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DEPTH OF COHOMOLOGY SUPPORT LOCI FOR

QUASI-PROJECTIVE VARIETIES VIA ORBIFOLD PENCILS

E. ARTAL BARTOLO, J.I. COGOLLUDO-AGUSTÍN AND A. LIBGOBER

Abstract. The present paper describes a relation between the quotient of
the fundamental group of a smooth quasi-projective variety by its second com-
mutator and the existence of maps to orbifold curves. It extends previously
studied cases when the target was a smooth curve. In the case when the quasi-
projective variety is a complement to a plane algebraic curve this provides new
relations between the fundamental group, the equation of the curve, and the
existence of polynomial solutions to certain equations generalizing Pell’s equa-
tion. These relations are formulated in terms of the depth which is an invariant
of the characters of the fundamental group discussed in detail here.

1. Introduction

Let X be a smooth quasi-projective variety and let χ ∈ Hom(π1(X ),C∗) be a
character of its fundamental group. Viewing χ as a rank one local system, one
associates to it the twisted cohomology groups. The purpose of this note is to extend
known relations between holomorphic maps of X onto curves, i.e. holomorphic
pencils, and dimensions of the twisted cohomology H1(X ,χ).

The problem of the existence of holomorphic pencils can be traced back to al-
most one hundred years and in its projective version1 goes back to Castelnuovo,
deFrancis, Catanese, Green-Lazarsfeld, and Simpson (cf. [21] for a list of references).
The quasi-projective case was considered in [3], where the structure of the jumping
subsets of the variety of characters

(1.1) V̊k(X ) := {χ ∈ Hom(π1(X ),C∗) | dimH1(X ,χ) = k}

was studied together with its relation to pencils. In this context, if χ ∈ V̊k(X ) we say
χ has depth k. The characteristic varieties Vk(X ) are defined analogously to V̊k(X ),
but replacing = by ≥ in (1.1). This term was introduced in [20] for complements
to plane curves and explicitly related to the structure of the fundamental group
in [17, 20]. To be more precise, the characteristic varieties referred to above can be
described as the zero sets of the Fitting ideals of the abelianization π′

1/π
′′
1 of the

commutator of π1, which coincide with the jumping loci (1.1) outside of the trivial
character (see Theorem 2.3). In particular, the characteristic varieties (unlike the
jumping sets for the higher cohomology spaces) depend only on the fundamental
group. Fox calculus provides an effective method for calculating the characteristic
varieties in the cases when a presentation of the fundamental group by generators
and relators is known.

The results of [3] are as follows: each Vk(X ) ⊂ Hom(π1(X ),C∗) is a finite union
of translated subgroups (i.e. cosets) of Hom(π1(X ),C∗). Moreover, for each compo-
nent of positive dimension there exists a curve C with negative Euler characteristic
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such that this component has the form ρ · f∗Hom(π1(C),C∗) for some holomor-
phic map f : X → C. This was supplemented in [21] by showing that the zero-
dimensional components have finite order.

A more precise version of this result can be found in [7] in terms of orbifolds. It
includes some missing points regarding resonant conditions and extends the result
from V1(X ) to all characteristic varieties Vk(X ), k ≥ 1.

If X is a complement to a plane projective curve, the target C of a holomorphic
pencil mentioned above must be necessarily C = P1 \ {points} and thus f extends
to a rational pencil on P2. In this case, positive dimensional translated components
ρ · f∗Hom(π1(C),C∗) of V1(C) have been shown (see Dimca [13]) to be related to
the multiple fibers of such a pencil, see also [7].

For a generic non-isolated character χ ∈ Vk(C) in a component of Vk(C) of
dimension greater than one, the following formula for its depth holds:

(1.2) dimH1(C,χ) =

{

dimVk(C) − 2 = −e(C) if C is compact

dimVk(C) − 1 = −e(C) otherwise,

where e(C) is the (topological) Euler characteristic of C.2

This provides a simple way to determine or at least to estimate the depth of
characters on components having a positive dimension.

Isolated points in components Vk(X ) are common occurrence and below we de-
scribe the geometric significance of the depth of zero dimensional irreducible com-
ponents of Vk(X ). We do so using orbifold pencils associated with such characters
(as was mentioned, such characters must have a finite order).

It is worth mentioning that the nature of the cohomology of local systems is
essentially different depending on whether H1(X̄ ,C) is trivial or not. In the latter
case, due to the surjection π1(X ) → π1(X̄ ) → 1, some of the characters of π1(X )
are the characters of the projective fundamental group (cf. [28] for a discussion on
the difference between the projective and the quasi-projective case). In this paper
(as in [3]) we shall focus on the case when H1(X̄ ,C) = 0. This includes the case
of the complements to plane curves which provides many concrete and interesting
examples.

For the basics on the theory of orbifolds we refer to [2] or, since we shall consider
mainly orbifold curves, to [26] or [14]. An orbifold pencil is a (birational) dominant
map X → C, where C is the orbicurve such that the preimage of each point in C
with stabilizer of order m is a multiple fiber of order a multiple of m. A proof of
this lemma can be found in [7].

Lemma 1.1. An orbifold pencil f : X → C defines a morphism of orbifold funda-
mental groups f∗ : π1(X ) → πorb

1 (C).

We call (cf. Definition 4.7) the map described in the previous lemma a marked
orbifold pencil f : X → C. The markings are given by the pairs (X ,χ),χ ∈ Vk(X ),
and (C, ρ), ρ ∈ V orb

k (C) such that f∗(ρ) = χ, where f∗ is the map of groups of
characters corresponding to f∗. Note that V orb

k (C) is the orbifold characteristic
variety of C defined as Vk in (1.1) for πorb

1 (C), which only depends on the group, as
mentioned above.

A pair (X ,χ) can be marked by several orbifold pencils and we show that the
number of such markings is related in an appropriate sense to the depth (cf. The-
orem 1.2 below and section 4.3).

The relation between orbifold pencils and local systems with non-vanishing co-
homology was studied in [10]. In this paper, the problem of finding a bound on

2For example, if C = P1 \ {n points}, then dim(H1(C,C∗)) = n − 1 and dim(H1(C,χ)) =
−e(C) = n− 2, if χ is non-trivial.
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the degree of the Alexander polynomial is discussed for plane curves with cusps
and nodes as the only singularities (or curves with singularities in a more general
class of δ-essential singularities). The connection with the cohomology of local
systems is coming from the following: For an irreducible curve D in P2 one has
H1(P2 \D,Z) = Z/degDZ i.e. Hom(π1(X ),C∗) = µdegD and if χξ corresponds to
ξ ∈ µdegD then:

(1.3) ∆(ξ) = 0 ⇒ dimH1(P2 \D,χξ) ≠ 0.

The key step in [10] for obtaining the bound on the degree of the Alexander polyno-
mial (or equivalently the multiplicity of the root exp(2πi6 )) was to show the following:

Theorem 1.2. The degree of the Alexander polynomial of a curve D having cusps
and nodes as the only singularities coincides with the number of independent orbifold
pencils P2 → P1

2,3,6 such that D is the preimage of the orbifold point having the cyclic
group of order six as the stabilizer. This number of independent pencils equals the
rank of the group of quasitoric relations

(1.4) u2 + v3 = w6F,

where F = 0 is a defining equation for D.

Theorem 1.2 can also be extended to general Alexander polynomials and non-
reduced curves.

One of the main results of this paper is the following theorem (proven in sec-
tion 4.3) providing the relations between orbifold pencils and depth. It shows that
the number of independent pencils (with a given target) provides a lower bound
for the depth of a character. Moreover, for an interesting class of characters this
bound is exact.

Theorem 1.3. Let X be a quasi-projective manifold together with a character χ.

(1) Assume that there are n strongly independent marked orbifold pencils with a
fixed target (C, ρ) and let d(ρ) denote the depth of the character ρ of πorb

1 (C).
Then d(χ) ≥ nd(ρ).

(2) If in addition χ is a 2-torsion character and two is its only weight (cf. 2.8 for
a definition of weights of a character), then there are exactly d(χ) strongly
independent orbifold pencils on X whose target is the global Z2-orbifold
C = C2,2. These pencils are marked with the non-trivial character ρ of
πorb
1 (C2,2) characterized by the condition that it extends to P1

2,2.

Moreover, if χ is a d-torsion character, then (1) implies that φd(t)nd(ρ)|∆X,χ(t)
and (2) implies that d(χ) is the multiplicity of φ2(t) = (t+1) as a factor of ∆X,χ(t),
where φk(t) denotes the cyclotomic polynomial of order k.

See sections 4.1, 4.2, and 5.1 for the required definitions. The Hodge theoret-
ical condition on χ of having two as its only weight, can be characterized as the
requirement of the equality of the first Betti numbers of both the double cover
of X defined by χ and its smooth compactification; see Theorem 5.1 for another
characterization. We specialize these results to the case of complements to plane
curves in section 5. The group π1(P2 \ D) is closely related to its central exten-
sion π1(C2 \D) where C2 is obtained from P2 by deleting a generic line at infinity.
In this case the group of characters is (C∗)r where r is the number of irreducible
components. The properties of the characters lying on coordinate components are
essentially different and in section 5.1 we give a Hodge theoretical characterization
of coordinate essential characters.

In the case of plane curves the orbifold pencils correspond to solutions of certain
equations over the function field C(x, y). For example, as mentioned in Theorem 1.2,
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the depth of characters of order 6 is related to the number of independent polyno-
mial solutions in u, v, w of the quasitoric equation u2 + v3 = w6F of type (2, 3, 6).
This also can be used to relate the cohomology of the Milnor fiber of arrangements
of lines with triple points and solutions to the Catalan equation (cf. [22]).

A similar result for characters of order two is shown in section 5.2. LetD ⊂ P2 be
a projective plane curve, XD := P2 \D its complement, and χ a 2-torsion character
on π1(XD). Denote by Q(D,χ) the set of (2, 2, 0)-quasitoric relations associated
to χ, that is,

(1.5) Q(D,χ) := {(f, g, h, U, V ) ∈ C[x, y, z]5 | fU2−gV 2 = h, f ·g = F, hred|H}/ ∼,

where D := {FH = 0}, χ is ramified exactly along F = 0 (see Definition 5.8) and
∼ is the appropriate equivalence relation. Then

Theorem 1.4. The set of (2, 2, 0)-quasitoric relations Q(D,χ) has a structure of a
finitely generated abelian group and

rankQ(D,χ) ≤ d(χ).

Moreover, if XD and χ satisfy the conditions of Theorem 1.3(2), then

rankQ(D,χ) = d(χ).

We refer to section 5.2 for the exact definition of Q(D,χ) and the equivalence ∼
among quasitoric relations. This result is illustrated both in section 6 of this paper
and in [6] with several non-trivial examples aiming to describe a calculation method
for the group structure of Q(D,χ).

Finally, we note that there is a surprising connection between the polynomial
equations considered in (1.5) and the Pell equations over the field of rational func-
tions C(x, y). Investigations of the Pell equations

(1.6) u2 − f(x)v2 = 1

over the function field C(x) apparently go back to Abel [1] (cf. [24]). More recently,
the equation (1.6) over k[x] was considered by F.Hazama in [15], [16] where a group
structure closely resembling the one described in Theorem 1.4 also appeared. A
more detailed study of this connection is out of the scope of this note, but will
appear elsewhere.

2. Preliminaries

2.1. Characteristic varieties.
Recall the basic definitions and results related to characteristic varieties and

homology of covering spaces. We will follow the original exposition given in [20],
but rephrase it in a more general setting.

Throughout this section X will be considered a topological space of finite type
(that is, X has the homotopy type of a finite CW -complex), π′

1(X) ⊂ π1(X) be
the commutator of the fundamental group. We shall assume that π1(X)/π1(X)′ =
H1(X,Z) is a free abelian group of rank r. Basic examples are the complement
to plane algebraic curves in C2 with r components and links in a 3-sphere with r
components.

Consider the torus of characters of π1(X) i.e.

(2.1) Char(X) := Hom(π1(X),C∗).

Alternatively, since Char(X) depends only on π1(X) we refer to it as Char(π1(X)).
This torus is canonically isomorphic to the spectrum SpecC[H1(X,Z)] = (C∗)r

of the group ring of abelianized π1(X). Let Xab → X be the universal abelian
cover i.e. the covering with the group H1(X,Z). The group H1(X,Z) acts on Xab

as a group of automorphisms and this provides H∗(Xab,C) with a structure of a
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C[H1(X,Z)]-module. Recall that with each R-module M over a commutative ring
R one associates the support which is the subvariety of SpecR consisting of the
prime ideals p such that the localization Mp does not vanish.

Definition 2.1. The characteristic variety Vk(X) is the subvariety of the torus

Char(X) = SpecC[H1(X,Z)] given as the support of the module
∧k(H1(Xab,C))

(the exterior power of the homology module). Alternatively, Vk(X) can be given
as the zero set of the k-th Fitting ideal of H1(Xab,C), that is, the ideal generated
by the (n− k)× (n− k) minors of the matrix Φ with coefficients in C[π1(X)] of the
map Φ:

(2.2) C[π1(X)/π′
1(X)]m C[π1(X)/π′

1(X)]n H1(Xab,C) 0.
Φ

We denote by V̊k(X) the set of the characters in Vk(X) which do not belong to
Vj(X) for j > k. If a character χ belongs to V̊k(X), then k is called the depth of χ
and denoted by d(χ). 3

The following expresses the homology of finite abelian covers in terms of the
depth of characters of π1. The argument follows closely the one given in [19]
and [20], but we will present some details here since the statement of Theorem 2.2
is in a more general context than in the references above. See also [8, 17, 25].

Theorem 2.2. Let X be a finite CW -complex, let H be subgroup of π1(X) of finite
index containing the commutator π1(X)′ and let K := π1(X)/H.

Let iH : Char(K) → Char(X) be the embedding of the character varieties induced
by the surjection π1(X) → K. Let XH be the covering of X corresponding to the
subgroup H.

Then

(2.3) b1(XH) = b1(X) +
∑

ξ∈Char(K)\{1}

d(iH(ξ)).

Proof. Consider the five term exact sequence corresponding to the spectral se-
quence:

(2.4) Ep,q
2 = Hp(L,Hq(Xab,C)) =⇒ Hp+q(XH ,C)

which is the spectral sequence for the free action of the group L := H/π′
1(X) on

the universal abelian cover Xab. It yields:

(2.5) H2(L,C) H1(Xab)L H1(XH) H1(L,C) 0

(subscript in second left term denotes covariants). Next, after taking the tensor
product of sequence (2.2) with the group ring C[H/π′

1(X)] = C[L], using for a
C[L]-module M the identification of the covariants MC[L] with M ⊗C[L] C applied
to the second term in 2.5 and finally using the isomorphism:

(2.6) (C[π1(X)/π′
1(X)])s ⊗C[L] C=(C[π1(X)/π′

1(X)]/IC[L])
s=(C[K])s

(here IC[L] is the augmentation ideal) one obtains:

(2.7) C[K]m C[K]n H1(Xab,C)L 0

Since SpecC[K] has a canonical identification with Char(K) and the dimension
of the cokernel of the left homomorphism in (2.7) is the sum of cokernels of lo-
calizations of (2.7) at the maximal ideal of ξ ∈ Char(K) ⊂ Char(X), the dimen-
sion of cokernel in (2.7) is equal to

∑

ξ∈Char(K) d(iH(ξ)). To conclude the proof

3cf. Theorem 2.3 for comparison of this definition and comments after (1.1)
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we will show that contribution of the character ξ = 1 in the last sum is equal
to the dimension of the image of the left homomorphism in (2.5) and that the
right term in (2.5) is equal to b1(X). Indeed, since b1(X) = rankπ1(X)/π′

1(X),
dimH1(L,C) = rankL and the group K is finite the second claim follows. The
first one follows from consideration of the commutative square obtained by tak-
ing morphism of the sequence (2.5) into similar five term sequence replacing H by
π1(X):

(2.8)

H2(L,C) H1(Xab)L

H2(π1(X)/π′
1(X),C) H1(Xab)π1(X)/π′

1
(X).

The left vertical arrow is isomorphism (again since K is finite) and the right vertical
arrow is surjection which is the isomorphism over the contribution of the trivial
character in H2(L,C). Hence the identity (2.3) is verified. !

Definition 2.1 allows algorithmic calculation of the characteristic varieties (using
Fox calculus) provided a presentation of the fundamental group is known. See for
example [6, 29] for explicit cases of such calculations.

On the other hand one has the following interpretation using local systems ([17,
20]). Recall that a (rank n) local system is a (n-dimensional) linear representation
of the fundamental group π1(X). For treatment of the local systems and their
cohomology we shall refer to [11].

A topological definition of the cohomology of rank one local systems can be given
as follows. If X is a finite CW -complex, χ is a character of π1(X) and Xab is the
universal abelian cover, then one can define the twisted cohomology Hk(X,χ) as
the cohomology of the complex:

(2.9) . . . −→ Ck(Xab)⊗C[H1(X,Z)] Cχ
∂k⊗1−→ . . .

where Ck(Xab) is the C-vector space of i-cochains of Xab considered as a module
over the group ring of H1(X,Z) and the Cχ is the one dimensional C-vector space
with the C[H1(X,Z)]-module structure given by the character χ. If X is a smooth
manifold, H∗(X,χ) has a de Rham description (cf. [11]). The homology of a local
system can be described using the dual chain complex. We have the following:

Theorem 2.3. If χ ≠ 1, then

(2.10) d(χ) = dimH1(X,χ).

The connection with the cohomology of local systems allows one to apply general
techniques on cohomology with twisted coefficients, which yield the following results
on the structure of characteristic varieties:

Theorem 2.4 ([3]). Each Vk(X) is a finite union of cosets of subgroups of Char(X).
Moreover, for each component V of Vk(X) having a positive dimension there is a
map f : X → C where C is a quasi-projective curve such that V is a coset of the
subgroup f∗H1(C,C∗) ⊂ Char(X).

Theorem 2.5 ([7]). Let V be an irreducible component of Vk(X). Then one of the
two following statements holds:

(1) There exists an orbicurve C, a surjective orbifold morphism f : X → C and
an irreducible component W of V orb

k (C) such that V = f∗(W ).
(2) V is an isolated torsion point not of type (1).

Recall the definition of V orb
k after Lemma 1.1 and see section 4.1 for more details

on V orb
k (C) for orbicurves.
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2.2. Alexander polynomial associated with a character.
A specialization of the characteristic variety of a topological space X of finite

type to a special character of its fundamental group G := π1(X) can be defined
and it is a natural generalization of the Alexander polynomial to this context. For
the sake of simplicity, as at the beginning of section 2.1, we shall assume that an
identification G/G′ ∼= Zr was made.

Let X be a finite CW -complex and χ ∈ Char(G) = (C∗)r 4 a torsion character,
that is χ := (ξε1d , . . . , ξεrd ), where ξd is a primitive d-th root of unity, 0 ≤ εi < d,
and d is the order of χ. Note that χ determines naturally an epimorphism ε :
G/G′ = Zr → Z defined as ε(ei) := εi. Let Kε = ker ε, and K ′

ε = [Kε,Kε] be
the commutator of Kε. By the Hurewicz Theorem Mχ := Kε/K ′

ε can be identified
with the homology of the infinite cyclic cover of X corresponding to ε and hence it
can be viewed as a module over the group ring Λ := Q[t±1], where t is a generator
of the Galois group of covering transformations.

Definition 2.6. Let X and χ be as above, then the Alexander polynomial of X
associated with χ is a generator of the order of the module Mχ and will be denoted
by ∆X,χ(t).

The following is a direct consequence of the definition and Theorem 2.3.

Proposition 2.7. Under the above conditions, if χ ≠ 1, then d(χ) is the multi-
plicity of the factor φd(t) in ∆X,χ(t), where φd(t) is the cyclotomic polynomial of
order d.

Proof. Using the same arguments as in [5, Theorem 2.26], the polynomial ∆X,χ is
the order of the torsion of

(G′/G′′ ⊗Q)⊗Λ Λ/(t1 − tε(γ1), . . . , tr − tε(γr)),

therefore d(χ) is the multiplicity of ξd as a root of ∆X,χ. Since ∆X,χ ∈ Q[t], the
result follows. !

2.3. Weight of a character.
Now let us assume that X is a smooth quasi-projective variety and let χ ∈

Char(X) be a character of finite order. Let Xχ be the covering space corresponding
to kerχ ⊂ π1(X). Then H1(Xχ) supports a mixed Hodge structure with weights
1, 2 (cf. [12]). The cyclic group Im(χ) acts (freely) on Xχ preserving both the Hodge
and weight filtration.

Definition 2.8. An integer w is called a weight of a character χ if the χ-eigenspace
of a generator g of Im(χ) acting on GrWw H1(Xχ) has a positive dimension. Sim-
ilarly, p is called a Hodge filtration of χ if the χ-eigenspace of automorphism of
GrpFH

1(Xχ) induced by g has a positive dimension.

The following gives an expression for the weight of a character in terms of finite
coverings with arbitrary Galois groups.

Proposition 2.9. Let XG → X be an abelian cover of X with a finite covering
group G. Let χ ∈ Char(G). Then

(2.11) dim(WwH
1(XG))χ = dimWwH

1(Xχ).

In particular G has non-zero χ-eigenspace on WwH1(XG) iff χ has weight w.

Proof. The argument is similar to the one in the proof of Theorem 2.2. !

Remark 2.10. Note that characters might have either no weights or more than one
weight. In this paper we will be most interested in characters with only one weight,
namely weight 2.

4this identification depends in a choice of generators of H1(X,Z).
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2.4. Essential, non-essential and essential coordinate components.
The constructions described in the previous section can be applied to the case

when X = P2 \
⋃r

i=0 Di, where Di are irreducible curves. In this case H1(X,Z) =
Zr+1/(d1, ..., dr), where di = degDi. If the degree of one of its components, say
D0, is equal to one, i.e. we have the complement to a plane curve in C2, then
H1(X,Z) is a free abelian group of rank r. Let D =

⋃

Di denote the (reducible)
curve in C2 formed by irreducible components Di. One has a preferred surjection
π1(C2 \D) → Zr given by the linking numbers of a loop representing the element
of π1 with the component Di:

γ ,→ (. . . , lk(γ, Di), ... . . .).

This also yields the identification Char(C2 \D) = (C∗)r.
Let D′ be a reducible subcurve of D in C2, that is D′ ⊂ D. Then (cf. [20]) one

has a surjection π1(C2 \D) → π1(C2 \D′) → 1 and hence an embedding

(2.12) iD′ : Char(C2 \D′) → Char(C2 \D).

The image of iD′ is formed by the factors of (C∗)r corresponding to the components
of D′. Moreover it was shown in [20] that if χ ∈ Vk(C2 \ D′) then iD′(χ) ∈ Vj

with j ≥ k.

Definition 2.11 ([20]). The components of the characteristic variety Vk(D) ob-
tained as the image of a component of Vk(D′) are called non-essential. A component
of Vk is called coordinate if it belongs to iD′(Char(C2 \D′)) for some D′ ! D.

Given a surjection π1(C2 \
⋃

Ck) → G := Za1
⊕ · · ·⊕ Zam

(for m ≤ r), one can
construct the unbranched covering spaceXa1,...am

corresponding to the kernel of the
above surjection of the fundamental group. Moreover, there is a compactification
of this unbranched cover and its morphism to P2 extending the covering map.
Though this compactification (branched cover) is non-unique, its birational class
is well defined. In particular the first Betti number of this branched cover is well
defined. A compactification X̄a1,...am

can be selected so that it supports a G-action
extending the action of G on Xa1,...am

. A calculation of H1(X̄a1,...am
,C) as a G-

module is given by the following:

Theorem 2.12 ([25]). For each character χ of G = Za1
⊕ ...⊕ Zam

let

(2.13) Wχ := {v ∈ H1(X̄a1,...am
,C) | g · v = χ(g)v for any g ∈ G}

be the eigenspace of G-action corresponding to the character χ. Let Dχ be the union
of components of D over which the character χ is unramified 5. Then dimWχ is
equal to the depth of χ considered as the character of π1(C2 \Dχ).

This theorem was used in [20] to describe essential components of π1(C2 \D) in
terms of combinatorics of singularities of D and the superabundances of the linear
systems of curves given by the local type of singularities, their position on P2 and
the degree of D.

3. Albanese varieties of smooth quasi-projective varieties.

Recall (cf. [27]) that given a projective varietyX there is a canonically associated
abelian variety Alb(X) and the map X → Alb(X) (unique up to a choice of the
image of point in X) is universal with respect to the maps into abelian varieties,
i.e. given an abelian variety A and a morphism X → A there is a unique (up to
ambiguity as above) factorization X → Alb(X) → A.

5a character χ ∈ H1(C2 \ D) is unramified along a component Di ⊂ D if for the boundary
γi ∈ H1(C2 \D) of a small disk transversal to Di one has χ(γi) = 1. The characters of π1(C2 \D)
unramified along Di can be identified with the characters of π1((C2 \D) ∪Di).
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This construction can be extended to the quasi-projective case so that the Al-
banese variety is a semiabelian variety which is universal with respect to the mor-
phisms into algebraic groups. For example one can use Deligne’s construction of
1-motif associated to the mixed Hodge structure on cohomology H1(X) of smooth
quasi-projective variety (cf. [11]). More precisely one has the following:

Theorem 3.1. Let X be a quasi-projective variety which is a complement to a
divisor with normal crossings in a smooth projective variety X̄.

(1) Then one has exact sequence:

(3.1) 0 → A → Alb(X) → Alb(X̄) → 0

where A is an affine abelian algebraic group isomorphic to a product of Gm.
Alb(X) depends on X functorially i.e. a morphism X1 → X2 induces the
homomorphism Alb(X1) → Alb(X2).

(2) If Γ is a finite group of biholomorphic automorphisms then the sequence
(3.1) is compatible with the action of Γ.

An explicit construction can be given as follows (cf. also [18]). Let X̄ , as above,
be a smooth compactification of X such that X̄ \ X = D =

⋃

Di is a union of
smooth divisors having normal crossings. Then:

(3.2) Alb(X) = H0(X̄,Ω1
X̄(logD))∗/H1(X,Z),

where the embedding of H1(X,Z) as a lattice is given by γ(ω) :=
∫

γ(ω). The
Albanese map is given by

(3.3) P ,→
∫ P

P0

ω

(here P0 is a fixed point on X). The integral (3.3) depends (modulo periods of ω)
only on the end points of the path since a holomorphic logarithmic form is closed
(cf. [11]). One has the commutative diagram:
(3.4)

0 ker
(
⊕

iH
0(ODi

) → H1(Ω1
X̄
)
)∗

H0(Ω1
X̄
(logD))∗ H0(Ω1

X̄
)∗ 0

0 coker
(

H2(X̄,Z) →
⊕

i H0(Di,Z)
)

H1(X,Z) H1(X̄,Z) 0

In this diagram the upper row is dual to the exact cohomology sequence corre-
sponding to the sequence of sheaves given by the residue map (cf. [11, (3.1.5.2)];
below j : Di → X̄):

(3.5) 0 → Ω1
X̄ → Ω1

X̄(logD)
⊕

i ResDi−→
⊕

i

j∗ODi
→ 0.

The lower row is the exact sequence of the pair (X̄,X) in which we used the
identification:

(3.6) H2(X̄,X,Z) = H2 dimD(D,Z) =
⊕

i

H2 dimD(Di,Z) =
⊕

i

H0(Di,Z).

One verifies that all vertical arrows are injective and the image of each provides
the lattice in the corresponding complex vector space in the upper row. The rank
of the lattice which is the image of the right (resp. left) vertical row is equal to the
real (resp. complex) dimension of the target6. In the case of the left arrow, one

6Note that the fact that one uses the real dimension of H0(Ω1
X̄
) is that rankH1(X,Z) =

dimC H1(OX̄) + dimH0(Ω1
X̄
(logD)) which follows from the degeneration of the Hodge-deRham

spectral sequence in the E1-term.
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uses that the dual map to H2(X̄,C) →
⊕

iH0(Di,C) factors as
⊕

i

H0(Di,C) → H1,1(X̄) → H2(X̄,C).

Hence the quotient of the right (resp. left) injection is a complex torus (resp. affine
algebraic group isomorphic to a product of several copies of C∗). This complex
torus is isomorphic to the Albanese variety of X̄ by the classical construction. The
remaining assertions of the Theorem 3.1 follow from the description of the Albanese
map given by (3.3).

Finally note that Theorem 3.1 implies the following:

Corollary 3.2. Let φ be an involution of X, φ∗ be the corresponding automorphism
of Alb(X). Let Alb(X)− = {v ∈ Alb(X) | iφ∗(v) = −v} and Alb(X)+ = {v ∈
Alb(X) | iφ∗(v) = v}. Then one has an isogeny:

(3.7) Alb(X) = Alb(X)− ⊕ Alb(X)+

4. Orbifold pencils and characters of fundamental groups of
quasi-projective manifolds

4.1. Orbicurves.

Definition 4.1. An orbicurve is a complex orbifold of dimension equal to one 7.
An orbicurve C is called a global quotient if there exists a finite group G and a
manifold C such that C is the quotient of C by G with standard orbifold structure.

A marking on an orbicurve C (resp. a quasi-projective variety X ) is a character
of its orbifold fundamental group 8 (resp. its fundamental group) that is, an element
of Charorb(C) := Hom(πorb

1 (C),C∗) (resp. Char(X)) (warning: this terminology is
different from the one used in [2]).

A marked orbicurve is a pair (C, ρ), where C is an orbicurve and ρ is a marking
on C. More generally, one defines amarked quasi-projective manifold as a pair (X,χ)
consisting of a quasi-projective manifold X and a character of its fundamental
group. From now on, all characters used as marking below will be assumed to have
a finite order.

A marked global quotient is a marked orbicurve (C, ρ) such that if C \R → C \R
is the unbranched cover corresponding to the global quotient C → C, with R being
the set of fixed points of non-identity elements of the covering group and R being
its image (or equivalently the set of orbifold points), then one has

(4.1) π1(C \R) = ker(π1(C \ R) → πorb
1 (C) ρ→ C∗)

In other words, the above cover C \R → C \ R is the cover of the minimal degree
over which ρ becomes trivial.

Remark 4.2. The above existence condition for a marking on a global quotient
implies that the quotient map over the regular part of the orbifold is a cyclic cover.
More precisely, the covering group of the cover of the regular part of the orbifold
via ρ can be identified with Im(ρ) ⊂ C∗ i.e. ρ can be viewed as a character of the
covering group. If d is the order of this covering group then the number of possible
markings is equal to the value of the Euler function φ(d).

7i.e. a smooth complex curve with a collection R of points (called the orbifold points) with a
multiplicity assigned to each point in R. The complement to R is called the regular part of the
orbifold.

8Recall (cf. [2]) that the orbifold fundamental group πorb
1 (C) of an orbifold C is defined as the

quotient π1(C \ R) by the normal closure of the elements γm(pi)
pi where m(pi) is the multiplicity

of an orbifold point pi and γi is a meridian of pi.
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Definition 4.3. Let C be a global orbifold quotient and ρ a marking. Let R be
the set of orbifold points and C \R → C \R be the quotient map with the covering
group G. The integer

(4.2) d(ρ) = dim{v ∈ H1(C \R,C) | g · v = ρ(g)v, g ∈ G}

is called the depth of a character ρ of the orbicurve C.

Example 4.4. Let Cn,n be the orbifold supported on C with two orbifold points
of multiplicity n. We shall identify C with P1 \ {[1 : 1]} so that the orbifold points
correspond to [0 : 1], [1 : 0]. This is the global quotient of a smooth curve C by
the cyclic group Z/n where C is the complement in P1 to the set S := {[ξin : 1] |
i = 0, 1 . . . , n − 1} of n points (here ξn is a primitive root of unity of degree n)
and the global quotient map is the restriction on the complement to S of the map
P1 → P1 given by z ,→ zn. We have πorb

1 (Cn,n) = Z/n ∗ Z/n. Such free product
decomposition implies that V orb

1 (Cn,n) = µn × µn, where µn is the multiplicative
cyclic group of order n. Consider a character ρ ∈ V orb

1 (Cn,n) taking values ζ, ζ−1

on respective generators of this direct sum where ζ is a primitive root of unity. It
follows that if π1(P1\{[1 : 0], [1 : 1], [0 : 1]}) → πorb

1 (Cn,n) is the canonical surjection
(in the above identification of C and P1 so that the point at infinity corresponds
to [1 : 1]), then the pullback of ρ takes values ζ, 1, ζ−1 on generators corresponding
to [1 : 0], [1 : 1], [0 : 1]. In particular the covering space corresponding to such ρ is
P1 \ S and the dimension of the ρ-eigenspace is equal to one.

4.2. Orbifold pencils.

Definition 4.5. Let X be a quasi-projective manifold and C be an orbicurve. A
holomorphic map φ between X and the underlying C complex curve is called an
orbifold pencil if the index of each orbifold point p divides the multiplicity of each
connected component of the fiber φ∗(p) over p.

Remark 4.6. Note that this definition implies that if Γi is the boundary of a small
disk normal to φ−1(pi) at its smooth point then φ(Γi) belongs to the subgroup of

π1(C \ pi) generated by γm(pi)
i . In particular an orbifold pencil induces the map

π1(X ) → πorb
1 (C).

Definition 4.7. Let X be a quasi-projective variety, C be a quasi-projective curve
and C be an orbicurve which is a global quotient of C. A global quotient orbifold
pencil is an orbifold pencil φ : X → C such that there exists a morphism Φ : XG →
C, where XG is a quasi-projective manifold endowed with an action of the group
G which makes the diagram:

(4.3)

XG C

X C

Φ

φ

commutative, for which the vertical arrows are the quotients by the action of G.
If, in addition, (X ,χ) and (C, ρ) are marked, then the global quotient orbifold

pencil φ : X → C is marked if χ = φ∗(ρ) where φ∗ : Charorb(C) → Char(X ) is the
homomorphism dual to the surjection φ∗ : π1(X ) → πorb

1 (C) corresponding to the
orbifold map φ. We will refer to the map of pairs φ : (X ,χ) → (C, ρ) as a marked
global quotient orbifold pencil in (X ,χ) of target (C, ρ).

Remark 4.8. Consider R the collection of non-manifold points in C and F = φ−1(R)
the collection of multiple fibers corresponding to φ. The orbifold relation χ = φ∗(ρ)
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takes place if and only if the following holds:

(4.4) χ̂ = i∗(χ) χ̂ = φ̂∗(ρ̂) ρ̂ = p∗(ρ),

for the map of open manifolds φ̂ : X \ F → C \ R, induced by φ, where i : X \
φ−1(R) → X is the embedding and p : π1(C \ R) → πorb

1 (C) is the canonical
projection.

Lemma 4.9. Let X be a quasi-projective manifold, C a marked global quotient with
marking ρ ∈ Charorb(C). If φ : X → C is an orbifold map such that χ = φ∗(ρ)
then φ is a global quotient orbifold pencil i.e. φ can be extended to a commutative
diagram (4.3).

Proof. Let, as above, πG : XG → X be the covering space corresponding to kerχ ⊂
π1(X ). Since, as follows from Remark 4.8, χ̂ = φ̂∗(ρ̂) one has the commutative
diagram:

(4.5)

XG \ π−1
G (F ) C \R

X \ F C \ R

Φ

i∗(πG)

φ

where i∗(πG) is the restriction of πG onto XG \ π−1
G (F ). We have to verify that

Φ extends to the map XG → C i.e. that is any pair of small loops Γ̃P , Γ̃′
P ∈

π1(XG \ π−1
G (F )) about points P, P ′ in a connected component F ′ of π−1

G (F ) is
mapped by Φ into a pair small loops δ̃, δ̃′, about the same point in R ⊂ C. The
images of loops δ̃, δ̃′ in C \ R are homotopic and hence they will be homotopic
in C \ R iff δ̃−1 · δ̃′ belongs to the subgroup of π1(C \ R) generated by δm (since
preimages of points of R in C correspond to cosets in the covering group of C \R
over C \ R of the subgroup generated by the image of δm). So we claim that
φ∗ ◦ (i∗(πG))∗(Γ̃P ),φ∗ ◦ (i∗(πG))∗(Γ̃P ′) belong to the same coset of (δm). Indeed,
since P, P ′ belong to a connected curve F ′, (i∗(πG))∗(Γ̃

−1
P Γ̃′

P ) ∈ π1(∂F ) where ∂F
is the boundary of a small neighborhood of a component of F . Since one has an
exact sequence (Γ) → π1(∂F ) → π1(F ) → 0, where Γ is a small loop about the
component of F , and the image of a lift into ∂F of a loop in a component of F
is trivial in C, the image of π1(∂F ) in π1(C) belongs to the subgroup generated
by φ∗(Γ) = δm and hence images of Γ̃P , Γ̃P ′ are in the same coset of δm as was
claimed. !

Remark 4.10. The key point in the above argument is that images of ΓP ,ΓP ′ are
the same in πorb

1 (C) and that the covering group of C \ R → C \ R is the quotient
of the latter.

Definition 4.11. Global quotient orbifold pencils φi : (X ,χ) → (C, ρ), i = 1, ..., n
are called independent if the induced maps Φi : XG → C constructed in Lemma 4.9
define Z[G]-independent morphisms of modules

(4.6) Φi∗ : H1(XG,Z) → H1(C,Z).

In addition, if
⊕

iΦi∗ : H1(XG,Z) → H1(C,Z)n is surjective we say that the
pencils φi are strongly independent.

Remark 4.12. Note that if either n = 1 or H1(C,Z) = Z[G], then independence is
equivalent to surjectivity of

⊕

iΦi∗ ⊗ Q since the matrix of the latter has as its
columns the vectors corresponding to Φi∗.

This definition is motivated by the following:
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Proposition 4.13. Let C be an orbicurve which is a global G-quotient of the alge-
braic group A = C∗. The global quotient orbifold pencils φi : X → C, i = 1, ..., r on
a global quotient orbifold X = XG/G such that the first Betti number of a smooth
compactification of XG is zero, are independent in the sense of Definition 4.11 if
and only if they define Z-independent elements of the abelian group MorG(XG,A)
of equivariant morphisms.

Proof. Note that MorG(XG,C∗) = HomG(Alb(XG),C∗) by the universal property
of maps from Albanese into an algebraic group. The assumption on the first Betti
number of compactification of XG yields that Alb(XG) is a torus of dimension
b1(XG). Also HomG(Alb(XG),C∗) = Hom(H1(XG;Z), H1(C∗;Z)) holds equivari-
antly and the claim follows. !

Remark 4.14. In [10] it was shown that the Proposition 4.13 is also true for special X
in cases when A is a certain elliptic curve (depending on the Alexander polynomial
of X ). This is so if X is the complement of a cuspidal curve C in P2. In this case
MorG(XG,A) can be identified with the Mordell-Weil group of K-points of the
elliptic curve over C admitting an automorphism of order 6 where K is the field of
rational functions on the 6-fold cover of P2 ramified along the curve i.e. the degree
six extension of C(x, y). This is also the case for δ-curves discussed in [10].

On the other hand, in the case of orbifolds with a trivial orbifold structure there
are very few marked orbifold pencils.

Lemma 4.15. Let φi : (X ,χ) → (C, ρ) be a collection of strongly independent
marked pencils. Assume that C has the trivial orbifold structure. Then ρ = 1 and
hence χ = 1.

Proof. Consider the map (...,φi, ...) : X → Cn induced by pencils φ. Independence
implies that the induced map H1(X ) → H1(Cn) is surjective and hence the dual
map of cohomology is injective. If pi : Cn → C is the projection on the i-th factor,
then p∗i (ρ) = (..., ρ, ...) (the non-identity component is on the i-th coordinate). The
compatibility condition together with the injectivity ofH1(C,C∗) → H1(X ) implies
that p∗i (ρ) = π∗

j (ρ) and hence ρ = 1. !

Lemma 4.16. Let φ be a marked orbifold pencil of (X ,χ) with target (C, ρ) having
connected fibers. If C is a global quotient of a curve C then φ is a marked global
quotient orbifold pencil.

Proof. Let, as above, X̄ denotes a smooth compactification of X . Let R ⊂ C be
the set of non-manifold points. The map π1(X \ φ−1(R)) → π1(C \R) is surjective
since the fibers of φ are connected. Let K be the kernel of the homomorphism
π1(X \ φ−1(R)) → π1(X ) → µn, where the right homomorphism is the character
χ. Consider X̃ the unbranched cover of X \ φ−1(R) corresponding to K. Extend
it to a branched cover π : X̄ → X̄ and let X := π−1X . Since χ is the image of
ρ ∈ Charorb(C), the map X \ φ−1(R) → C \ R extends to the map of unbranched
covering spaces and thus to the map of branched covering spaces X → C presenting
the pencil φ as the global quotient. !

4.3. Orbifold pencils, depth, and roots of Alexander polynomials.

In this section we shall give a proof of Theorem 1.3.

Proof of Theorem 1.3. In order to prove part (1), let us consider φ1,∗, . . . ,φn,∗,

n strongly independent orbifold pencils. Since H1(XG;Z)
⊕

i Φi,∗−→ H1(C;Z)n is an
equivariant epimorphism, the dual morphism H1(C;Z)nρ → H1(XG;Z)χ is injective
and hence rankH1(C;Z)nρ = nd(ρ) ≤ rankH1(XG;Z)χ = d(χ).
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As for part (2), let χ be a 2-torsion character. We shall apply the formula for the
first Betti number in Theorem 2.2 to the degree-two coveringXχ of X corresponding
to the subgroup kerχ of π1(X ). The sum in (2.3) contains only one term and yields
that d(χ) is the dimension of the χ eigenspace of H1(Xχ,C):

(4.7) d(χ) = {v ∈ H1(Xχ,C) | g · v = χ(g)v}.

Moreover, the action of g ∈ µ2, g ≠ 1 is the multiplication by −1. The action of g
on Alb(Xχ) induces the isogeny Alb(Xχ) = Alb(X)⊕Alb(Xχ)− where the second
summand is the subvariety of Alb(Xχ) of points on which the covering group acts as
multiplication by −1 (cf. Corollary 3.2; note that Alb(Xχ)+ = Alb(X)). Since we
assume that χ has only weight two, Alb(Xχ)− has no compact part. In particular,
by Theorem 3.1,

(4.8) Alb(Xχ)
− = ker(Alb(Xχ) → Alb(X)) = (C∗)d(χ)

and the order two action is given by z ,→ z−1. Therefore the projections give
d(χ) independent equivariant (due to Albanese functoriality) maps Xχ → C∗ Since

MorZ2
(Xχ,C∗) = HomZ2

(Alb(Xχ),C∗) and HomZ2
((C∗)d(χ),C∗) = Hom(Zd(χ),Z),

then rankZ MorZ2
(Xχ,C∗) = d(χ). Each map hence descends to an orbifold pencil

X → C2,2. Since one has the commutative diagram:

(4.9)

Xχ \ π−1
χ (F ) C∗ \ {±1}

X \ F C2,2 \ πρ(±1)

Φ

i∗(πG) πρ

φ

where πχ (resp. πρ) is the projection Xχ → X (resp. C∗ → C2,2). This diagram
induces the isomorphism of order two quotients:

(4.10) π1(X \ F )/π1(Xχ \ π−1
χ (F )) = π1(C2,2 \ πρ(±1))/π1(C

∗ \ {±1})

which shows that the pencils X → C2,2 preserve markings.
Finally, we will check that any such pencil Φ : Xχ → C∗ can be assumed to

have connected fibers and hence the induced morphism Φ∗ on cohomology is sur-
jective, which will imply that the n pencils can be found to be strongly indepen-
dent. Consider the induced orbifold pencil φ : X̄ → P1

2,2 and its Stein factorization
X̄ φ̃→ S

σ̃→ P1
2,2. Since X̄ is a rational surface, one has S = P1 with an orbifold

structure containing at least two orbifold points each locally being quotient by an
order 2 automorphisms. The double cover of S ramified along these two orbifold
points after removing the preimage of the point at infinity by σ̃ induces maps
Xχ

Φ′

→ C∗ σ→ C∗ where Φ = σ ◦ Φ′ and Φ′ has connected fibers.
The moreover part is a direct consequence of Proposition 2.7. !

5. Pencils on the complements to plane curves and zero-dimensional
components of characteristic varieties

5.1. Essential coordinate components and weight.

Essential coordinate components were discovered in [4]. The dimension of the
essential coordinate component is zero since the pencil f : C2\D → C corresponding
to a positive dimensional coordinate component of Vi, can be extended to a map
f̄ : C2\D′ → C with D′ ! C (cf. [20]). It follows from [21] that essential coordinate
characters have a finite order. Now we can give a Hodge-theoretical characterization
of such in terms of weights (cf. Definition 2.8).
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Theorem 5.1. Let X = C2\D be the complement to a plane curve D. A character
in the characteristic variety of π1(X) is essential and coordinate iff it has weight
two.

Proof. Let χ be an essential coordinate character and n be its order. Denote by
Xn the covering space of the complement to the curve corresponding to the surjec-
tion π1(X) → H1(X,Z/nZ). Let X̄n be a smooth model of the compactification
of Xn. Then W1H1(Xn,C) = ImH1(X̄n,C) (cf. [11]). If v ∈ W1H1(Xn,C) is a
χ-eigenvector of H1(X,Z/n) then χ is the eigencharacter of the action on the co-
homology of the branched cover. Since χ is a coordinate character, it follows from
Sakuma’s formula (cf. Theorem 2.12) that χ belongs to the characteristic variety of
the curve D′ with components corresponding to the trivial coordinate of χ. Using
Proposition 2.9, we obtain that essential coordinate characters have weight two.

Conversely, if a character has weight two, then it must be coordinate since by
Theorem 2.12 non-coordinate characters belong to the image of H1(X̄n,C) →
H1(Xn,C) and hence have weight one. This is essential since otherwise Theo-
rem 2.12 would imply that it appears as the eigencharacter of a weight one sub-
space. !

5.2. 2-torsion characters and quasitoric relations.

As a consequence of Theorem 1.3.(2) one has the following interpretation of
depth for coordinate 2-torsion characters in terms of quasitoric relations of type
(2, 2, 0) (cf. [10] for a detailed treatment of quasitoric relations of elliptic type).

Let D ⊂ P2 be a plane curve and let χ be a 2-torsion character of π1(P2 −D)
having two as the only weight (i.e. as in Theorem 5.1). Let S be the collection of
the irreducible divisors of D and let G(S) the subgroup of the group of divisors of
P2 generated by S.

Let us fix a generic line at infinity and identify the coordinate ring of the affine
plane with C[x, y]. An element in C(x, y) is an S-unit (cf.[23]) if it is the quotient
of two polynomials such that the irreducible components of their zero locus belong
to S. This is a multiplicative group denoted by E(S). Note that one has the
identification E(S)/C∗ ∼= G(S).

An S-unit is called primitive if it is a square-free polynomial. The set S splits
into two subsets S = S0 ∪ S1 depending on whether or not χ ramifies along each
divisor, namely, χ(γ0) = 1 (resp. χ(γ1) = −1) for the boundary γ0 (resp. γ1) of a
small disk transversal to any divisor in S0 (resp. S1). Let D1 = ΣD1,i∈S1

D1,i and
D0 = ΣD0,i∈S0

D0,i. Note that D1 has necessarily even degree. In other words, D
admits an equation FH = 0, where (F ) = D1 is a polynomial of even degree and
(H) = D0.

We shall use the following notations:

• C[x, y]E(S) is the localization of C[x, y] at E(S), the group of S-units. Hence
E(S) is the group of units of C[x, y]E(S).

• E(S)+ = E(S) ∩ C[x, y] i.e. E(S)+ is the multiplicative monoid generated
by C∗ and the polynomials in E(S).

• KF := C(x, y)[
√
F ] is the quadratic extension of C(x, y).

• KS := C(x, y)[
√
S], the abelian extension of C(x, y) generated by those

rational multivalued functions whose square has an associated divisor which
is a formal sum in S.

• E(
√
S) is the multiplicative group generated by C∗ and

√
S and E(

√
S)+

is its associated monoid.
• EP (

√
S) is the set of primitive elements of E(

√
S), that is, EP (

√
S)+ :=

{α ∈ E(
√
S) | α2 ∈ E(S)+ is square-free}.
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We have the following inclusions:

C[x, y] ⊂ C[x, y]E(S) ⊂ C(x, y) ⊂ KF ⊂ KS
⊂ ⊂ ⊂

E(S)+ ⊂ E(S) E(
√
S) ⊃ E(

√
S)+ ⊃ EP (

√
S)+.

We consider the following set:

GS := {(ū, v̄) ∈ (KS)
2 | ū2 − v̄2 = 1},

with a group structure given by:

(5.1) (ū1, v̄1) · (ū2, v̄2) := (ū1ū2 + v̄1v̄2, ū1v̄2 + v̄1ū2).

Note that GS is isomorphic to K∗
S via the following map

(5.2)
π : K∗

S → GS

t ,→
(

t+t−1

2 , t−t−1

2

)

.

Also, the map π is equivariant with respect to the automorphisms t ,→ t−1 of K∗
S

and (u, v) ,→ (u,−v) of GS .

Definition 5.2. Let (ū, v̄) ∈ GS . We say that (ū, v̄) is an F -pair if

(1) ū, v̄ ∈ E(
√
S) · C[x, y]E(S) and

(2) there exists a decomposition ū = α · u, v̄ = β · v, for some α,β ∈ E(
√
S)

and u, v ∈ C[x, y]E(S), such that α · β ∈
√
F ·E(S).

A decomposition satisfying (2) is called an F -decomposition of the F -pair.

Remark 5.3. Note that any decomposition ū = α·u, v̄ = β·v, for some α,β ∈ E(
√
S)

and u, v ∈ C[x, y]E(S) of an F -pair is an F -decomposition.

Lemma 5.4. The set G of F -pairs is a subgroup of GS.

Proof. Since (ū, v̄)−1 = (ū,−v̄) it is enough to prove that the condition of F -pair
is preserved by the product. Consider (ū1, v̄1), (ū2, v̄2) ∈ G and let ūi = αi · ui,
v̄i = βi · vi, i = 1, 2, be F -decompositions of these pairs. Hence:

(ū1, v̄1) · (ū2, v̄2) = (α1α2u1u2 + β1β2v1v2,α1β2u1v2 + β1α2v1u2).

For the first coordinate we have

α1α2u1u2 + β1β2v1v2 = α1α2

(

u1u2 + (α1β1)(α2β2)
v1v2
α2
1α

2
2

)

.

Note that α2
i ,αi ·βi ∈ E(S), i = 1, 2, and hence we have a decomposition of this first

coordinate. In a similar way we obtain a decomposition of the second coordinate
where the first factor is α1β2. Since

(α1α2)(α1β2) = α2
1(α2β2) ∈

√
F ·E(S)

the result follows. !

Definition 5.5. Let (ū, v̄) ∈ G be an F -pair and let ū = α · u, v̄ = β · v, be an
F -decomposition of (ū, v̄). This decomposition is said to be normal if:

(1) α = α̃
γ , β = β̃

γ , where α̃, β̃, γ ∈ EP (
√
S)+, gcd(α̃, β̃, γ) = 1.

(2) u = ũ
w , v = ṽ

w , ũ, ṽ ∈ C[x, y], w ∈ E(S)+, gcd(ũ, ṽ, w) = 1.

(3) (α̃β̃)2 = F .
(4) γ2 is a divisor of H .

Remark 5.6. The group C∗ acts on the set of F -normal decompositions via:

λ · (α · u,β · v)
(

(λα) ·
(

λ−1u
)

, (λ−1β) · (λv)
)

This action of C∗ will be referred to as proportionality.
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The following result shows that a normal F -decomposition of an F -pair is almost
determined by the pair.

Lemma 5.7. Any F -pair admits a normal F -decomposition. Moreover, such F -
decomposition is unique (up to proportionality).

Proof. The uniqueness part is straightforward. Let us start with an arbitrary F -
decomposition ū = α · u, v̄ = β · v. We can express for instance α = α̃

γ , where

α̃, γ ∈ E(
√
S)+ have no common factors. Note that an element in E(

√
S)+ is not

primitive if an only if it contains a factor in E(S)+. If α̃ is not primitive, then
α̃ = α̃1u1, where u1 ∈ E(S)+. In that case, one can rewrite ū = ( α̃1

γ̃ )(u1u). One
can assume that both decompositions ū = α · u and v̄ = β · v are such that α
and β have primitive numerators and denominators. Then after taking a common
denominator for α and β (resp. for u and v), we can assume that the decomposition

(5.3)
ū = α · u =

(

α̃
γ

)

·
(

ũ
w

)

,

v̄ = β · v =
(

β̃
γ

)

·
(

ũ
w

)

satisfies (1) and (2).
By Remark 5.3, the decomposition (α · u,β · v) is an F -decomposition and

hence αβ = α̃β̃
γ2 ∈

√
F · E(S). Let σ ∈ EP (

√
S) denote an irreducible ele-

ment. Let us denote by m(σ,α) the multiplicity of σ in the decomposition of α
into irreducible factors. Since α̃, β̃, γ ∈ EP (

√
S)+ one concludes that m(σ, •) ∈

{0, 1} for • = α̃, β̃, γ. Moreover, by condition (2) in Definition 5.2, if σ2|F , then
m(σ, α̃)+m(σ, β̃)−2m(σ, γ) is odd and hence so is m(σ, α̃)+m(σ, β̃). The previous
two conditions imply that:

• m(σ, α̃) +m(σ, β̃)− 2m(σ, γ) = 1,
• m(σ, γ) = 0, and thus
• m(σ, α̃) +m(σ, β̃) = 1.

Hence the second property implies condition (4).
Similarly, if σ2|H , then condition (2) in Definition 5.2, implies that m(σ, α̃) +

m(σ, β̃) − 2m(σ, γ) is even and hence so is m(σ, α̃) +m(σ, β̃). As above, this and
the fact that m(σ, •) ∈ {0, 1} for • = α̃, β̃, γ imply that:

• m(σ, α̃) = m(σ, β̃) = 0 and m(σ, γ) ∈ {0, 1}, or
• m(σ, α̃) = m(σ, β̃) = 1 and m(σ, γ) = 0.

In order to show condition (3) it is enough to prove that the last case can be avoided.
In order to do so we rewrite ū and v̄ as

(5.4)
ū =

(

α̃
σ

σγ

)

·
(

σ2ũ
w

)

= α1 · u1,

v̄ =

(

β̃
σ

σγ

)

·
(

σ2ṽ
w

)

= β1 · v1,

where α1 := α̃1

γ1
, β1 := β̃1

γ1
, α̃1 := α̃

σ , β̃1 := β̃
σ , γ1 := (σγ), u1 := ũ1

w , v1 := ṽ1
w ,

ũ1 := σ2ũ, and ṽ1 := σ2ṽ. Therefore, the second case can be avoided. After a finite
number of steps one can assume that ū = α1 · u1, v̄ = β1 · v1 satisfies:

(1) m(σ, α̃1) +m(σ, β̃1) = 1 for all σ such that σ2|F ,
(2) m(σ, α̃1) = m(σ, β̃1) = 0 and m(σ, γ1) ∈ {0, 1}, for all σ such that σ2|H .

Hence it satisfies (3). Finally, based on the construction, it is easy to check that
this new decomposition also satisfies (1),(2), and (4), that is:

(1) α̃1, β̃1 ∈ EP (
√
S)+, gcd(α̃1, β̃1, γ1) = 1,

(2) ũ1, ṽ1 ∈ C[x, y], w ∈ E(S)+, gcd(ũ1, ṽ1, w) = 1, and
(4) γ21 is a divisor of H . !
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Consider a quintuple (f, g, h, U, V ) of polynomials in C[x, y] satisfying the func-
tional equation

(5.5) fU2 − gV 2 = h,

where f · g = F , hred (a generator of the radical of (h)) divides H and F,H are
defined as at the beginning of this section. Note that (C∗)2 acts on the set of such
quintuples as follows: given λ, µ ∈ C∗, then

(f̃ , g̃, h̃, Ũ , Ṽ ) =
((

λ2f
)

,
(

λ−2g
)

,
(

µ2h
)

,
(

µλ−1U
)

, (µλV )
)

.

As in the case of F -pairs we will denote such action as proportionality.

Definition 5.8. A (2, 2, 0)-quasitoric relation associated to the character χ is a
proportionality class (in the above sense) of quintuple (f, g, h, U, V ) of polynomials
in C[x, y] satisfying the functional equation fU2 − gV 2 = h, where f · g = F , hred

divides H and F,H are defined as at the beginning of this section.

Remark 5.9. As mentioned before Definition 5.2, the set of (2, 2, 0)-quasitoric re-
lations has a natural order two action defined as (f, g, h, U, V ) ,→ (f, g, h, U,−V ).
Note that (f, g, h,−U, V ) is proportional to (f, g, h, U,−V ) and (f, g, h,−U,−V ) is
proportional to (f, g, h, U, V ).

Our purpose now is to establish an isomorphism between (2, 2, 0)-quasitoric re-
lations and normal F -decompositions.

Denote by Q(D,χ) the set of (2, 2, 0)-quasitoric relations of D associated to the
character χ, that is,
(5.6)
Q(D,χ) := {(f, g, h, U, V ) ∈ C[x, y]5 | fU2 − gV 2 = h, f · g = F, and hred|H}/ ∼ .

Proposition 5.10. The set of (2, 2, 0)-quasitoric relations Q(D,χ) has a group
structure isomorphic to the group G described above (Lemma 5.4), where the iso-
morphism is equivariant with respect to the order two actions on both groups.

Proof. Let (ū, v̄) be an F -pair. We are going to associate to (ū, v̄) a (2, 2, 0)-
quasitoric relation QT (ū, v̄). To this end, consider a normal F -decomposition,

u = α U
W , v = β V

W , where α := α̃
γ and β := β̃

γ . Let f := α̃2, g := β̃2, h0 := γ2.

From ū2 − v̄2 = 1, we deduce:

fU2 − gV 2 = h0W
2.

It is enough to show that Wred divides H . We already know that it divides FH ,
hence it is enough to show that no irreducible component of F dividesW . Otherwise
it should divide either f or g, say f for simplicity, then it divides V (and not g).
Therefore its multiplicity is odd in fU2 and even in gV 2 as well as in h0W 2, which
is a contradiction. If h := h0W 2, then QT (ū, v̄) := (f, g, h, U, V ) is a (2, 2, 0)-
quasitoric relation of χ.

Notice that up to proportionality, one has u = (λα)λ
−1µU
µW , v = (λ−1β)λµVµW ,

where λα := λα̃
γ and λ−1β := λ−1β̃

γ . Define f̃ :=
(

λ2f
)

, g̃ :=
(

λ−2g
)

, W̃ :=
(

µ2W 2
)

, Ũ :=
(

µλ−1U
)

, and Ṽ := (µλV ). From ū2 − v̄2 = 1, we deduce:

f̃ Ũ2 − g̃Ṽ 2 = h0W̃
2,

and hence (f̃ , g̃, h0W̃ 2, Ũ , Ṽ ) ∼ (f, g, h, U, V ).
Conversely, let us fix a (2, 2, 0)-quasitoric relation QT = (f, g, h, U, V ). Let

α̃ :=
√
f and β̃ :=

√
g and write down h := h0W 2 where h0 is square-free. Denote

γ :=
√
h0. Then

(

α̃

γ

U

W
,
β̃

γ

V

W

)
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is the normal F -decomposition of the F -pair (u, v) such that QT (u, v) = QT .
Finally, note that if (ū, v̄) is the normal F -decomposition associated with the

(2, 2, 0)-quasitoric relation (f, g, h, U, V ) as at the beginning of this proof, then
(ū,−v̄) will be associated with (f, g, h, U,−V ), and hence the result follows. !

Consider X2 the double cover of X = C2 \D associated to the order two char-
acter χ.

Proposition 5.11. The group Q(D,χ) is isomorphic to MorZ2
(X2,C∗).

Proof. We will give a constructive proof of this result. Suppose one has a quasitoric
relation (f, g, h, U, V ) ∈ Q(D,χ). There is a rational map C2 → P1 defined by

(x, y) ,→ [fU2 : gV 2] such that fU2 − gV 2 = h. This map, restricted to X̃ =
{fgh = 0} defines an orbifold morphism X̃ → C2,2 = P1

(2,[0:1]),(2,[1:0]) \ {[1 : 1]}.
Finally, since {fg = 0} = {F = 0} and {h = 0} ⊂ {H = 0} by definition, one can
restrict this to a well-defined orbifold morphism (X,χ) → (C2,2, ρ), which induces
an equivariant morphism in MorZ2

(X2,C∗).
Conversely, any equivariant morphism in MorZ2

(X2,C∗) induces a morphism of
marked orbifolds on the quotient (X,χ) → (C2,2, ρ). Extending this to P2 one
obtains a rational morphism P2 ""# C2,2 = P1

(2,[0:1]),(2,[1:0]) \ {[1 : 1]}, which on

a generic affine chart can be defined by (x, y) ,→ [fU2 : gV 2], where {fg = 0}
corresponds to the ramified part of D and fU2−gV 2 = h with {h̃ = 0} ⊂ {H = 0}
the unramified part of D. This quasitoric relation defines an element of Q(D,χ) and
the order-two action corresponds with the covering transformations.

Finally, let us check that this bijection is in fact a homomorphism. Note that an
element p := (f, g, h, U, V ) ∈ Q(D,χ) produces the following commutative diagram:

(5.7)

[x : y : z : w] [αu : βv]

X2 P1 \ {[1 : 1], [1 : −1]}

X P1
(2,[1:0]),(2,[0:1]) \ {[1 : 1]}

[x : y : z] [fU2 : gV 2],

Ψp

ψp

where X2 is contained in {[x : y : z : w] ∈ P3 | w2 = fg = F} and (αu,βv)
is the normal F -decomposition associated with p according to Proposition 5.10.
For convenience, let us change the coordinates of P1 so that [1 : 1] ,→ [1 : 0] and
[1 : −1] ,→ [0 : 1]. In that case, P1 \ {[1 : 1], [1 : −1]} becomes C∗ = P1 \ {[1 : 0], [0 :
1]} and the new equation of Ψp : X2 → C∗ becomes Ψp(x, y, z, w) = (αu + βv)2.
Moreover, diagram (5.7) becomes

(5.8)

[x : y : z : w] (αu+ βv)2

X2 C∗

X C(2,
√
−1),(2,−

√
−1)

[x : y : z] 2αβuv,

Ψp

ψp
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where the vertical right map is the double cover t ,→ − t−t−1

2 ramified at t = ±
√
−1

with values ∓
√
−1 and where (αu + βv)−1 = (αu− βv).

Given two quasitoric relations pi := (fi, gi, hi, Ui, Vi) ∈ Q(D,χ), i = 1, 2 where
f1g1 = f2g2 = F and hi|H . Consider (ūi, v̄i) = (αiui,βivi), i = 1, 2 the normal
F -decompositions associated with pi according to Proposition 5.10. From (5.1) one
can see that

Ψp1p2
= (ū1ū2 + v̄1v̄2 + ū1v̄2 + ū2v̄1)

2 = (ū1 + v̄1)
2(ū2 + v̄2)

2 = Ψp1
Ψp2

. !

As a consequence, under the conditions of Theorem 1.3 one obtains Theorem 1.4.

Proof of Theorem 1.4. The result follows from Proposition 5.11 and the fact that

MorZ2
(X2,C

∗) = HomZ2
(Alb(X2)

−,C∗) = MorZ2
((C∗)d,C∗) = Hom(Zd,Z) = Zd,

see (4.8), where d ≤ d(χ) and the equality holds if the character only has weight 2.
!

6. Examples

We refer to [6] for explicit examples of cases of characters of depth greater than
one and corresponding orbifold pencils in the case of complements to plane reducible
curves.

In this section we will present two examples illustrating interesting phenomena
about 2-torsion characters that have come up during the preparation of this paper
and that might be of interest to the reader.

6.1. Orbifold pencils of type (2, 2, 2, 2). Note that Theorem 1.3(2) refers only
to weight two characters of order two. Characters of order two and weight one
might be associated with elliptic orbifold pencils of type (2, 2, 2, 2) as the following
example seems to suggest.

Consider the Hesse arrangementH of lines, given by the twelve lines {ℓ1, . . . , ℓ12}
joining the inflection points of a smooth plane cubic. It is easy to check that the
system of cubics sharing the nine inflection points is a pencil with exactly four
singular fibers. Each one of these fibers is a completely reducible curve given by
three lines in general position. The four cubics Ck := {ℓ3k+1ℓ3k+2ℓ3k+3 = 0},
k = 0, 1, 2, 3 belong to a pencil and their union gives the Hesse arrangement. After
blowing up the base points of this pencil one obtains an elliptic fibration onto P1

where Pk ∈ P1 is the image of the special fiber Ck, k = 0, 1, 2, 3. If one further
blows up one of the three double points in each special fiber, one obtains a rational
surface P̃2, four exceptional vertical divisorsE0, E1, E2, E3 (not sections) and twelve
strict transforms ℓ̃i, i = 1, . . . , 12. The surface X := P̃2 \ ∪12

i=1ℓ̃i together with the
elliptic fibration induces a well-defined orbifold map onto P1

(2,P0),(2,P1),(2,P2),(2,P3)

since the preimage of Pk in X is given by 2Ek (in divisor notation).

6.2. Ceva Arrangements. Note that the polynomials f and g in the group of
quasitoric relations 5.6 must satisfy fg = F but such partition of F might be
different for different quasitoric relations as the following example shows. Consider
the following set of lines:

(6.1)
ℓ1 := x, ℓ2 := y, ℓ3 := z, ℓ4 := (y − z),

ℓ5 := (x− z), ℓ6 := (x − y), ℓ7 := (x− y − z).

The curve D :=
{

∏7
i=1 ℓi = 0

}

is a realization of the Special Ceva arrangement

CEVA(2, 1) (cf. [9, Section 2.3.J, pg. 81]) otherwise known as the non-Fano plane.
In [6], a computation of the 2-torsion characters of D is presented via orbifold pen-
cils. In particular, considerG := π1(P2\D) (whose abelianization is Zγ1⊕···⊕Zγ7

γ1+···+γ7
). A
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character on G can be represented by a septuple of complex numbers whose product
is 1, the i-th coordinate representing the image of any meridian γi around ℓi. The
element χ = (1,−1,−1, 1,−1,−1, 1) represents hence a character on G. In fact, it
is well known that its depth is two. Note that F = ℓ2ℓ3ℓ5ℓ6 whereas H = ℓ1ℓ4ℓ7
according to the notation introduced in section 5.2. Note that

(6.2)
ℓ2ℓ5 − ℓ3ℓ6 = ℓ1ℓ4,
ℓ2ℓ6 − ℓ3ℓ5 = ℓ4ℓ7

are quasitoric relations of type (2, 2, 0) corresponding to the quintuples q1 :=
(ℓ2ℓ5, ℓ3ℓ6, ℓ1ℓ4, 1, 1) and q2 := (ℓ2ℓ6, ℓ3ℓ5, ℓ4ℓ7, 1, 1) respectively. It is not hard
to show that q1 and q2 are strongly independent and they generate Q(D,χ).

Finally, note that

ℓ2ℓ5ℓ
2
8 − ℓ3ℓ6ℓ

2
9 = ℓ1ℓ4ℓ

2
7,

where ℓ8 := (y − z − x) and ℓ9 := (z − x − y) is another quasitoric decomposition
corresponding to q3 = (ℓ2ℓ5, ℓ3ℓ6, ℓ1ℓ4ℓ27, ℓ8, ℓ9) ∈ Q(D,χ). One can check that in
fact q3 = −q1 + 2q2 (in additive notation).
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