendence de-
gree over Q (for example, k = C), then every LCT-polytope of r ideals in some
K[[x1, . . . , xn]], where K is an algebraically closed field extension of k, can be real-
ized as the LCT-polytope of r ideals in k[[x1, . . . , xn]]. Indeed, suppose that P =
LCT(a1, . . . , ar), with a1, . . . , ar proper nonzero ideals in K[[x1, . . . , xn]]. Since each
ai is finitely generated, we can find an algebraically closed subfield L ⊂ K of count-
able transcendence degree over Q, and ideals bi in L[[x1, . . . , xn]] such that ai =
bi ·K[[x1, . . . , xn]] for every i. Using the fact that k has infinite transcendence degree
over Q, we can find an embedding L ↪→ k. If b′i = bi · k[[x1, . . . , xn]], we deduce from
the previous remark that LCT(a1, . . . , an) = LCT(b′1, . . . , b′n).

By Proposition 2.10 (iv), all LCT-polytopes corresponding to r proper nonzero
ideals in the ring k[[x1, . . . , xn]] are contained in the compact set [0, n]r. Therefore,
every sequence of LCT-polytopes has a convergent subsequence (in the Hausdorff
metric). Our goal is to show that the limit is again an LCT-polytope, corresponding
to possibly fewer than r ideals. Furthermore, we prove that in this case, the limit is
equal to the intersection of all but finitely many of the given LCT-polytopes.

Theorem 3.3. If Pm = LCT(a(m)
1 , . . . , a(m)

r ) for m ≥ 1, where the a
(m)
i are proper

nonzero ideals in k[[x1, . . . , xn]], and if the Pm converge in the Hausdorff metric to a
compact set Q ⊆ Rr, then Q is again an LCT-polytope. More precisely, if I is the set
of those i ≤ r such that Q ̸⊆ (xi = 0), then we can find proper nonzero ideals a1, . . . , as

in K[[x1, . . . , xn]], with s = #I and K an algebraically closed field extension of k, such
that Q = jI(LCT(a1, . . . , as)), where jI : Rs ↪→ Rr is the inclusion corresponding to
the coordinates in I.

Remark 3.4. We make the convention that the LCT-polytope of an empty set of
ideals consists of {0}. In the context of Theorem 3.3, it can happen that s = 0, in
which case Q consists of the origin in Rr.

Remark 3.5. It follows from Remark 3.2 that if the transcendence degree of k over
Q is infinite, then in Theorem 3.3 we may take K = k.

Theorem 3.6. If (Pm)m≥1 and Q are as in Theorem 3.3, then there is m0 such that
Q =

⋂
m≥m0

Pm.
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This result can be considered as a strong form of the Ascending Chain Condition
for LCT-polytopes. In fact, it immediately gives

Corollary 3.7. If Pm = LCT(a(m)
1 , . . . , a(m)

r ) for m ≥ 1, where the a
(m)
i are proper

nonzero ideals in k[[x1, . . . , xn]], and if P1 ⊆ P2 ⊆ · · · , then this sequence is eventually
stationary.

Proof. It is enough to find a subsequence that is eventually stationary. Since Pm ⊆
[0, n]r for all m, we deduce that after passing to a subsequence, we may assume that
the Pm converge to some Q in the Hausdorff metric. Theorem 3.6 implies that there
is m0 such that Q =

⋂
m≥m0

Pm. On the other hand, it is easy to see that in our
case

⋃
m≥1 Pm ⊆ Q (see, e.g., Lemma 3.8(iii) below). This gives Pm = Q for every

m ≥ m0. !

For the proof of Theorems 3.3 and 3.6, we will need a couple of lemmas. The
first one gives some easy properties of Hausdorff convergence that we will need. We
denote by d(·, ·) the Euclidean distance in Rr, and by δ(·, ·) the Hausdorff metric on
the space Hr of all nonempty compact subsets of Rr.

Lemma 3.8. Let (Km)m≥1 be a sequence of compact subsets in Rr, converging in
the Hausdorff metric to the compact subset K.

(i) If C ⊆ Rr is closed, and Km ⊆ C for all m, then K ⊆ C.
(ii) If um ∈ Km, and (um)m≥1 converges to u ∈ Rr, then u ∈ K.
(iii)

⋂
m Km ⊆ K.

Proof. The assertion in (i) follows easily from definition. For (ii), note that if u ̸∈ K,
then there is a ball B(u, ε) centered at u, and of radius ε > 0 that does not intersect
K. By assumption, there is m0 such that δ(Km, K) < ε/2 for all m ≥ m0. For such
m, since um ∈ Km, we have d(um, K) < ε/2, hence we can find wm ∈ K such that
d(um, wm) < ε/2. On the other hand, after possibly enlarging m0, we may assume
that d(um, u) < ε/2 for m ≥ m0. Therefore,

d(u, wm) ≤ d(u, um) + d(um, wm) < ε/2 + ε/2 = ε,

contradicting the fact that B(u, ε)∩K = ∅. This proves (ii), and the assertion in (iii)
is a special case. !

For a proper nonzero ideal a in k[[x1, . . . , xn]], its order ord(a) is the largest non-
negative integer d such that a is contained in the dth power of the maximal ideal m.
Recall the following estimates for the log canonical threshold in terms of the order:

(8)
1

ord(a)
≤ lct(a) ≤ n

ord(a)

(the first inequality reduces to the case n = 1 via Proposition 2.14, whereas the second
inequality follows from lct(a) ≤ lct(mord(a)) = n/ ord(a)).

Lemma 3.9. With the notation in Theorem 3.3, the following are equivalent:
(i) Q ⊆ (xi = 0).
(ii) limm→∞ ord(a(m)

i ) = ∞.
(iii) The set {ord(a(m)

i ) | m ≥ 1} is unbounded.
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Proof. Suppose first that Q ⊆ (xi = 0). For every m we have lct(a(m)
i ) ·ei ∈ Pm, where

e1, . . . , er is the standard basis of Rr. It follows from Lemma 3.8 (ii) that every limit
point of the sequence

(
lct(a(m)

i ) · ei

)

m≥1
lies in Q. Therefore, limm→∞ lct(a(m)

i ) = 0,

and (ii) follows from the first inequality in (8).
Since the implication (ii)⇒(iii) is trivial, in order to finish the proof of the lemma

it is enough to prove (iii)⇒(i). Suppose that λ = (λ1, . . . , λr) ∈ Q, and λi > 0.
We can find m0 such that δ(Pm, Q) < λi/2 for all m ≥ m0. For every such m, we
can find w(m) = (w(m)

1 , . . . , w(m)
r ) ∈ Pm such that d(w(m), λ) < λi/2. In particular,

w(m)
i > λi/2. Since w(m) ∈ Pm, we see using the second inequality in (8) that for all

m ≥ m0

λi

2
< w(m)

i ≤ lct(a(m)
i ) ≤ n

ord(a(m)
i )

.

This contradicts (iii). !

The main ingredient in the proof of Theorems 3.3 and 3.6 is the generic limit
construction from [Kol1] and [dFEM]. Let (a(m)

1 )m, . . . , (a(m)
r )m be sequences as in

Theorem 3.3. In order to simplify the notation, let us relabel the sequences such
that the set I in the theorem is equal to {1, . . . , s}. Associated to the s sequences
(a(m)

i )m≥1, with 1 ≤ i ≤ s, we get s generic limits a1, . . . , as. These are ideals
in K[[x1, . . . , xn]], where K is a suitable algebraically closed field extension of k. It
follows from Lemma 4.3 in [dFEM] and the above Lemma 3.9 that all ai are nonzero.
Furthermore, since every a

(m)
i is contained in the maximal ideal, the same holds for

the ideals ai. The fundamental property of the generic limit construction is that
there is a strictly increasing sequence (mℓ)ℓ such that for every nonnegative rational
numbers w1, . . . , ws we have

(9) lim
ℓ→∞

lct((a(mℓ)
1 )w1 · · · (a(mℓ)

s )ws) = lct(aw1
1 · · · aws

s )

(see [dFEM, Corollary 4.5]).

Remark 3.10. The construction in [dFEM] deals with only two sequences of ideals,
but as pointed out in loc. cit., everything generalizes in an obvious way to any
finite number of sequences. We also note that the field K given in loc. cit. is not
algebraically closed, but since we are only interested in (9), we can simply extend the
generic limit ideals to an algebraic closure. Equation (9) is stated in loc. cit. only for
integers w1, . . . , ws. On the other hand, if the wi are rational numbers, and if N is a
positive integer such that all Nwi ∈ Z, the formula for (Nw1, . . . , Nws) implies the
one for (w1, . . . , ws) by rescaling.

We isolate in the following lemma the key argument needed for the proofs of The-
orems 3.3 and 3.6. We use the notation in those theorems, as well the notation for
the generic limit ideals introduced above.

Lemma 3.11. If λ ∈ LCT(a1, . . . , as) ∩ Qs, then there are infinitely many m such
that jI(λ) ∈ Pm.
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Proof. Write λ = (λ1, . . . , λs), hence by assumption lct(aλ1
1 · · · aλs

s ) ≥ 1. Fix a positive
integer N such that Nλi ∈ Z for every i. Consider the set

Γ := {lct((a(m)
1 )Nλ1 · · · (a(m)

s )Nλs) | m ∈ Z>0}.

Since the elements of Γ are log canonical thresholds of ideals on Spec(k[[x1, . . . , xn]]), it
follows from [dFEM, Theorem 5.1] that Γ satisfies ACC, that is, it contains no infinite
strictly increasing sequences. On the other hand, (9) shows that 1

N lct(aλ1
1 · · · aλs

s ) lies
in the closure of Γ. We deduce that there are infinitely many m such that

lct((a(m)
1 )Nλ1 · · · (a(m)

s )Nλs) ≥ 1
N

lct(aλ1
1 · · · aλs

s ) ≥ 1
N

.

Therefore, jI(λ) ∈ Pm for all such m. !

We can now give the proofs of our main results.

Proof of Theorem 3.3. With the above notation, it is enough to show that Q =
jI(LCT(a1, . . . , as)) (of course, we may assume that s ≥ 1, as otherwise there is noth-
ing to prove). Note first that Lemma 3.11 gives the inclusion jI(LCT(a1, . . . , as)) ⊆ Q.
Indeed, since LCT(a1, . . . , as) ∩Qs is dense in LCT(a1, . . . , as), and Q is closed, it is
enough to prove the inclusion jI(LCT(a1, . . . , as) ∩ Qs) ⊆ Q, and this follows from
the lemma (note that by Lemma 3.8 (iii), the intersection of infinitely many of the
Pm is contained in Q).

We now prove the reverse inclusion: suppose that u = (u1, . . . , ur) ∈ Q (hence ui =
0 for i > s), and let us show that (u1, . . . , us) ∈ LCT(a1, . . . , as). Note first that by
Lemma 3.8 (i), we have Q ⊆ Rr

+. Fix ε > 0, and let us choose w = (w1, . . . , ws) ∈ Qs
+

such that wi ≤ ui for all i, with strict inequality if ui > 0, and such that (ui−wi) < ε
for all i. We will show that in this case lct(aw1

1 · · · aws
s ) ≥ 1. Since this holds for every

ε > 0, we get lct(au1
1 · · · aus

s ) ≥ 1, that is, u ∈ jI(LCT(a1, . . . , as)).
Let (mℓ) be a strictly increasing sequence such that (9) holds. We can choose q

such that for all m ≥ q we have δ(Pm, Q) < min{ui −wi | ui > 0}. For every such m,
let us choose vm ∈ Pm with d(vm, u) < min{ui −wi | ui > 0}. We may assume that
vm ∈ Qr. Since vm = (vm,1, . . . , vm,r) ∈ Pm, we have lct((a(m)

1 )vm,1 · · · (a(m)
r )vm,r ) ≥

1. On the other hand, by construction wi ≤ vm,i for every i ≤ s, hence we have
lct((a(m)

1 )w1 · · · (a(m)
s )ws) ≥ 1 for all m ≥ q. Therefore, (9) implies lct(aw1

1 · · · aws
s ) ≥ 1,

completing the proof. !

Proof of Theorem 3.6. It is enough to show that there is m0 such that Q ⊆ Pm for
all m ≥ m0. Indeed, in this case Q ⊆

⋂
m≥m0

Pm ⊆ Q, where the second inclusion
follows from Lemma 3.8 (iii).

Let us assume that this is not the case. After possibly replacing the sequence
(Pm)m≥1 by a subsequence, we may assume that Q ̸⊆ Pm for any m. Note that by
Theorem 3.3, Q is a rational polytope, so it is the convex hull of its vertices, which
lie in Qr. Furthermore, by the above proof, each such vertex lies in jI(P (a1, . . . , as));
hence by Lemma 3.11, it lies in infinitely many Pm. After replacing the sequence
(Pm)m≥1 by a subsequence, and after doing this for all vertices of Q, we conclude
that all vertices of Q lie in Pm for all m. Therefore Q ⊆ Pm for all m, a contradiction.
This concludes the proof of the theorem. !
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Example 3.12. It follows from Example 2.19 that if a1, . . . , ar are proper nonzero
ideals in k[[x1, . . . , xn]], then LCT(a1, . . . , ar) is the intersection of a sequence P1 ⊃
P2 ⊃ . . . that is not eventually stationary, where each Pi is the LCT-polytope of r
proper nonzero ideals in k[[x1, . . . , xn, y]].

Remark 3.13. If in Theorem 3.3 we have Pm = LCT(f (m)
1 , . . . , f (m)

r ) with the
f (m)

i nonzero elements in the maximal ideal of k[[x1, . . . , xn]], then one can obtain
Q as (the linear embedding of) LCT(f1, . . . , fs), with fi nonzero elements in the
maximal ideal of some K[[x1, . . . , xn]]. Indeed, one can modify the construction in
[dFEM] by replacing the Hilbert schemes parametrizing all ideals in quotient rings
k[x1, . . . , xn]/(x1, . . . , xn)d with parameter spaces for principal ideals in these rings
(when r = 1, this is done in [Kol1]).

Since the set of all log canonical thresholds lct(f), with f ∈ k[[x1, . . . , xn]] satisfies
ACC, it follows that there is a largest such invariant that is < 1. Finding this value
for arbitrary n is an open problem. For example, it is well-known that this value is
equal to 5

6 if n = 2. Indeed, if f ∈ k[[x, y]] has order ≥ 3, then we have lct(f) ≤ 2
3

by (8). On the other hand, if the multiplicity of f at 0 is two, then f is formally
equivalent to x2 + ym, for some m ≥ 2, and lct0(x2 + ym) = 1

2 + 1
m (see [Laz, Section

9.3.C]). As the following example shows, one can get similar results for r ≥ 2.

Example 3.14. We know that if f, g ∈ k[[x, y]] are nonzero elements in the maximal
ideal of k[[x, y]], then LCT(f, g) ⊆ [0, 1]2. In fact, we have LCT(f, g) = [0, 1]2 if and
only if after a change of variables (f, g) = (x, y), and otherwise

LCT(f, g) ⊆ {(λ1, λ2) ∈ [0, 1]2 | λ1 + λ2 ≤ 3/2}.

Indeed, it follows from Example 2.6 that LCT(x, y) = [0, 1]2. If there is no change of
variable such that (f, g) = (x, y), then there is a line in the tangent space at the origin
to X = Spec(k[[x, y]]) that is contained in T0(V (f)) ∩ T0(V (g)). This corresponds to
a point p on the exceptional divisor E in the blow-up B = Bl0(X) π→ X, and the
condition says that ordp(π∗(f)), ordp(π∗(g)) ≥ 2. It follows that if F is the exceptional
divisor on the blow-up of B at p, then for every (λ1, λ2) ∈ LCT(f, g) we have

2λ1 + 2λ2 ≤ λ1 · ordF (f) + λ2 · ordF (g) ≤ ordF (K−/X) + 1 = 3.

Example 2.8(a) shows that there are f and g such that LCT(f, g) = {(λ1, λ2) ∈
[0, 1]2 | λ1 + λ2 ≤ 3/2}.

We note that if r ≥ 3, then

(10) LCT(f1, . . . , fr) ⊆ {(λ1, . . . , λr) ∈ [0, 1]r | λ1 + · · · + λr ≤ 2},

for every nonzero f1, . . . , fr ∈ (x, y). Indeed, we see by considering the exceptional
divisor E on B above that if lct(fλ1

1 · · · fλr
r ) ≥ 1, then

∑
i λi ≤

∑
i λi · ordE(fi) ≤ 2.

We also observe that if f1, . . . , fr are general linear forms, then π : B → X gives a log
resolution of (X, (f1 · · · fr)), and we see that in this case we have equality in (10).
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