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Mordell–Weil groups of elliptic threefolds and
the Alexander module of plane curves

By Jose-Ignacio Cogolludo-Agustín at Zaragoza and Anatoly Libgober at Chicago

Abstract. We establish a correspondence between the rank of Mordell–Weil group
of the complex elliptic threefold associated with a plane curve C ⇢ P2

.C/ with equation
F D 0, certain roots of the Alexander polynomial associated with the fundamental group
⇡1.P2

.C/ n C/ and the polynomial solutions for the functional equation of type

h
p
1F1 C h

q
2F2 C h

r
3F3 D 0

where F D F1F2F3. This correspondence is obtained for curves in a certain class which in-
cludes the curves having introduced here ı-essential singularities and in particular for all curves
with ADE singularities.

As a consequence we find a linear bound for the degree of the Alexander polynomial
in terms of the degree of C for curves with ı-essential singularities and in particular arbitrary
ADE singularities.

1. Introduction

The Alexander polynomial of singular curves in P2
C provides an effective way to relate

the fundamental group of the complement of such curves to the topology and geometry of their
singularities. In this paper we show that the Mordell–Weil groups of certain elliptic threefolds
with constant j -invariant are closely related to the Alexander modules of the zero sets of their
discriminants. As a byproduct of this relation we obtain a bound on the degree of the Alexander
polynomials of plane curves. The bound is linear in the degree of the curve and gives a new
restriction on the groups which can be fundamental groups of the complements to plane curves.

Let C be a (possibly reducible with components Ci ) curve in P2 of degree d . Its Alexan-
der polynomial is defined in terms of purely topological data, G D ⇡1.P2 n C0 [ C/, where
C0 is a line at infinity, and a surjection " W G ! Z (cf. Section 2.1 for a definition). On the other
hand, dependence of the Alexander polynomial of C , on its degree, the local type of its sin-
gularities, and their position, relating the latter to the topology, has been known for some time
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16 Cogolludo-Agustín and Libgober, Mordell–Weil groups of elliptic threefolds

(cf. [32, 34]). For example, for irreducible curves having nodes and cusps as the only singular-
ities, the degree of the Alexander polynomial ÅC ;".t/ equals rkG0

=G
00 where G0 and G00 are

respectively the first and second commutators of G (in this case there is only one choice, up to
sign, of "). Moreover,ÅC ;".t/ is not trivial only if 6 j d , in which caseÅC ;".t/ D .t

2 � tC1/s ,
where s is the superabundance of the curves of degree d � 3 � d

6 passing through the cusps
of C . For a given curve, this provides a purely geometric method for calculation of the Alexan-
der polynomial. However, how big can this superabundance be for a special cuspidal curve is
still not known (cf. [36]). The largest known value of s for irreducible cuspidal curves, to our
knowledge, is 3. This occurs for the dual curve to a non-singular cubic, that is a sextic with
nine cusps. In this paper we give an example of an irreducible curve with nodes and cusps as
only singularities, for which the superabundance of the set of cusps is equal to 4.

One of our main results is the inequality (cf. Corollary 3.13)

(1.1) degÅC ;"  5

3
d � 2:

For reducible curves and general ", the explicit relation with the fundamental group
comes from the equality (cf. [32])

(1.2) dim.G0
=G

00 ˝ Q/˝ƒ ƒ=.t1 � t".�1/
; : : : ; tr � t".�r /

/ D degÅC ;";

where ƒ WD ZŒt˙1
1 ; : : : ; t

˙1
r ç, r WD rk.G=G0

/ (if C is a curve in C2, then r is the number of
irreducible components of C ), " W Zr ! Z is an epimorphism, and �i represents the class of
a meridian around the i -th irreducible component of C , i.e. its abelian image in H1 is ti .

The main idea in this note is to relate the degree of the Alexander polynomial of a curve
C to the rank of Mordell–Weil group of the elliptic curve over field C.x; y/ with constant
j -invariant and having the curve C as the zero set of its discriminant. An important conse-
quence is the relation between the Alexander module of C and rational pencils of elliptic type
corresponding to C (cf. Definition 2.3).

The relationship between Alexander invariants and pencils, in the case of line arrange-
ments and reducible curves is discussed in [35, 39]: the positive dimensional components of
characteristic varieties induce maps between their complements and the complements to p � 3

points in P1. Here we show that non-vanishing of Alexander polynomial of a curve yields
existence of special pencils with non-reduced fibers. These pencils are such that they induce
rational maps from P2 onto P1 with an orbifold structure and take the curve C onto a fi-
nite set of points. The pencils are orbifold elliptic pencils in the following sense (cf. Defi-
nitions 2.3 and 2.4): each rational map P2 ! P1 has three non-reduced fibers of the form
miDi C Fi , where Fi divides F and F D 0 is an equation of C . The multiplicities mi are
such that

P 1
mi

D 1 and thus the orbifold structure is given by assigning multiplicities mi to
those three points in P1.

The possible orbifold structures .m1; m2; m3/ depend on the local type of singularities
of C . For example for irreducible curves with only nodes and cusps as singularities, we relate
the global Alexander polynomial of C to the following functional relation:

(1.3) P.x; y; z/
2 CQ.x; y; z/

3 C F.x; y; z/ D 0;

where F D 0 is an equation of C and P.x; y; z/;Q.x; y; z/ are homogeneous polynomials.
Such a relation is equivalent to the existence of a rational map from P2 onto P1 with the orb-
ifold structure .2; 3; 6/. This orbifold structure can be obtained considering the global orbifold
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Cogolludo-Agustín and Libgober, Mordell–Weil groups of elliptic threefolds 17

in the usual sense (cf. [2]) corresponding to the action of a cyclic group of order 6 on an el-
liptic curve with non-trivial stabilizers at three points; their orders being equal to 2; 3 and 6
respectively.

The correspondence between the Alexander modules and orbifold elliptic pencils is es-
tablished in two rather different steps. On one hand, the Alexander module of C can be related
to the Mordell–Weil group of the elliptic threefold

(1.4) u
2 C v

3 D F.x; y; 1/

over the field C.x; y/ of rational functions in two variables having j -invariant equal to zero.
We have the following (cf. Theorem 3.1):

Theorem 1.1. Let C be an irreducible curve in P2 having ordinary nodes and cusps as
the only singularities. Let F.x; y; 1/ D 0 be a (reduced) equation of the affine part of C . Then
the Z-rank of the Mordell–Weil group of the elliptic threefold (1.4) is equal to the degree of the
Alexander polynomial of the curve C .

The Mordell–Weil group here is the group of rational sections of the elliptic threefolds
(see for instance [30, 31] and Section 3 for further discussion). The rank of the Mordell–Weil
group of the threefold (1.4) was recently studied in [27] for the case deg C D 6 using different
methods (cf. also [11,24]). These results follow immediately from the correspondence between
Alexander polynomials and Mordell–Weil groups in this paper since the Alexander polynomi-
als of sextic curves considered in [27] are readily available.

On the other hand, each element of the Mordell–Weil group of the aforementioned elliptic
threefold defines a functional relation of the type (1.3). This can be summarized as follows (cf.
Theorem 4.7):

Theorem 1.2. For any irreducible plane curve C D πF D 0º whose only singularities
are nodes and cusps the following statements are equivalent:

(1) C admits a quasi-toric relation of elliptic type .2; 3; 6/,

(2) C admits an infinite number of quasi-toric relations of elliptic type .2; 3; 6/,

(3) ÅC ;".t/ is not trivial, i.e. ÅC ;".t/ ¤ 1.1)

Moreover, the set of quasi-toric relations of C ,

π.f; g; h/ 2 CŒx; y; zç3 j f 2 C g
3 C h

6
F D 0º;

has a group structure and it is isomorphic to Z2q , where ÅC .t/ D .t
2 � t C 1/

q . Also, C ad-
mits an infinite number of primitive quasi-toric relations unless q D 1, in which case C only
has one primitive quasi-toric relation.

We also consider here other singularities which will define relations of the form:

(1.5) h
p
1F1 C h

q
2F2 C h

r
3F3 D 0;

where .p; q; r/ is either .3; 3; 3/ or .2; 4; 4/. Such relations (1.5) in turn correspond to orbifold
rational pencils with respective orbifold structures (cf. Theorem 5.16).

1) For an irreducible curve, there is only one choice of ", up to sign, i.e. ÅC ;" is independent of it; for other
types of quasi-toric relations see Section 6.
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18 Cogolludo-Agustín and Libgober, Mordell–Weil groups of elliptic threefolds

While commonly the existence of irrational pencils on surfaces is obtained by an ex-
tension of the de Franchis method (from 1-form with vanishing wedge product, cf. [12, 49]),
rational orbifold pencils are obtained rather differently: here the pencils are a byproduct of the
splitting of Albanese varieties of cyclic multiple planes into a product of elliptic curves which
we derive either from Roan’s Decomposition Theorem for abelian varieties with an automor-
phism (cf. [9]) or directly, using a Hodge theoretical refinement of the argument used in the
proof of divisibility theorem in [32]. For example for the cyclic multiple planes branched over
a reduced curve with nodes and cusps as the only singularities, the Albanese variety splits as
a product of elliptic curves with j -invariant equal to zero. One may contrast this with the case
of Jacobians of cyclic covers of P1 where Jacobians are completely decomposable very rearly
(cf. [21, 38] for a discussion of factorization of Jacobians of curves).

In particular, the relation between Alexander polynomials and Mordell–Weil groups al-
lows us to give bounds (1.1) on the degree of Alexander polynomials. These follow from the
bounds on the rank of Mordell–Weil groups obtained from the connection with the Mordell–
Weil groups of certain elliptic surfaces and from the Shioda–Tate formula (cf. [48]). However,
the correspondence between the Alexander polynomials and the ranks of the Mordell–Weil
group should be of independent interest (cf. [27]2)).

The curves with the largest known values of degÅC .t/ are given in Section 6. The bound
presented here is sharp for sextics, however, inequality (1.1) is apparently far from being sharp
in general. Perhaps a better understanding of the Mordell–Weil rank of (1.4) can yield a better
estimate. Also, note that Corollary 3.13 provides a partial answer to [36, Problem 2.1].

Another application of the results presented in this paper is an alternative argument to
confirm Oka’s conjecture of sextic curves having a non-trivial Alexander polynomial (i.e. that
equations of such curves have the form P

2 CQ
3). The answer to Oka’s conjecture was first

obtained by A. Degtyarev (cf. [15, 16]).
For the sake of clarity we often start our discussions focusing on the case of irreducible

curves having only nodes and cusps as singularities. The results, however, are obtained, as was
already mentioned, for curves with a wider class of singularities, which we call ı-essential and
ı-partial (cf. Definition 5.1). Moreover the results are applicable to reducible and non-reduced
curves as well. From the point of view of fundamental groups, non-reduced curves correspond
to homomorphisms " that are more general than those given by the linking number of loops
with C .

The condition of being ı-essential is purely local, meaning that the local Alexander poly-
nomial of the link of the singularity considered w.r.t. the restriction of " on the local funda-
mental group is divisible by the cyclotomic polynomial of degree ı. As we shall see, this is the
natural class of curves leading to the elliptic pencils.

1.1. Organization of the paper. The content of the paper is as follows. In Section 2 we
give definitions for Alexander polynomials w.r.t. any homomorphism " (as mentioned above),
for orbifold surfaces and morphisms, and for quasi-toric relations. In Section 3 we relate the
Alexander polynomial to the Mordell–Weil group of the threefold (1.4) associated with F .
In Section 4, the C.x; y/-points of the threefolds (1.3) are presented as quasi-toric relations
of F , i.e. functional equations of the form f

2 C g
3 C Fh

6 D 0, over the ring CŒx; y; zç. The

2) Professor R. Kloosterman informed us that the described here correspondence between the ranks of
Mordell–Weil threefolds and the Alexander polynomials can be used to improve the bound (1.1) on the degree
of the Alexander polynomial of the cuspidal curves by a factor close to 2. This result appears in his paper [26].
Additional results related to this work appear in [6].
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correspondence between the points of (1.3) and the quasi-toric relations where F fits in, is
explained at the end of Section 3. In Section 5 we generalize the results to a larger class of
curves. Finally, the Section 6 contains applications and a list of explicit examples. This provides
a list of curves that fit into quasi-toric relations of all rational orbifolds of elliptic type. Also
one of these examples provides the largest values known to date of the degree of the Alexander
polynomial of an irreducible curve with nodes and cusps.

1.2. Notation. We shall use the following notation:

✏ F a (possibly reducible or even non-reduced) non-zero homogeneous polynomial in
CŒx; y; zç such that F is not a power, that is, Gk D F for G 2 CŒx; y; zç implies k D 1.

✏ C the set of zeroes of F , hence a reduced curve.
✏ Vn a non-singular model of a cyclic multiple plane zn D F.x; y; 1/

✏ V n a model of cyclic multiple plane in P2 ⇥ P1.
✏ W ı

F an affine model of the elliptic threefold corresponding to a curve F D 0.
✏ WF a smooth projective birational model of W ı

F .
✏ eW F singular projective model of WF (cf. Proposition 3.9).
✏ E0 the elliptic curve with j-invariant zero.
✏ EQ a model of E0 in P .2; 3; 1/ ⇥ P1.
✏ W a split elliptic threefold V6 ⇥E0.
✏ W D V 6 ⇥P1 EQ a birational model of split elliptic threefold V6 ⇥E0.

2. Preliminaries

In this section we will review several results on Alexander invariants which appear in the
literature and extend them to the generality required in this paper.

2.1. Alexander polynomial relative to a surjection of the fundamental group. We
shall consider reducible, not necessarily reduced curves in P2. Let C be a plane curve given
as the set of zeroes of a homogeneous polynomial F D F

"1

1 � � �F "r
r , which is not a power

(see Notation 1.2), which means gcd."1; : : : ; "r/ D 1. Consider by C WD C1 [ � � � [ Cr its de-
composition into irreducible components and let ."1; : : : ; "r/, "i 2 ZC, be the collection of
multiplicities of each irreducible factor Fi in the equation of C . So if di D degFi denotes the
degree of Ci , then the total degree of C WD πF D 0º is given by d WD P

"idi D degF .
Let C0 be a line transversal to C which we shall view as the line at infinity and let

G WD ⇡1.P2 n C0 [ C/. Recall that H1.P2 n C0 [ C/ is a free abelian group with r genera-
tors having a canonical identification with Zr (cf. [35]). The isomorphism is given by mapping
the class of the boundary of a small holomorphic 2-disk transversal to the component Ci to
.0; : : : ; 0; 1; 0; : : : ; 0/ 2 Zr (with 1 appearing as the i -th component). Let " be the epimorphism
" W G ! H1.P2 n C0 [ C/ ! Z given by ".�i / WD "i . Let QŒZç D QŒt; t�1

ç denote the group
ring over Q, K" D ker ", and K 0

" D ŒK"; K"ç be the commutator of K". By the Hurewicz The-
orem, K"=K

0
" can be identified with the homology of infinite cyclic cover of P2 n C0 [ C

corresponding to " and hence can be viewed as a module over the group ring ZŒZç.
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20 Cogolludo-Agustín and Libgober, Mordell–Weil groups of elliptic threefolds

Homomorphisms (resp. epimorphism) " W ⇡1.P2 n C0 [ C/ ! Z such that ".�i / � 1 for
all i are in one-to-one correspondence with polynomials, (resp. non-power polynomials) con-
sidered up to a scalar factor, having C as the zero set. Indeed if Fi is an irreducible polynomial
having Ci as its set of zeros, then one defines the polynomial corresponding to " as

(2.1) F".x; y; 1/ D
Y

i

Fi .x; y; 1/
".�i /

:

Vice versa, given a polynomial F having C as its zero set one defines the homomorphism
"F W H1.P2 n C0 [ C/ ! Z using

(2.2) "F .�i / D 1

2⇡

p
�1

Z

�i

dF

F

and extends it as the composition

⇡1.P
2 n C0 [ C/ ! H1.P

2 n C0 [ C/ ! Z:

This homomorphism is in fact an epimorphism if F is not a power. It will also be denoted
by "F .

Definition 2.1 (cf. [32, 45]). The Alexander polynomial ÅC ;".t/ of C relative to a sur-
jection " W G ! Z is a generator of the order of the torsion of the QŒZç D QŒt; t�1

ç-module
K"=K

0
" ˝ Q normalized in such a way that it is a polynomial in t satisfying ÅC ;".0/ D 1. By

the discussion in the previous paragraph, a (not necessarily reduced) equation F of C defines
both the set of zeroes C and a surjection "F . Hence ÅF .t/ will also denote ÅC ;"F

.t/.

The Alexander polynomial ÅC ;" can be expressed in terms of characteristic varieties
studied in [35] or in terms ofG0

=G
00 viewed as a module overƒ WD ZŒH1ç D ZŒt˙1

1 ; : : : ; t
˙1
r ç

as follows. The polynomial ÅC ;" is the order of the torsion of

.G
0
=G

00 ˝ Q/˝ƒ ƒ=.t1 � t".�1/
; : : : ; tr � t".�r /

/

up to a power of .t � 1/, viewed as a QŒt; t�1
ç-module in the obvious way. The zeroes ofÅC ;"

can also be seen as the intersection of the characteristic variety †1.C/ with the 1-dimensional
torus of equation L" WD π.t".�1/

; : : : ; t
".�r /

/º ⇢ .C⇤
/
r (cf. [8, Theorem 2.26]).3)

We shall also need the local version of the polynomials ÅC ;" defined similarly. Let P
be a singular point of C . The epimorphism " W G ! Z induces a homomorphism "P of the
local fundamental group of C to Z and hence the Alexander polynomial of the link of P
w.r.t. the homomorphism "P .4) In other words, if i W SP n C ,! P2 n C is the inclusion from
a sufficiently small sphere around P in the total space and � is a meridian around a component
of the link, then

(2.3) "P .�/ WD ".i⇤.�//:

These polynomials will be denoted by ÅC ;";P .t/. We have the following proposition.
3) Though most often the Alexander polynomials are considered in the case when "i D 1, case "i ¤ 1 was

considered for example by Oka in [45, Section 4] as ✓ -Alexander polynomials.
4) If the image of "P has index k in Z, then the Alexander polynomial ÅC ;";P .t/ is Å.tk/ where Å is

the Alexander polynomial relative to the surjection G
"P! "P .G/ D Z. Recall that this represents the order of the

1-dimensional homology of the cyclic cover corresponding to " which is this case has k connected components
cf. [32, 35]
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Proposition 2.2. Let C be a plane curve and ."1; : : : ; "r/ denote the multiplicities of its
irreducible components. ThenÅC ;".t/ divides the product of the local Alexander polynomials:

(2.4) ÅC ;".t/ j
Y

P

ÅC ;";P .t/

Y
.t

"i � 1/ki

for some ki 2 Z�0. In particular, if the local Alexander polynomials have only roots of unity
of degree ı as their roots, then

ÅC ;".t/ D
Y

� j ı

'�.t/
s�

Y
.t

"i � 1/ki ;

where '�.t/ is the cyclotomic polynomial of the �-th roots of unity. Moreover, if s� > 0, then

(2.5) � j d;

where d WD P
di"i is the total degree.

Proof. Details of the arguments are similar to those used in the proof of the Divisibility
Theorem (cf. [32, 34] and Lemma 3.6 below). The starting point is the surjection of the fun-
damental group of a regular neighborhood of C in P2 n C0 onto ⇡1.P2 n C0 [ C/ (which is a
consequence of the Lefschetz Hyperplane Section Theorem). On the other hand, one uses the
Mayer–Vietoris sequence for the "-cyclic cover of this neighborhood in order to split it into a
union of cyclic covers: those of the local singularities and the neighborhood of the non-singular
part of C . This shows that the Alexander polynomial of the neighborhood of C is equal to the
product of the Alexander polynomials of singularities and a divisor of second product in (2.4).
These divisors come as contributions of H0 and H1 of terms of the Mayer–Vietoris sequence
corresponding to the intersections of the complements to the links of the singularities with the
mentioned C⇤-bundle of the non-singular part of C . This yields the divisibility (2.4).

The second divisibility relation is a generalization of the divisibility at infinity (cf. [32])
and follows from the calculation of the Alexander polynomial of the link at infinity with multi-
plicities. It is equal to .t

P
"i di � 1/r�1 as a consequence of the Torres relation (cf. [55]) applied

to the Hopf link with multivariable Alexander polynomial .t1 � � � tr � 1/r�1.

2.2. Orbifold curves. Now we recall some basic definitions needed here referring for
more details to (see [5]).

Definition 2.3. An orbifold curve Sm is (an open or closed) Riemann surface S with
a function m W S ! N whose value is 1 outside a finite number of points. A point P 2 S for
which m.P / > 1 is called an orbifold point.

One may think of a neighborhood of a point P 2 Sm with m.P / D d as the quotient of
a disk (centered at P ) by a rotation of angle 2⇡

d
. A loop around P is considered to be trivial in

Sm if its lifting bounds a disk. Following this idea, orbifold fundamental groups can be defined
as follows.

Definition 2.4. For an orbifold Sm, let P1; : : : ; Pn be the orbifold points,

mj WD m.Pj / > 1:
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22 Cogolludo-Agustín and Libgober, Mordell–Weil groups of elliptic threefolds

Then, the orbifold fundamental group of Sm is

(2.6) ⇡
orb
1 .Sm/ WD ⇡1.S n πP1; : : : ; Pnº/=h�mj

j D 1i;

where �j is a meridian of Pj . We will denote Sm simply by Sm1;:::;mn .

Remark 2.5. In this paper, we will mostly consider orbifold groups of P1 with three
orbifold points. The groups

⇡
orb
1 .P1

.p;q;r// D hx; y; z W xp D y
q D z

r D xyz D 1i

are subgroups of index two of full triangle groups. In particular, they can be identified with
the orientation-preserving isometries of a plane tiled with triangles with angles ⇡

p , ⇡
q and ⇡

r
(cf. [42, Corollary 2.5]).

Definition 2.6. A dominant algebraic morphism ' W X ! S defines an orbifold mor-
phism X ! Sm if for all P 2 S , the divisor '⇤

.P / is an m.P /-multiple.

One has the following result regarding orbifold morphisms.

Proposition 2.7 ([5, Proposition 1.5]). Let ⇢ W X ! S define an orbifold morphism
X ! Sm. Then ' induces a morphism '⇤ W ⇡1.X/ ! ⇡

orb
1 .Sm/. Moreover, if the generic fiber

is connected, then '⇤ is surjective.

Proposition 2.7 will be applied systematically throughout this paper. We will show a
typical example of this. Suppose F D F1F2F3 fits in a functional equation of type

(2.7) h
3
1F1 C h

2
2F2 C h

6
3F3 D 0;

where h1; h2, and h3 are polynomials. Note that Fi are not necessarily irreducible or reduced.
Also note that (2.7) induces a pencil map ' W P2 Ü P1 given by

'.Œx W y W zç/ D Œh
3
1F1 W h2

2F2ç:

Consider C WD πF D 0º. As 'jP2nC has three multiple fibers (over P3 D Œ0 W 1ç, P2 D Œ1 W 0ç,
and P6 D Œ1 W �1ç), one has an orbifold morphism '2;3;6 W P2 n C ! P1

2;3;6. In particular, if
the pencil ' is primitive (in the sense that it coincides with its Stein factorization), then by
Proposition 2.7, there is an epimorphism

'2;3;6 W ⇡1.P
2 n C/ ! ⇡

orb
1 .P1

2;3;6/ D �2Z2 ⇤ �3Z3

.�2�3/
6

;

where �i are as in Definition 2.4 and �2�3 D �6 according to (2.6). Finally, note that

V WD Char
✓
�2Z2 ⇤ �3Z3

.�2�3/
6

◆
D π!6; !

�1
6 º;

and the elements π!˙1
6 ; !

˙2
6 ; !

˙3
6 º are roots of ÅC ;".t/, where

(2.8) " W H1.P
2 n C0 [ C/ !

⇡
orb
1 .P1

2;3;6/

Œ⇡
orb
1 .P1

2;3;6/;⇡
orb
1 .P1

2;3;6/ç
D Z6
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is induced by '2;3;6 on the abelianizations of the groups. Therefore one has that ÅC ;".t/ is of
the form

.t � 1/s1.t C 1/
s2.t

2 C t C 1/
s3.t

2 � t C 1/
s6p.t/;

where p.t/ has no 6-th roots of unity as zeroes and si are non-negative integers.
Using this technique one can show the following result needed in the sequel and which

we shall prove for completeness (cf. [23, Chapter 2, Theorem 2.3]).

Proposition 2.8. The number of multiple members in a primitive pencil of plane curves
(with no base components) is at most two.

Proof. Let us assume that the pencil is generated by two multiple fibers, that is, we have
' W P2 Ü P1, given by '.Œx W y W zç/ D Œf

p W gq
ç, where .p; q/ D 1 (otherwise, the pencil

is not primitive). Assume there is a third multiple member, that is, f p C g
q C h

r D 0.
According to Proposition 2.7, one obtains an orbifold morphism with connected fibers,

and thus an epimorphism '⇤ W ⇡1.P2 n πp1; : : : ; pnº/ ! ⇡
orb
1 .P1

p;q;r/, i.e. both groups are
trivial. The groups ⇡orb

1 .P1
p;q;r/ are virtually torsion free (cf. [42, Theorem 2.7]) and they are

subgroups of order 2 of the Schwartz group, which is infinite (cf. [42, Corollary 2.4]). In par-
ticular, they are non-trivial, which contradicts the triviality of ⇡1.P2 n πp1; : : : ; pnº/.

Remark 2.9. For pencils other than pencils of plane curves, using logarithmic trans-
forms, one can obtain elliptic fibrations with any number of multiple fibers (cf. [23, 28]).

In this paper we are interested in a particular type of orbifold morphisms.

Definition 2.10. We say a 2-dimensional orbifold Sm is a rational orbifold curve of
elliptic type if etop.Sm/ D 2 (that is, Sm is a compact Riemann sphere) and

X 1

mi
D n � 2;

where n WD #πP 2 S j m.P / > 1º is the number of orbifold points.

Lemma 2.11. The possible rational orbifold curves of elliptic type are:

(1) .2; 3; 6/,

(2) .3; 3; 3/,

(3) .2; 4; 4/,

(4) .2; 2; 2; 2/.

Remark 2.12. The reason to call such orbifolds of elliptic type is the following. Con-
siderbSm the regular covering of order ` WD lcm.m/ (the least common multiple of the orbifold
multiplicities) ramified with index mi at the `

mi
preimages of Pi (the orbifold point of order

mi ) of Sm. In general, if
P 1

mi
2 Z, then bSm is a Riemann surface of genus

1C `

2

✓X
.n � 2/ � 1

mi

◆
:

Thus, according to Lemma 2.11, for any rational orbifold curve bSm of elliptic type the associ-
ated covering bSm is an elliptic curve (that is, a complex compact curve of genus 1).
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24 Cogolludo-Agustín and Libgober, Mordell–Weil groups of elliptic threefolds

The results in this paper require that the least common multiple of the orbifold indices
be > 2. Therefore type .4/ from the list above will be disregarded.

2.3. Quasi-toric relations.

Definition 2.13. A quasi-toric relation of type .p; q; r/ is a sextuple

R
.p;q;r/
qt WD .F1; F2; F3; h1; h2; h3/

of non-zero homogeneous polynomials in CŒx; y; zç satisfying the following functional rela-
tion:

(2.9) h
p
1F1 C h

q
2F2 C h

r
3F3 D 0:

The support of a quasi-toric relation R
.p;q;r/
qt as above is the zero set

C WD πF1F2F3 D 0º:

In this context, we may also refer to C as a curve that satisfies (or supports) a quasi-toric
relation of type .p; q; r/.

We will say a quasi-toric relation of type .p; q; r/ is of elliptic type if .p; q; r/ is of the
form (1)–(3) in Lemma 2.11.

Remark 2.14. Given a quasi-toric relation R
.p;q;r/
qt D .F1; F2; F3; h1; h2; h3/ as above,

note that

(2.10) p deg h1 C degF1 D q deg h2 C degF2 D r deg h3 C degF3 D 

and hence
X

deg hi C
✓

degF1

p
C degF2

q
C degF3

r

◆
D
✓
1

p
C 1

q
C 1

r

◆
:

Therefore, if R
.p;q;r/
qt is of elliptic type, then

(2.11)
X

deg hi C
✓

degF1

p
C degF2

q
C degF3

r

◆
D :

Remark 2.15. Special classes of curves satisfying quasi-toric relations have already
been considered, namely, the class of curves of torus type .2; 3/, i.e. quasi-toric relations
of type .2; 3; r/ of the form .1; 1; F; h1; h2; 1/ (cf. [43, 47]) and the class of curves having
quasi-toric decompositions .p; q; pq/, i.e. quasi-toric relations of type .p; q; pq/ of the form
.1; 1; F; h1; h2; h3/ (cf. [29]). Also, functional equations of a similar sort appear in [46, Sec-
tion 5.3].

Recall that a quasi-toric decomposition of F is a collection of homogeneous polynomials
f; g; h 2 CŒx; y; zç such that the following identity holds:

(2.12) f
p C g

q C h
pq
F D 0;

for two co-prime positive integers p; q > 1. Analogously, a curve is of torus type .p; q/ if it
admits a quasi-toric decomposition as in (2.12) where h D 1.
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To each quasi-toric relation R
.p;q;r/
qt of elliptic type satisfying (2.9) there corresponds a

map from a certain cyclic multiple plane branched over the curve supporting R
.p;q;r/
qt to the

elliptic curve bS .p;q;r/ (see Remark 2.12) as follows. Let ` WD lcm.p; q; r/ and

! D degF1

p
C degF2

q
C degF3

r

(note that according to (2.11) one has ! D  �P
deg hi 2 Z). Let V` be the following surface

given in the weighted projective space P3
.!; 1; 1; 1/:

(2.13) V` WD
°
.u; x; y; z/ 2 P3

.!; 1; 1; 1/ j u` D F

`
p

1 F

`
q

2 F
`
r

3

±
:

Then let bS .p;q;r/ be the elliptic curve in P2 given by the equation z` D x
`
p y

`
q .�x � y/ `

r . To
each quasi-toric relation there corresponds the following map:

P3
.!; 1; 1; 1/ � V` ! bS .p;q;r/ ⇢ P2

;(2.14)
.u; x; y; z/ 7! .h

p
1F1; h

q
2F2; uh1h2h3/:

(Note that the map is well defined by (2.10) and (2.11).)

Definition 2.16. We will say that two quasi-toric relations .h1; h2; h3; F1; F2; F3/ and
.h1; h2; h3; F 1; F 2; F 3/ of the same elliptic type .e1; e2; e3/ are equivalent iff the correspond-
ing maps (2.14) coincide, i.e. there exists a non-trivial rational function � 2 C.x; y; z/⇤ such
that

(2.15) h
ei

i F i D �h
ei

i Fi and h1h2h3 D �h1h2h3:

Example 2.17. Note that any quasi-toric relation .F1; F2; F3; h1; h2; h3/ of elliptic
type .2; 3; 6/ is equivalent to one of the form .1; 1; F3F

2
2 F

3
1 ; h1; h2; h3/ since

� WD F
3
1 F

2
2 ; h1 WD F

2
1 F2h1; h2 WD F1F2h2 and h3 WD h3

satisfy (2.15).
In other words, any .2; 3; 6/ quasi-toric relation is equivalent to one of the form

h
2

1 C h
3

2 C F
3
1 F

2
2 F3h

6

3 D 0:

This stresses the idea that non-reduced components are indeed unavoidable when one works
with quasi-toric relations.

3. Mordell–Weil group of elliptic threefolds with fiber having j D 0

3.1. Elliptic pencils, rank of Mordell–Weil group, and the degree of Alexander poly-

nomials. In this section, let us fix F 2 CŒx; y; zç, an irreducible homogeneous polynomial of
degree d D 6k, whose set of zeroes in P2 is a curve C that has only nodes and cusps as singu-
larities (i.e. C has either x2 D y

2 or x2 D y
3 as a local equation around each singular point)

and let, unless otherwise stated, the homomorphism " W ⇡1.P2 n C0 [ C/ ! Z be given by the
total linking number with C in the affine plane P2 n C0, i.e. satisfies ".�/ D 1 for a meridian
around C .

Brought to you by | University of Illinois Chicago
Authenticated

Download Date | 5/10/19 6:04 PM



26 Cogolludo-Agustín and Libgober, Mordell–Weil groups of elliptic threefolds

Consider a threefold WF containing, as a Zariski open subset, the affine threefold W ı
F

given in C4 by the following equation:

(3.1) u
2 C v

3 D F.x; y; 1/:

The projection onto the .x; y/-plane exhibits WF as an elliptic threefold whose fibers over
generic points have j -invariant equal to zero.5)

The main result of the present section is a calculation of the Mordell–Weil group of the
C.x; y/-points of WF in terms of the classical Alexander polynomial ÅC .t/ of C (that is, the
Alexander polynomial w.r.t. the homomorphism " described above).

Theorem 3.1. The Z-rank of the Mordell–Weil group of WF over C.x; y/ is equal to
the degree of the Alexander polynomial ÅC .t/ of C .

Let V6.F / (or simply V6) denote a smooth model the 6-fold cyclic cover of P2 branched
along F D 0 corresponding to the surjection ⇡1.P2 n C0 [ C/ ! Z6 which is defined using
the composition of the homomorphism " as above and the reduction modulo 6. The surface
V6.F / contains, as an open subset, the affine hypersurface in C3 given by the equation

(3.2) z
6 D F.x; y; 1/:

We shall assume that V6.F / supports a holomorphic action of the group �6 of roots of unity
of degree 6, extending the action of this group affine surface given by .x; y; z/ 7! .x; y; !6z/

where

!6 D exp
✓
2⇡

p
�1
6

◆
D 1C

p
�3

2

is selected primitive root of unity of degree 6. Such a smooth model V6 can be obtained for
example using an equivariant resolution of singularities of projective closure of (3.2).

Recall that the degree of the Alexander polynomial ÅC .t/ of C is equal to 2q, where q
is the irregularity q WD dimH

0
.V6;�

1
V6
/ of V6 (cf. [32]). Let E0 denote the elliptic curve with

j -invariant equal to zero. As its biregular model one can take the projective closure of affine
curve u2 C v

3 D 1.
We shall start the proof of Theorem 3.1 by describing the Albanese varieties of 6-fold

cyclic multiple planes V6. Such a description will be based on the following Decomposition
Theorem due to S. Roan (see [9, Theorem 3.2]).

Theorem 3.2. Let X be an abelian variety of dimension g and ˛ be an automorphism
of X of order d � 3. Let ˆ˛ be the collection of the eigenvalues of the automorphism ⇢˛

induced by ˛ on the universal cover of X and let Xh˛i be the union of fixed points of powers ˛i

for 1  i < d . Assume that Xh˛i is finite and #ˆ˛ D '.d/
2 , where ' is the Euler function. Then

'.d/ j 2g and .Q.⇠d /; ˆ˛/ is a CM-field (cf. [9, Section 3]). Moreover, there are k D 2g
'.d/

abelian varieties X1; : : : ; Xk of CM-type .Q.⇠d /; ˆ˛/ such that X factors as X1 ⇥ � � � ⇥Xk

and ˛ decomposes into a product of automorphisms of Xi induced by primitive d -th roots of
unity.

Recall (cf. [50]) that the Albanese variety of a smooth projective variety X is defined as

(3.3) Alb.X/ D H
0
.X;�

1
X /

⇤
=H1.X;Z/

5) Since we are interested in the Mordell–Weil group, which is a birational invariant of WF , the actual
choice of WF is not important. Nevertheless, a particular biregular model of WF will be given (cf. Lemma 3.9)
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and the Albanese map alb W X ! Alb.X/ is given by

(3.4) P 7!
Z P

P0

!;

where P0 is a base point and the integral in (3.4) is viewed as a linear function onH 0
.X;�

1
X /,

well defined up to the periods (i.e. the integrals over loops representing classes in H1.X;Z/).
The map alb is well defined up to translation (i.e. a choice of P0). A choice of a positive line
bundle on X yields a polarization of Alb.X/ making it into an abelian variety. In the case of
the cyclic multiple plane V6 we select a point P0 in the locus with maximal ramification index
of its projection onto P2. The map alb is universal in the sense that for any map X ! A into
an abelian variety A, there exists a factorization

(3.5) X ! Alb.X/ ! A:

It follows from (3.3) that when X carries a biholomorphic action of a group G fixing the base
point P0, the action of G on H 0

.X;�
1
X /, given by

g.!/ D .g
�1
/
⇤
!;

induces the action on Alb.X/. For this action the map alb is equivariant:

(3.6) alb.g � P / D g
�1
⇤ .alb.P //:

For example, for g 2 G one has

g
�1
⇤ alb.P / D

Z P

P0

.g
�1
/
⇤
! D

Z gP

gP0

! D alb.g � P /:

We will need also a local version of the above construction corresponding to the mixed
Hodge structure associated with a germ of plane curve singularity (with assumptions stated
below):

(3.7) f .x; y/ D 0:

While there are several constructions of a mixed Hodge structure associated with a germ of
singularity (3.7) (cf. [53]), we shall consider only the case when the monodromy action on the
cohomology of Milnor fiber is semi-simple (e.g. the ordinary cusps, nodes and more generally
the singularities appearing in Tables 1, 2 and 3 in Section 5). In this case one can identify the
(co)homology of the Milnor fiber with the (co)homology of the link of the surface singularity

(3.8) z
N D f .x; y/;

whereN is the order of the monodromy of the cohomology of Milnor fiber (cf. for example [37]
for a similar discussion). More precisely we have the following:

Lemma 3.3. Let (3.7) be a germ of a plane curve (possibly reducible and non-reduced)
with semi-simple monodromy of order N > 1 and the Milnor fiber Ff . Let Lf;N be link of
the corresponding surface singularity (3.8). Then there is the isomorphism of the mixed Hodge
structures

(3.9) .GrW
3 H

2
.Lf;N //.1/ D GrW

1 H
1
.Ff /;
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28 Cogolludo-Agustín and Libgober, Mordell–Weil groups of elliptic threefolds

where the mixed Hodge structure on the left is the Tate twist of the mixed Hodge structure
constructed in [19] or [20] and the one on the right is the mixed Hodge structure on vanishing
cohomology constructed in [52].6)

Recall that the construction of the mixed Hodge structure on the cohomology of a link
of an isolated singularity is based on the identification of the latter with the cohomology of the
punctured regular neighborhood of the exceptional set in a resolution for (3.8). Alternatively,
one can use the mixed Hodge structure on the local cohomology of (3.8) supported at the
singularity of (3.8). Dualizing one obtains the mixed Hodge structure on the homology as well.

Proof. Consider z as a holomorphic function on the germ VN;f of the surface singular-
ity zN D f .x; y/ (cf. (3.8)) and the Milnor fiber FN;f of z, i.e. the subset of VN;f given by
the equation z D t for fixed t . It has canonical identification with the Milnor fiber of f .x; y/
over tN . Monodromy of the Milnor fiber of z coincides with TN where T is the monodromy
of f D t . Denote by Z0 the subset of VN;f given by z D 0 and consider the Wang exact se-
quence of the mixed Hodge structures (cf. for example [18, Section 1.7]); below logTu is the
logarithm of the unipotent part of the monodromy which is trivial in our case and subscript 1
indicated the monodromy invariant subspace, i.e. the eigenspace with eigenvalue 1:

H
1
.VN;f �Z0/ ! H

1
.FN;f /1

log Tu����! H
1
.FN;f /1.�1/ ! H

2
.VN;f �Z0/ ! 0:

The last term of this sequence is zero since the Milnor fiber has the homotopy type of a
1-complex. Since logTu D 0 by our assumptions and since Lı

N;f
D LN;f nZ0 has the mixed

Hodge structure on its cohomology is constructed via the identification with the mixed Hodge
structure on VN;z nZ0, we obtain the isomorphisms

(3.10) H
1
.FN;f /1.�1/ D H

2
.L

ı
N;f /; GrW

3 H
1
.FN;f /1.�1/ D GrW

3 H
2
.L

ı
N;f /:

Identifying, as above, the Milnor fiber FN;f of z with the Milnor fiber of f , we obtain the
identification of the cohomology of punctured neighborhood Lı

f;N
with the cohomology of

Milnor fiber, i.e.
H

2
.L

ı
f;N / D H

1
.Ff /.�1/:

Moreover, the exact sequence of pair

H
2
.LN;f ; L

ı
N;f / ! H

2
.Lf;N / ! H

2
.L

ı
f;N / ! H

3
.LN;f ; L

ı
N;f /

yields the isomorphism

(3.11) GrW
3 H

2
.Lf;N / D GrW

3 H
2
.L

ı
f;N /

(in the case of irreducible germ the right homomorphism in (3.11) is trivial and GrW
3 can be

omitted). This together with (3.10) yields the claim of the lemma.

Example 3.4. Consider f D x
3 C y

3. For the order of the monodromy one hasN D 3

and

rkH 1
.Ff ;Q/ D 4; rk GrW

2 H
1
.Ff ;Q/ D 2 and rk GrW

1 H
1
.Ff ;Q/ D 2:

6) Semi-simplicity assumption is yielded automatically if f is irreducible in which case H1
.Ff / is pure of

weight 1.
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On the other hand Lf;3 can be viewed as the link of surface singularity x3 C y
3 C z

3 D 0

which is the circle bundle over the elliptic curve in P2 given by the same equation. Gysin exact
sequence yields that rkH 2

.Lf;3/.1/ D 2. Both Hodge structure have natural identification with
the Hodge structure of the elliptic curve with j D 0.

Construction of the mixed Hodge structure on either side of (3.9) yields that the type of
this mixed Hodge structure on corresponding homology is

(3.12) .�1;�1/; .�1; 0/; .0;�1/; .0; 0/:
In fact with the assumption of semi-simplicity made in Lemma 3.3 the mixed Hodge structure
on the homology of Milnor fiber is pure of type .�1; 0/; .0;�1/. The equivalence of categories
of such mixed Hodge structures without torsion and the categories of 1-motifs constructed
in [17, 10.1.3] allows to extract the abelian variety A which is the part of structure of 1-motif.
We shall refer to this abelian variety as the local Albanese variety of the singularity (3.7). The
polarization of the Hodge structure on GrW

�1, required for such an equivalence, is the standard
polarization of such graded component associated with the Milnor fiber.

In the case of the cusp x2 D y
3 the assumptions of Lemma 3.3 are fulfilled. One can

also describe the construction of corresponding local Albanese variety as taking the quotient
of .Gr0

F GrW
1 /

⇤ by the homology lattice of the closed Riemann surface which is the compact-
ified Milnor fiber. In particular, the Hodge structure on the cohomology of its Milnor fiber
x

2 D y
3 C t is the Hodge structure of the elliptic curve E0 with j D 0.

The above discussion yields:

Corollary 3.5. The eigenvalues of the generator z 7! z � exp.2⇡
p

�1
N / of the group of

covering transformations (3.8) acting on the cohomology of the singularity link (3.8) coincide
with the eigenvalues of the action of the monodromy on the cohomology of the Milnor fiber (3.7)
(cf. [32] or [35, Section 1.3.1]). The eigenvalues of the above generator of the group of deck
transformations of the germ (3.8) acting on Gr0

F GrW
1 .H

1
.LN;f // have the form e

2⇡
p

�1˛

where ˛ runs through the elements the spectrum of the singularity (3.7) which belongs to the
interval .0; 1/ (cf. [40]).

For example, in the case of the cusp x2 D y
3 the monodromy corresponding to the path

e
2⇡

p
�1s (0  s  1) in the positive direction given by the complex structure yields the mon-

odromy of the Milnor fiber FN;f in Lemma 3.3 given by

.x; y; z/ 7!
⇣
xe

2⇡
p

�1s
2 ; ye

2⇡
p

�1s
3 ze

2⇡
p

�1s
6

⌘
:

In order to apply Theorem 3.2 to Alb.V6/, we shall need the following:

Lemma 3.6. Let, as above, V6 be a smooth Z6-equivariant model of a cyclic 6-fold
covering space of P2 branched over a curve with only nodes and cusps as singularities. Let T
be a generator of covering group of V6. The automorphism of Alb.V6/ induced by T has only
one eigenvalue (which is a primitive root of unity of degree 6).

Proof. Note that it follows from [32] that the Alexander module of a cyclic multiple
plane branched over a curve with nodes and cusps, up to summands QŒt; t�1

ç=.t � 1/, is iso-
morphic to a direct sum

(3.13) ŒQŒt; t�1
ç=.t

2 � t C 1/ç
s
:
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More precisely, the proof of the Divisibility Theorem [32] shows that the Alexander module is
a quotient of the direct sum of the Alexander modules of all singularities or, equivalently, the
direct sum of the homology of Milnor fibers of singularities with module structure given by the
action of the monodromy (in the present case of the cusp x2 D y

3 the local Alexander module
is just one summand in (3.13)).

Since the divisibility result is stated in [32] with assumption of irreducibility of the ramifi-
cation locus C of (3.2), we shall review the argument. Denote by T .C/ a tubular neighborhood
of C in P2 and consider the surjection

(3.14) ⇡1.T .C/ n C/ ! ⇡1.P2 n C/

induced by embedding (the surjectivity is a consequence of the surjectivity, for D ⇢ T .C/, of
the map ⇡1.D nD \ C/ ! ⇡1.P2 n C/, in turn, following from the weak Lefschetz theorem).
The surjection (3.14) induces the surjection of the homology of 6-fold cyclic coverings:

(3.15) H1..T .C/ n C/6;Z/ ! H1..P
2 n C/6;Z/:

On the other hand, the covering space .T .C/ n C/6 decomposes as

(3.16) .T .C/ n C/6 D
[

P

.BP n C/6 [ .U n C/6;

where Bi are small regular neighborhoods of all singular points P of C , U is the regular
neighborhood of the smooth locus of C and the subscript designates the 6-fold cyclic cover.
The corresponding Mayer–Vietoris sequence yields a surjection:

(3.17)
M

P

H1..BP n C/6;Q/˚H1..U n C/6;Q/ ! H1..T .C/ n C/6;Q/:

One can view the cohomology of the 6-fold cover of .BP n C/6 as the cohomology of the
punctured neighborhood of the part of exceptional curve in resolution of 6-fold cover of BP

branched over BP \ C outside of proper preimage of C . For any cusp P the deck transforma-
tion acting on Gr0

F GrW
1 .H

1
..BP n C/6// has as eigenvalue the same primitive root of unity of

degree 6 (corresponding to the element in the spectrum of x2 D y
3 in the interval .0; 1/; in the

case of the action on cohomology this part contains only 5
6 ).

Each of the other spaces .U n C/6; .T .C/ n C/6 appearing in (3.17) can be viewed as a
punctured neighborhood of a quasi-projective variety and as such also supports the canonical
mixed Hodge structure (cf. [20]). Moreover, the sequence (3.17) is a sequence of mixed Hodge
structures. It is shown in [32] that the map

(3.18) H1..T .C/ n C/6;Q/ ! H1.V6;Q/

is surjective and that the composition of (3.17) and (3.18) takes H1..U n C/6;Q/ to zero.
Both sequences (3.17) and (3.18) are equivariant with respect to the deck transforma-

tions. The sequence (3.18) yields that any eigenvalues of T acting on Gr0
FH

1
.V6/ must be

an eigenvalue of T acting on Gr0
F GrW

1 H
1
..T .C/ n C/6;Q/ which is different from 1, i.e. is

the eigenvalue of monodromy acting on Milnor fiber of cusp and corresponding to the part of
spectrum in .0; 1/.

This implies that the action of the deck transformation on Alb.V6/ is the multiplication
by the same root of unity of degree 6 as well (exponent of the only element of the spectrum
belonging to .0; 1/). Also note that an i -th power of this automorphism (1  i < 6) has zero as
the only fixed point, since the existence of a fixed point for such an i would yield an eigenspace
of the monodromy corresponding to an eigenvalue which is not a primitive root of degree 6.
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Theorem 3.2, when applied to X D Alb.V6/ with g D q D h
1;0
.V6/, and d D 6, shows

(since the condition on the fixed point sets follows from the explicit form of the action on
H

0
.V6;�

1
V6
/) that k D q and that each component X1; : : : ; Xq is the elliptic curve with an

automorphism of order 6, i.e. the curve E0 with j D 0.
Hence we obtain the following:

Proposition 3.7. Let V6 be a 6-fold cyclic multiple plane with branching curve having
only nodes and cusps as singularities with irregularity q. Then

Alb.V6/ D E
q
0 :

In particular, for the set of morphisms taking P0 to the zero of E0 one has

Mor.V6; E0/ D Hom.Eq
0 ; E0/:

Next we shall reformulate this proposition in terms of the Mordell–Weil group of split
elliptic threefoldW D V6 ⇥E0 viewed as elliptic curve defined over C.V6/ (and which can be
viewed as a cover of WF cf. Section 3.2).

Recall that given an extension K=k and an abelian variety A over K, one has an abelian
variety B over k (called the Chow trace) and homomorphism ⌧ W B ! A defined over k such
that for any extension E=k disjoint fromK and abelian variety C over E and ˛ W C ! A over
KE exist ˛0 W C ! B such that ˛ D ⌧ ı ˛0 (cf. [30, p. 97]).

In particular, toW over C.V6/, one can associate Chow trace which is the elliptic curveB
over C such that quotient of the group of C.V6/-points ofW by the subgroup of C-points of B
is a finitely generated abelian group (Mordell–Weil Theorem cf. [41] and [30, Theorem 1]). The
Chow trace B ofW isE0 and the group ⌧BC is the subgroup in C.V6/ of points corresponding
to constant maps V6 ! E0. We shall denote by MW.W / the quotient of the group of C.V6/-
points by the subgroup of torsion point and the points of Chow trace. As already mentioned,
MW.W / is a finitely generated abelian group. Proposition 3.7 can be reformulated in terms of
the Mordell–Weil group as follows:

Corollary 3.8. The Mordell–Weil group of C.V6/-points of V6 ⇥E0 is a free ZŒ!6ç

module having rank q (where q is the irregularity of V6).

Proof. Non-zero elements of this Mordell–Weil group are represented by the classes
of non-constant sections of V6 ⇥E0 ! V6. Those corresponds to the maps V6 ! E0 up to
translation. Hence the corollary follows from Propositions 3.7.

Next we shall return to the threefoldWF which is a smooth birational model of (3.1). We
shall view it as an elliptic curve over the field K D C.x; y/. Note that it splits over the field
K.F

1
6 / D C.V6/.

3.2. Elliptic pencils on multiple planes and P2
-points of elliptic threefolds. We

want to have an explicit correspondence between the elliptic pencils on V6 and P2 points
of WF .7) This is used in Theorem 3.10 below to obtain the relation between the Mordell–Weil

7) Following classical terminology, by elliptic (resp. rational) pencil we mean a morphism onto an elliptic
(resp. rational) curve. An orbifold morphism onto a rational orbifold curve of elliptic type induces an elliptic pencil
cf. Remark 2.12.
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32 Cogolludo-Agustín and Libgober, Mordell–Weil groups of elliptic threefolds

group of P2-points of WF and the Mordell–Weil group of C.V6/-points of the split threefold
W D V6 ⇥E0 and is based on Lemma 3.9 below. Before we state it we shall introduce several
notations. Compactifications WF of the threefold (3.1) have several useful biregular models in
weighted projective spaces and their products which we shall derive. We can view E0 as the
curve given by the equation u3 C v

2 D w
6 in weighted projective plane P .2; 3; 1/. Let EQ be

a surface in the P .2; 3; 1/ ⇥ P1 given by

(3.19) A
6
.u

3 C v
2
/ D w

6
B

6
:

By prEQ

P.2;3;1/
(resp. prEQ

P1 ) we shall denote the projections to the factors. Clearly, the map given
by

.u; v; w;A;B/ 7! .A
2
u;A

3
v; Bw;A;B/

takes EQ ⇢ P .2; 3; 1/ ⇥ P1 to the surface in P .2; 3; 1/ ⇥ P1 given by u2 C v
3 D w

6 (no de-
pendence on .A;B/), which is isomorphic toE0 ⇥ P1. The action of �6 onEQ corresponding
to the standard action on E0 and trivial action on P1 is given by .A;B/ ! .A; !6B/.

We denote by V 6 the biregular model of the cyclic cover of P2 branched over F D 0 and
z D 0, which is the surface in P2 ⇥ P1 given by

(3.20) V 6 WD π.Œx W y W zç; ŒM W N ç/ 2 P2 ⇥ P1 j z6k
M

6 D N
6
F.x; y; z/º:

The action of the deck transformation is given by

.M;N / 7! .M;!6N/:

The projection on the first (resp. the second) factor will be denoted by prV 6

P2 (resp. prV 6

P1 ).
We shall consider the threefold

(3.21) W D V 6 ⇥P1 EQ

with the fibered product taken relative to the maps prV 6

P1 and prEQ

P1 respectively with coordinates
of respective copies of P1 identified using the relation

(3.22)
N

M
D A

B
:

The birational equivalence between EQ and E0 ⇥ P1 yields the birational isomorphism

(3.23) W ! V 6 ⇥E0;

i.e. W is a projective model of W .

Lemma 3.9. The threefold eW F in P .2; 3; 1; 1; 1/ given by

(3.24) .u
3 C v

2
/z

6.k�1/ D F.x; y; z/

is birationally equivalent toW=�6 with the diagonal action of �6. It contains the hypersurface
(3.1) as an open set, i.e. is a model of WF .

Proof. The equations of W in P2 ⇥ P1 ⇥ P .2; 3; 1/ ⇥ P1 are (3.19), (3.20) and (3.22).
Hence W is biregular to complete intersection in P2 ⇥ P .2; 3; 1/ ⇥ P1 given by

(3.25) z
6k
M

6 D N
6
F.x; y; z/; N

6
.u

3 C v
2
/ D w

6
M

6
:
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Projection of this complete intersection on P2 ⇥ P .3; 2; 1/ has as its image the set of points
.u; v; w; x; y; z/ for which the determinant of the system (3.25) in M 6

; N
6 is zero, i.e. is the

hypersurface given by

(3.26) z
6k
.u

3 C v
2
/ D w

6
F.x; y; z/:

Clearly this projection is a cyclic �6-covering of the hypersurface (3.26). Alternatively it is the
quotient of (3.25) by the action of �6 given by .M;N / 7! .M;!6N/. Moreover it shows that
(3.26) is the quotient of W by the diagonal (as follows from (3.22)) action of �6. Finally both
the hypersurface in the statement of Lemma 3.9 and (3.26) have WF as a Zariski open subset
which yields the statement.

Next we compare the C.V6/-points of E0 and the P2-points of the elliptic threefoldWF .
For V6, which is a non-singular model of V 6, the C-split elliptic threefold W D V6 ⇥E0,
as above, is the elliptic curve over C.V6/ obtained by the field extension C.V6/=C. The
C.V6/-points of W correspond to the rational maps V6 ! E0, which also can be viewed as
sections of the projection W ! V6 by associating with a map its graph in W and vice versa.
The corresponding Mordell–Weil group was calculated in Corollary 3.8.

The group �6 acts (diagonally) on W and hence also on MW.W /. We denote the in-
variant subgroup as MW.W /

�6 . To a �6-invariant element V6 ! W of MW.W / corresponds
a �6-invariant V6-point � W V6 ! E0 in the sense that �.�.v// D ��.v/; .� 2 �6/. Its graph
Ä� ⇢ V6 ⇥E0 is �6-invariant and taking the �6-quotient yields the map

(3.27) P2 D V6=�6 D Ä=�6 ! W=�6 D WF :

Hence we obtain a P2-point of WF . Vice versa a section P2 ! WF lifts to a birational map
of cyclic covers, i.e. the map V6 ! W D V6 ⇥E0 (which follows from comparison of the
complements to the branching loci of both coverings). This yields an equivariant elliptic pencil
(i.e. commuting with the �6-action).

Theorem 3.10. The correspondence � 7! Ä�=�6 induces an isomorphism

MW.W /
�6 ! MW.WF /:

In particular, rk MW.WF / D 2q.V6/.

Proof. It is enough to check that for two equivariant maps �1;�2 in the same coset of
the Chow trace the map V ! E0 given by v 7! �1.v/ � �2.v/ is constant with image 0 2 E0.
Indeed this is a map to a point which due to equivariance should be the �6-fixed point of E0,
i.e. zero.

To see the second part, since End.E0/ D ZŒ!6ç, we infer from Proposition 3.7 or Corol-
lary 3.8 that

Mor.V6; E0/ D Hom.Eq
0 ; E0/ D ZŒ!6ç

q
:

The action of the group �6 on Alb.V6/ is via multiplication by !6 (i.e. as is in the case of local
Albanese of the cusp). Since all elements in End.E0/ commute with complex multiplication,
the action of �6 on End.E0/ is trivial and one obtains 2q as the Z-rank of MW.WF /.

Proof of Theorem 3.1. It follows immediately from Theorem 3.10 and the well-known
relation between the degree of the Alexander polynomial and the irregularity of cyclic multiple
planes (cf. [32]).
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34 Cogolludo-Agustín and Libgober, Mordell–Weil groups of elliptic threefolds

Corollary 3.11 (cf. [27]). For a degree 6 curve with six cusps, the Z-rank of MW.WF /

is equal to 2 (resp. 0) if the cusps belong (resp. do not belong) to a conic. For a degree 6 curve
with seven, eight and nine cusps, the Z-ranks of MW.WF / are equal to 2, 4 and 6 respectively.

3.3. A bound of the rank of Mordell–Weil group of an elliptic threefold.

Theorem 3.12. If d D 6k is the degree of a homogeneous polynomial F 2 CŒx; y; zç,
for which the corresponding curve C WD πF D 0º has only nodes and cusps as singularities,
then the Z-rank of the Mordell–Weil group of WF satisfies

rk MW.WF /  5

3
d � 2:

Proof. Let ` ⇢ P2
.x; y; z/ be a generic line in the base of the elliptic threefold

⇡ W WF ! P2
:

Then MW.WF / ! MW.⇡
�1
.`// is injective (cf. [27]) and a bound on rk MW.⇡

�1
.`// there-

fore yields a bound on the rank of MW.WF /.
On the other hand,

h
1;1
.⇡

�1
.`// � rk NS.⇡�1

.`// � rk MW.⇡
�1
.`//:

The surface ⇡�1
.`/ is a hypersurface in the weighted projective space P3

.3k; 2k; 1; 1/,
which is a quotient of the surface in P3 given by the equation

W W P
2 D Q

3 C F j`
with the action of the group

Gk D Z3k ˚ Z2k; .P;Q; a; b/ 7! .!
i
3kP;!

j
2k
Q; a; b/

(a; b are the coordinates of `). The set of singularities of P3
=Gk corresponding to the fixed

points of subgroups of Gk consists of two points if k D 1 (i.e. .1; 0; 0; 0/; .0; 1; 0; 0/) and of
the line .P;Q; 0; 0/ if k > 1. These points are outside of W if k D 1 and hence the surface
⇡

�1
.`/ is non-singular. In the case k > 1 the surface W has one singular point p D .1; 1; 0; 0/.

For all k, the elliptic surface ⇡�1
.`/ with blown up point p has an elliptic fibration with

6k D degF degenerate fibers each being isomorphic to a cubic curve with one cusp. Indeed,
this elliptic fibration B

⇡
�1
.`/ for any singular fiber has additive reduction and the order of

vanishing of the discriminant, i.e. the order of F j2
`

is equal to 2 since ` is generic. Therefore
all fibers of B

⇡
�1
.`/ are irreducible (cf. [48, (13)]) and hence biregular to a cuspidal cubic.8)

Moreover,
etop

⇣B
⇡

�1
.`/

⌘
D 12k;

i.e. by the Noether formula

�

⇣B
⇡

�1
.`/

⌘
D k D d

6
:

Hence, using the calculation of the Hodge diamond of an elliptic surface (cf. [48, Section 6.9])
and the Tate–Shioda formula (cf. [48, Corollary 6.13]), we derive

(3.28) rk MW.⇡
�1
.`// D ⇢.⇡

�1
.`// � 2  h

1;1 � 2 D 10� � 2 D 10k � 2;
which gives the claim.

8) The authors are grateful to referee for providing this argument.
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This immediately yields:

Corollary 3.13. The degree of the Alexander polynomial of an irreducible curve C of
degree d D 6k whose singularities are only nodes and cusps satisfies

degÅC  5

3
d � 2:

4. Quasi-toric relations corresponding to cuspidal curves

4.1. Quasi-toric relations and P2
-points of elliptic threefolds. In this section we

shall present an explicit relation between the quasi-toric relations introduced in Section 2.3
and the elements of the Mordell–Weil group of WF . Such a relation is expected since it was
shown earlier that quasi-toric relations correspond to elliptic pencils on cyclic multiple planes
and orbifold pencils (cf. Section 2.3). On the other hand in the last section such pencils were
related to the Mordell–Weil groups.

Let us consider the map from the threefold defined in (3.24) onto P2 induced by the
projection centered at x D y D z D 0

Œu; v; x; y; zç 2 P .2; 3; 1; 1; 1/ n πŒu; v; 0; 0; 0çº(4.1)
# #

Œx; y; zç P2
:

Note that a rational section of this projection is given by

(4.2) s.x; y; z/ D Œf .x; y; z/; g.x; y; z/; xeh.x; y; z/; yeh.x; y; z/; zeh.x; y; z/ç;

where 2.degehC 1/ D degf and 3.degehC 1/ D degg, satisfying

.zeh/6.d�1/
.f

3 C g
2
/ D .ehd

/
6
F

and hence
z

6.d�1/
�
f

3 C g
2
�

Deh6
F:

As F can be chosen not to be divisible by z, by the unique factorization property of CŒx; y; zç,
we get

h WD
eh

z6.d�1/
2 CŒx; y; zç;

and hence
f

3 C g
2 D h

6
F

is a quasi-toric relation of F .
Conversely, given any quasi-toric relation f 3Cg2 D h

6
F , for certain f; g; h 2 CŒx; y; zç

such that 2.deg hC d/ D degf and 3.deg hC d/ D degg, the map

s.x; y; z/ D Œf .x; y; z/; g.x; y; z/; xz
d�1

h.x; y; z/; yz
d�1

h.x; y; z/; z
d
h.x; y; z/ç

results in a section of the projection (4.1).
As a consequence, we obtain the following proposition.
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Proposition 4.1. The degree of the Alexander polynomial is equal to the number of
equivalence classes of quasi-toric relations which correspond to independent elements (over
ZŒ!6ç) of the Mordell–Weil group of WF given by equation (3.24).

Also, using Theorem 3.10 and projection (4.1), one can give formulas for the additive
structure in MW.WF /. By Corollary 3.8, it is enough just to give the action of ZŒ!6ç on the
sections in MW.WF / and the addition. Consider the sections

�1 WD
✓
f2

h
2
1

;
f3

h
3
1

; x; y; z

◆
and �2 WD

✓
g2

h
2
2

;
g3

h
3
2

; x; y; z

◆

of W ı
F and assume for simplicity that h1 D h2 D 1. Then one has the following.

Proposition 4.2. Under the above conditions, we have

(4.3) !6�1 D .!6f2;�f3; x; y; z/;

also, if �1 ¤ �2, then

�1 C �2 D
✓
g2f

2
2 C g

2
2f2 C 2g3f3 � 2F
.f2 � g2/

2
;(4.4)

3f2g2.f3g2 � g3f2/C .f3 � g3/.g3f3 � 3F /
.f2 � g2/

3
; x; y; z

◆
:

Otherwise, we have

(4.5) 2�1 D
✓

�f2
9f

3
2 C 8f

2
3

4f
2

3

;�27f
6

2 C 36f
3

2 f
2

3 C 8f
4

3

8f
3

3

; x; y; z

◆
:

Proof. Since !6.u; v/ D .!6u;�v/, one obtains (4.3). The formulas can be easily ob-
tained from the well-known formulas of the group law in E0 (cf. [51, Chapter III.3]).

Next we shall describe a geometric property of generators or the Mordell–Weil group
viewed as elliptic pencils.

4.2. Primitive quasi-toric relations and orbifold maps. An alternative way to see that
every quasi-toric relation of F contributes to the degree of its Alexander polynomial comes
from the theory of orbifold surfaces and orbifold morphisms reviewed in Section 2.2.

As mentioned before, the elements of the Mordell–Weil group MW.WF / are represented
by �6-equivariant surjective maps V6 ! E0 (which we called elliptic pencils). To end this sec-
tion, we will relate those which have irreducible generic members to generators of the Mordell–
Weil group.

Definition 4.3. We call an elliptic pencil V6 ! E0 primitive if its generic fiber is irre-
ducible.

One has the following result.

Proposition 4.4. An elliptic pencil f W V6 ! E0 is non-primitive if and only if there
exists an elliptic non-injective homomorphism � 2 Hom.E0; E0/ such that f D � ı '.
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Proof. It is enough to check that the Stein factorization of a non-primitive pencil

f W V6 ! E0

factorizes through an elliptic curve f D � ı ', where � 2 Hom.E0; E0/ and ' is a primitive
elliptic pencil.

In order to see this, one can use the cyclic order-six action �6 and one obtains a pencil

ef W V6=�6 ! E0=�6 D P1
2;3;6;

where P1
2;3;6 is P1 with an orbifold structure 2, 3, 6. Using the Stein factorization on ef , we get

V6=�6
e'�! S

e��! P1
2;3;6;

where ef D e� ıe'. Since V6=�6 is a rational surface, one obtains that S D P1 with an orbifold
structure given by at least three orbifold points of orders 2, 3, and 6. The orbifold points of
order 2 and 3 correspond to double and triple fibers, whereas the order 6 point corresponds
to a non-reduced (but not multiple) fiber of type h6

F where F is the branch locus of the
6-fold cover of P2. By Proposition 2.8, pencils of curves cannot have more than two multiple
members, hence S D P1

2;3;6. The 6-fold cover E0 of S ramified with orders 2, 3, and 6 on the
three orbifold points of S allows for the existence of a factorization of f , say V6

'! E0
�! E0

induced bye' ande� . Sincee' is primitive, the map ' is also primitive.

Remark 4.5. Note that the elliptic pencil obtained by 2�1 should be non-primitive,
since it factors through E0 ! E0, given by the degree 4 map x 7! 2x (see Proposition 4.4). In
fact, 2�1 produces the following quasi-toric relation:

k
3
2 C k

2
3 C 64f

6
3 F D 0;

where k2 WD f2.9f
3

2 C 20f
2

3 /, k3 WD .27f
6

2 C 36f
3

2 f
2

3 C 8f
4

3 / (from (4.5)), and

˛k
3
2 C ˇk

2
3 D H.˛;ˇ/.f

3
2 ; f

2
3 /

is non-irreducible since

H.˛;ˇ/.x; y/ D 1728.ˇ � ˛/x2
y

2 C .576˛ � 512ˇ/xy3 C 729.ˇ � ˛/x4

C 64ˇy
4 C 1944.ˇ � ˛/x3

y

which decomposes into a product of four factors of type .y � �.˛; ˇ/x/, since H.˛;ˇ/.x; y/ is
a homogeneous polynomial of degree 4 in x; y.

Note that k3
2 and k2

3 are the union of four members (counted with multiplicity) of the
pencil f̨ 3

2 C f̌
2

3 . Also, note that ˛k3
2 C ˇk

2
3 is a non-primitive pencil whose generic member

also consists of four members of f̨
3

2 C f̌
2

3 .
In particular, the four-to-one mape� W P1 ! P1 given by

e�.Œx W y W zç/ WD Œx.9x � 20y/3 W .27x2 � 36xy C 8y
2
/
2
ç

is such that ef D e� ıe' is the Stein factorization of ef , where

e'.Œx W y W zç/ D Œf
3

2 .x; y; z/ W �f 2
3 .x; y; z/ç

and
ef .Œx W y W zç/ D Œk

3
2.x; y; z/ W k2

3.x; y; z/ç:
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Summarizing the previous results, one obtains:

Corollary 4.6. Let 2q be the degree of the Alexander polynomial of F , then there exist
q primitive quasi-toric relations �1; : : : ; �q of F such that

MW.WF / D ZŒ!6ç�1 ˚ � � � ˚ ZŒ!6ç�q;

where the action of ZŒ!6ç on �i is described in (4.3), (4.4) and (4.5).

Proof. By Proposition 4.1 there exist q quasi-toric relations �1; : : : ; �q of F such that
MW.WF / D ZŒ!6ç�1 ˚ � � � ˚ ZŒ!6ç�q . The only question left to be proved is whether or not
the quasi-toric relations �i can be chosen to be primitive. By Proposition 4.4, if �i was not
primitive, then �i D �e� i for a certain � 2 ZŒ!6ç D Hom.E0; E0/ and e� i primitive. Since �
cannot be a unit, it follows thate� i … ZŒ!6ç�1 ˚ � � � ˚ ZŒ!6ç�q , which contradicts our assump-
tion.

Theorem 4.7. For any irreducible plane curve C D πF D 0º whose only singularities
are nodes and cusps the following statements are equivalent:

(1) C admits a quasi-toric relation of elliptic type .2; 3; 6/,

(2) C admits an infinite number of quasi-toric relations of elliptic type .2; 3; 6/,

(3) ÅC .t/ is not trivial, i.e. ÅC .t/ ¤ 1.

Moreover, the set of quasi-toric relations of C ,

π.f; g; h/ 2 CŒx; y; zç3 j f 2 C g
3 C h

6
F D 0º;

has a group structure and it is isomorphic to Z2q , where ÅC .t/ D .t
2 � t C 1/

q . Also, C ad-
mits a finite number of primitive quasi-toric relations iff q D 1.

Proof. For the first part, (1) , (2) is an immediate consequence of the group structure
of the set of quasi-toric relations, namely, once a quasi-toric relation � is given, the set ZŒ!6ç�

provides an infinite number of such relations. Also (1) , (3) is a consequence of Proposi-
tion 4.1.

For the moreover part, the group structure and its rank is a consequence of the discussion
in the previous subsection (see Proposition 4.1). The result about the cardinality of primitive
quasi-toric relation can be shown as follows. As a consequence of Corollary 4.6, any two sets
of q independent (over ZŒ!6ç) primitive quasi-toric relations differ by a matrix in GLq.ZŒ!6ç/.
Note that GL1.ZŒ!6ç/ D ZŒ!6ç

⇤ is a finite group whereas GLq.ZŒ!6ç/ is infinite for q � 2

since it contains the subgroup generated by
 
An 0

0 Iq�2

!
where An WD

 
1 n

1 nC 1

!

and Iq�2 is the identity matrix of rank q � 2. Hence the result follows.

Remark 4.8. As Theorem 4.7 states, the set of quasi-toric relations of such curves, if
non-empty, should be infinite. This corrects the statement in [29, Theorem 1 (ii)].

Also this result has been recently noticed by Kawashima–Yoshizaki in [25, Proposi-
tion 3]. In this paper, a quasi-toric relation �0 is considered to build an infinite number of
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quasi-toric relations �n. One can check that in fact, using the group structure described above,
�n D .!6 C 1/

n
�0. The resulting quasi-toric relations �n are not primitive and the generic

member of the pencil associated with �n is the product of 3n members of the original pencil as-
sociated with �0, which incidentally is the degree of the morphismE0 ! E0, x 7! .!6C1/nx.

5. Alexander polynomials of ı-curves

In this section we extend the results of previous sections to singularities more general
than nodes and cusps.

Let us consider the general situation described in Section 2.1, that is, fix F 2 CŒx; y; zç,
a homogeneous polynomial of degree d which is not a power, whose set of zeroes in P2 is the
curve C . By (2.2) this is equivalent to fixing a projective plane curve C D C1 [ � � � [ Cr and
a list of multiplicities ."1; : : : ; "r/ (such that gcd.ei / D 1) or a surjection

"F W ⇡1.P
2 n C0 [ C/ ! Z

(where C0 is a line at infinity transversal to C ) such that "F .�i / D "i , �i a meridian around Ci .
Recall that "i corresponds to the multiplicity of the i -th irreducible component of F .

5.1. Definition of ı-curves and classification of ı-essential singularities with respect

to " with ı D 3; 4; 6.

Definition 5.1. Let .C ; P / be a germ of a singular point of C . We call .C ; P / a ı-es-
sential singularity (resp. ı-co-prime singularity) w.r.t. " if and only if the roots of ÅC ;";P .t/

are all ı-roots of unity (resp. no root of ÅC ;";P .t/ is a ı-root of unity except for t D 1).
We say that a curve C ⇢ C2 has only ı-essential singularities if there exists an epi-

morphism " W H1.C2 n C/ ! Z such that .C ; P / is a ı-essential singularity w.r.t. "P for all
P 2 Sing.C/ (see (2.3) to recall the construction of "P ).

A curve C is called ı-partial w.r.t. a homomorphism " if any singularity P of C is either
ı-essential or ı-co-prime.

We also call a curve ı-total w.r.t. to a homomorphism " if it is ı-partial and all the roots of
the global Alexander polynomialÅC ;".t/ w.r.t. " are roots of unity of degree ı (not necessarily
primitive).

Remark 5.2. The curves whose only singularities are (reduced) nodes and cusps nec-
essarily have 6-essential singularities. As another example one can consider C D C0 [ C1,
where C1 is the tricuspidal quartic and C0 is its bitangent and the epimorphism " mapping the
meridian of C0 to 2 and the meridian of C1 to 1 (i.e. the homomorphism of type .2; 1/. The
local Alexander polynomial of C at a tacnode w.r.t. " is given by .t3 C 1/, whereas at a cusp
it is simply t2 � t C 1. Therefore all singularities of C w.r.t. homomorphism of type .2; 1/ are
6-essential. In particular, by Proposition 2.2, C is a 6-total curve.

Also note that tacnodes w.r.t. homomorphism of type .1; 1/ are 4-essential singularities
as well as nodes w.r.t. the homomorphism of type .1; 2/.

As for 3-essential singularities, one has A5-singularities w.r.t. " of type .1; 1/ and nodes
w.r.t. " of type .1; 3/.9)

9) Here and below we use standard ADE-notations for germs of simple plane curve singularities. In particu-
lar, the germs of An-singularities (resp. Dn-singularities) are locally equivalent to xnC1 C y

2 (resp. x2
y C y

n�1).
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Proposition 5.3. A curve with only ı-essential singularities is ı0-total for some ı0 j ı.

Proof. The result is an immediate consequence of Proposition 2.2.

Note that the converse of Proposition 5.3 is not true (see Section 6).
Also, Proposition 5.3 can be sharpened using [14], so that not all singularities are required

to be ı-essential.

Remark 5.4. Note that there are examples of ı-partial curves that are not ı-total, for
instance a union of two cuspidal cubics intersecting each other at three smooth points with
multiplicity of intersection 3, that is, a sextic C with singularities 2A2 C 3A5

10) has Alexan-
der polynomial ÅC .t/ D .t

2 � t C 1/
2
.t

2 C t C 1/ (cf. [44]). Therefore C is 3-partial but not
3-total. This curve will be studied in more detail in Example 6.6.

Proposition 5.5. Let .C ; P / be a germ of curve singularity and let ⇡ W eC2 ! C2 be a
birational morphism such that the support of the total pull-back ⇡⇤

.C/ is a normal crossing
divisor on eC2. Let mi;j be the multiplicity of ⇡⇤

fj where fj is the local equation of the j -th
branch of C at P along the exceptional curve Ei of ⇡ . Let "j be the value of " on the meridian
corresponding to fj . Then the local Alexander polynomial of C at P w.r.t. " is given by

(5.1) ÅC ;";P D .t � 1/
Y

i

.1 � t
P

j mi;j "j /
��.E0

i /
;

where E0
i D Ei nSk j k¤i Ek and � is the topological Euler characteristic.

Proof. Indeed, the infinite cyclic cover of the complement to the zero set of the germ of
C at P corresponding to the homomorphism " can be identified with the Milnor fiber of non-
reduced singularity f "1

1 � � � f "r
r . Now the claim follows from A’Campo’s formula (cf. [1]).

Remark 5.6. Proposition 5.5 allows one to compile a complete list of ı-essential sin-
gularities with ı  k.

In Table 1 a list of the possible 6-essential singularities is given. The first column shows
the number of local branches of the singularity. The second column contains the reduced type
of the singularity. The third column shows a list of all possible multiplicities for the branches.
It is a consequence of the divisibility conditions on the multiplicities of each branch imposed
by Proposition 5.5 which follows from the requirement to have a 6-essential singularity; see
the proof below.

The forth column gives the list of multiplicities .s1; s2; s3; s6/ of the irreducible factors
of the Alexander polynomial in QŒt ç

ÅP;".t/ D .t � 1/s1.t C 1/
s2.t

2 C t C 1/
s3.t

2 � t C 1/
s6 :

Finally the fifth column shows that the set of logarithms belonging to the interval .0; 1/
of the eigenvalues of (the semi-simple part of) the monodromy acting on Gr0

F GrW
1 of the co-

homology of the Milnor fiber.
10) That is, the set of singularities consists of two points of type A2 and three points of type A5. Similar

notations will be used in the rest of the paper.
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r reduced singularity type possible types of " Alexander
polynomials
.s1; s2; s3; s6/

weight 1 part
of spectrum in

.0; 1/

1 A2 ⌘ y
2 � x3

.1/ .0; 0; 0; 1/
5
6

2

A1 ⌘ y
2 � x2

.1; 1/ .1; 0; 0; 0/ ;
A3 ⌘ y

2 � x4
.2; 1/ .2; 0; 0; 1/

5
6

A5 ⌘ y
2 � x6

.1; 1/ .1; 0; 1; 1/
2
3 ;

5
6

3

D4 ⌘ y
3 � x3

.4; 1; 1/, .3; 2; 1/,
.2; 2; 2/, .1; 1; 1/

.2; 1; 1; 1/

.2; 0; 1; 0/

2
3 , 5

6 , 2
3

D6 ⌘ .x
2 � y4

/y .1; 1; 2/ .2; 1; 1; 1/
2
3 ;

5
6

.x
3 � y6

/ .1; 1; 1/ .2; 2; 1; 2/
2
3 ;

5
6

4
.x

4 � y4
/ .3; 1; 1; 1/; .2; 2; 1; 1/ .3; 2; 2; 2/

1
3 ;

2
3 ;

5
6

.x
2 � y4

/.y
2 � x4

/ .1; 1; 1; 1/ .3; 2; 2; 2/
1
3 ;

2
3 ;

5
6

5 x
5 � y5

.2; 1; 1; 1; 1/ .4; 3; 3; 3/
1
3 ;

2
3 ;

5
6

6 x
6 � y6

.1; 1; 1; 1; 1; 1/ .5; 4; 4; 4/
1
3 ;

2
3 ;

5
6

Table 1. 6-essential singularities.

Proposition 5.7. Table 1 contains a complete list of 6-essential singularities.

Proof. We will use the notation from Proposition 5.5. The contributing exceptional divi-
sors (i.e. those with �.Eı

/ ¤ 0) appearing at the end of a resolution of the singularity .C ; P /
have maximal multiplicity

P
mi;j "j among the components preceding it. Hence the primi-

tive root corresponding to the component with maximal multiplicity will not cancel in (5.1).
Moreover, the multiplicities of the contributing exceptional divisors have to divide 6.

In the case r D 1 this forces the singularity to be a cusp. Also, for r > 1 this forces the
irreducible branches to be smooth. The rest of the list can be worked out just keeping in mind
that since

P
i mi;j  6, in particular removing any branch from a valid singularity with r C 1

branches, one should obtain a valid singularity with r branches. Finally, if †r is a ı-essential
singularity type of r branches whose only valid homomorphism is .1; : : : ; 1/, then there is no
ı-essential singularity †rC1 of .r C 1/ branches such that †r results from removing a branch
from †rC1.

For example, for reduced singularity A3, Proposition 5.5 yields that a collection of
multiplicities of branches ."1; "2/ yields a 6-essential non-reduced singularity if and only if
2."1 C e2/ j 6. This is satisfied only by the pair ."1; "2/ D .2; 1/. Similarly, for singularity D4

the divisibility condition is "1 C e2 C e3 j 6 which is satisfied by three triplets indicated in the
table, etc.

Note that the possible morphisms " shown in the third column are all up to action of the
permutation group except for the case .x2 � y4

/y, where the last branch is not interchangeable
with the others. So, whereas .3; 2; 1/ in the D4 case represents six possible morphisms, .1; 1; 2/
in the .x2 � y4

/y case only represents one possible morphism.
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In order to check the last column, it is enough to compute the constants of quasi-adjunc-
tion (cf. [33]) different from 1

2 , since k is a constant of quasi-adjunction different from 1
2 if

and only if 1 � k is an element of the spectrum of the singularity corresponding to the part of
weight 1 (cf. [40]).

Constants of quasi-adjunction can be found in terms of a resolution of the singularity as
follows.

If f a1

1 .x; y/ : : : f
ar

r .x; y/ is an equation of the germ of plane curve singularity at the ori-
gin, ⇡ W V ! C2 is its resolution (i.e. the proper preimage of the pull-back is a normal-crossing
divisor), Ek are the exceptional components of the resolution ⇡ , Nk (resp. ck , resp. ek.�/) is
the multiplicity along Ek of ⇡⇤

.f
a1

1 � � � f ar
r / (resp. ⇡⇤

.dx ^ dy/, resp. ⇡⇤
.�/, where �.x; y/

is a germ of a function at the origin), then for a fixed �, � is the minimal solution to the system
of inequalities (the minimum is taken over k)

(5.2) Nk� � Nk � ek.�/ � ck � 1

(cf. [35, (2.3.8)]).
For example, for A2-singularity (i.e. the cusp which can be resolved by three blow ups)

one has for the last exceptional component

e.x/ D 2; e.y/ D 3; N D e.x
2 � y3

/ D 6; c D 4

and hence  D 1
6 . Therefore for the spectrum (i.e. the last column in Table 1) one obtains the

well-known constant 5
6 .

Similarly, for the D4-singularity x3 � y3 D 0 (which is resolved by the single blow up)
with the multiplicities of the components .4; 1; 1/ one obtains only the inequality

(5.3) 6 � 6 � e1.�/ � 2:

Hence for various choices of � one obtains  D 1
2 ;

1
3 ;

1
6 . Thus 2

3 ;
5
6 are the only elements of

the spectrum in .0; 1/ corresponding to the part of weight 1.

In the following tables the notations are the same as in the Table 1 and in Table 2 the
factorization of the Alexander polynomial is the following:

ÅP;".t/ D .t � 1/s1.t C 1/
s2.t

2 C 1/
s4 :

r reduced singularity type possible types of " Alexander
polynomials
.s1; s2; s4/

weight 1 part of
spectrum in .0; 1/

2
A1 ⌘ y

2 � x2
."1; "2/ .1; 0; 0/ ;

A3 ⌘ y
2 � x4

.1; 1/ .1; 0; 1/
3
4

3 D4 ⌘ y
3 � x3

.2; 1; 1/ .2; 1; 1/
3
4

4 .x
4 � y4

/ .1; 1; 1; 1/ .3; 2; 2/
3
4

Table 2. 4-essential singularities.
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r reduced singularity type possible types of " Alexander
polynomials
.s1; s3/

weight 1 part of
spectrum in .0; 1/

2 A1 ⌘ y
2 � x2

."1; "2/ .1; 0/ ;

3 D4 ⌘ y
3 � x3

.1; 1; 1/ .2; 1/
2
3

Table 3. 3-essential singularities.

Proposition 5.8. Table 2 (resp. 3) classifies the 4-essential (resp. 3-essential) singular-
ities.

The proof is same as the proof of Proposition 5.7.

Corollary 5.9. For simple ı-essential singularities (i.e. of type A or D) there is at most
one eigenvalue of order ı0 j ı .ı0

> 2/ for the action of the monodromy on the Hodge component
Gr0

F GrW
1 of the Milnor fiber.

Proof. Inspection on Tables 1–3 shows that except for t D 1, the multiplicity of each
root of the characteristic polynomial of the monodromy is equal to one. Since the conjugation of
an eigenvalue of the monodromy acting on Gr0

F GrW
1 is an eigenvalue of its action on Gr1

F GrW
1 ,

it follows that t D �1 is not an eigenvalue of the monodromy action on Gr0
F GrW

1 . Again, by
direct inspection of Tables 1–3 the result follows.

5.2. Decomposition of the Albanese variety of cyclic covers branched over ı-total

curves. The following auxiliary results will be useful in the rest of the arguments.

Lemma 5.10. Let C be a ı-partial curve with r irreducible components. Then the poly-
nomial

(5.4) Å
ı
C ;" WD .t � 1/r�1

Y

k j ı;k>1

'k.t/
sk ;

divides the Alexander polynomial ÅC ;" of C w.r.t. ", where si above denotes the multiplicity of
the primitive root of unity of degree i in the Alexander polynomial of C .

Moreover, let Vı be the cyclic cover of P2 of degree ı branched over a curve C ac-
cording to the multiplicities " D ."1; : : : ; "r/. Then, the characteristic polynomial of the deck
transformation acting on H1.Vı ;C/ equals

Å
ı
C ;"

.t � 1/r�1
:

If C is ı-total, then
Å

ı
C ;" D ÅC ;":

Proof. The first (resp. last) assertion about the Alexander polynomial follows directly
from the definitions of ı-partial (resp. ı-total) curves and the well-known fact that the multi-
plicity of the root t D 1 for a curve with r irreducible components in the Alexander polynomial
is equal to r � 1.
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The moreover part follows from the relation between the homology of branched and
unbranched covers (cf. [32]).

Lemma 5.11. For a plane curve singularity P , denote by AlbP the local Jacobian
(cf. Section 3.1). Let C be a ı-partial curve and let Vı be cyclic cover of degree ı of P2

branched over C . Then Alb.Vı/ is isogenous to a quotient of the product of local Jacobians of
singularities of C .

Proof. It follows from the proof of Lemma 3.6.

Finally, we will give a description of the multiplicities si in terms of the Albanese variety
of the ramified coverings of P2. Denote by E0 (resp. E1728) the elliptic curve with j -invariant
zero (resp. 1728). Then one has the following.

Theorem 5.12. Let C be a ı-partial curve (ı D 3; 4 or 6) with ı-essential singularities
of type A and D. Then the Albanese variety Alb.Vı/ corresponding to the curve C can be
decomposed as follows:

Alb.Vı/ D E
s3

0 if ı D 3;(5.5)
Alb.Vı/ ⇠ A ⇥Es4

1728 if ı D 4;

Alb.Vı/ ⇠ A ⇥Es3Cs6

0 if ı D 6;

where si is the multiplicity of the i -th primitive root of unity inÅC ;".t/, A is an abelian variety
of dimension s2, “D” means isomorphic, and “⇠” means isogenous.

Proof. The deck transformation of Vı induces the action of the cyclic group h˛i on the
Albanese variety of Vı . It follows from Roan’s Decomposition Theorem (cf. [9, Theorem 2.1])
that Alb.Vı/ is isogenous to a product X1 ⇥ � � � ⇥Xe where e is the number of orders of eigen-
values of ˛. We shall show that the abelian varieties Xi can be decomposed further to yields
isogenies (5.5). By Lemma 5.10, one has that 1 is not an eigenvalue of ˛, and hence each com-
ponent Xi supports an automorphism whose order is a non-trivial divisor of ı. We denote by
A the component supporting an automorphism of order 2. In the cases of A or D singularities,
Corollary 5.9 yields that the action of ˛ on each component Xi has at most one eigenvalue.
Indeed this is the eigenvalue of the monodromy on the component Gr0

F GrW
1 of the Milnor fiber

of the singularities whose local Alexander polynomial contains such an eigenvalue as a root.
Each eigenvalue of the monodromy on Gr0

F GrW
1 for a ı-essential singularity does not appear on

Gr1
F GrW

1 even if for different ı-essential singularities. In particular, even different ı-essential
singularities contribute at most to the same root of the global Alexander polynomial as follows
from the table in Corollary 5.9. This allows one to apply the second Decomposition Theorem
(cf. [9, Theorem 3.2]) as was done above in the case of cuspidal curves. The result follows.

Remark 5.13. (1) If C has singularities of type x3 � y6, then the above argument
shows that Alb.V6/ has, up to isogeny, the factors which are the Jacobians of the projec-
tion model of y3 D x

6 � 1 and the elliptic curves of E1728 and E0.

(2) Whenever the number of local branches of a curve at singular point is greater than 3,
the local Jacobians (cf. Section 3.1) depend on the moduli describing the local algebraic
analytic type of singularities. For example, in the case of singularities x4 � y4 the local
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Jacobian is the Jacobian of the 4-fold cyclic cover branched over four points. The quotient
by an involution of such a cover may yield an arbitrary elliptic curve in the Legendre
family of elliptic curves. Hence, the Albanese variety of the cyclic cover Vı is isogenous
to the quotient of abelian varieties whose moduli a priori depends on the analytic type
of the singularities. It would be interesting to see if one can find examples showing that
such variations can take place.

5.3. Elliptic threefolds corresponding to ı-curves. Now we shall relate the Mordell–
Weil group of threefolds corresponding to C to ÅC ;". Let W denote an elliptic threefold bira-
tional to the affine hypersurface given by the equation

u
2 C v

3 D F.x; y; 1/ if ı D 3; 6;(5.6)

u
2 C v

3 D F.x; y; 1/v if ı D 4:

One has the following:

Theorem 5.14. Let C D πF D 0º be a ı-partial curve as in Theorem 5.12. Then

rk MW.WF / D s3 if ı D 3;(5.7)
rk MW.WF / � s4 if ı D 4;

rk MW.WF / � s3 C s6 if ı D 6:

In addition, if C is a ı-total curve, then

rk MW.WF / D s4 if ı D 4 and ÅC ;".�1/ ¤ 0;

rk MW.WF / D s3 C s6 if ı D 6 and ÅC ;".�1/ ¤ 0:

Proof. As in the proof of Theorem 3.10 one has the identification of MW.WF / and
�i -invariant elements of the Mordell–Weil group of WF over the extension �i .C.x; y// of
C.x; y/ with the Galois group �i , where i D 6 for ı D 3; 6 and i D 4 for ı D 4. The threefold

u
2 C v

3 D F.x; y; 1/v

splits over the field C.x; y/.F
1
4 / since it is isomorphic to a direct product threefold using

v
0 D vF

1
2 ; u

0 D F
3
4u:

The inequalities follow from

rk MW.WF ;C.x; y/.F
1
ı // � rk Hom.Es

k; Ek/;

where one has k D 0; s D s3 for ı D 3, k D 0; s D s3 C s6 for ı D 6 and k D 1728; j D s4

for ı D 4.

5.4. Statement and proof of the main theorem for ı-curves.

Theorem 5.15. Let C D πF D 0º be a ı-partial curve for ı D 3; 4 or 6. Then

(1) There is a one-to-one correspondence between quasi-toric relations corresponding to F
and the C.x; y/-points of the threefold WF .
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If, in addition, the singularities of C are as in Theorem 5.12, then:

(2) The multiplicities of the factors of the global Alexander polynomial of ı-partial curves
satisfy the following inequalities:

s3  5

6
d � 1 if ı D 3;

s4  5

6
d � 1 if ı D 4;

s3 C s6  5

6
d � 1 if ı D 6:

Proof. The argument is the same as in the proof of Theorem 3.12 since the rank of
the Mordell–Weil group of the threefolds for each ı is bounded by the rank of Mordell–Weil
group of the elliptic surface with d degenerate fibers each isomorphic to a cubic curve with a
single cusp as follows from equations (5.6). For each ı we obtain a bound on the rank of the
submodule of the Alexander module corresponding to the action of the deck transformation on
the subspaces generated by the eigenvalues which are roots of unity of degrees 3; 4 and 6.

As an immediate consequence of Theorem 5.15 (1) one has the following generalization
of Theorem 4.7:

Theorem 5.16. Let C D πF D 0º be a curve. Then the following statements are equiv-
alent:

(1) C admits a quasi-toric relation of elliptic type .3; 3; 3/ (resp. .2; 4; 4/ or .2; 3; 6/),

(2) C admits an infinite number of quasi-toric relations of elliptic type .3; 3; 3/ (resp. .2; 4; 4/
or .2; 3; 6/).

Also, (1) and (2) above imply

(3) C is a ı-partial curve ('ı.t/ jÅC ;".t/) for ı D 3 (resp. 4 or 6).

Moreover, if the singularities of C are as in Theorem 5.12, then (1), (2), and (3) are
equivalent.

Proof. First of all note that this result generalizes Theorem 4.7 since curves with only
nodes and cusps as singularities and non-trivial Alexander polynomial automatically satisfy
that ÅC ;".!6/ D 0 for a primitive 6th-root of unity, and hence they are ı-partial curves (in
fact, they are ı-total).

Statement (1) , (2) follows from the group structure of quasi-toric relations as exhibited
in Theorem 5.15 (1). Also (1) ) (3) is immediate since a quasi-toric relation of F induces an
equivariant map Vı ! Eı , which induces a map P2 n C ! P1

m, wherem D .3; 3; 3/, .2; 4; 4/,
resp. .2; 3; 6/ according to ı D 3; 4, resp. 6. This implies that ÅC ;".t/ ¤ 0, where " is defined
as in (2.8).

Finally, (3) ) (1) under the conditions of Theorem 5.12 is an immediate consequence of
Theorem 5.14 since (3) implies rk MW.WF / > 0.

Remark 5.17. Note that (3) ) (1) in Theorem 5.16 is not true for general singularities
as the following example shows. Consider C the curve given by the product of six concurrent
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lines. Generically, C does not satisfy a quasi-toric relation of type .2; 3; 6/ or .3; 3; 3/ (cf.
Remark 5.21), but its Alexander polynomial is not trivial, namely,

ÅC .t/ D .t � 1/5.t C 1/
4
.t

2 C t C 1/
4
.t

2 � t C 1/
4
:

5.5. Applications. Theorem 5.14 has implications for the structure of the characteristic
variety†.C/ of a plane curve C . Characteristic varieties of curves extend the notion of Alexan-
der polynomials of curves to non-irreducible curves (for a definition see [35]). In [3, Theo-
rem 1.6] (resp. [7, Theorem 1]), structure theorems for the irreducible components of †.C/
are given in terms of the existence of maps from P2 n C onto Riemann surfaces (resp. orbifold
surfaces). The following result sharpens [7, Theorem 1] for the special case of torsion points
of order ı D 3; 4; 6 on †.C/.

Corollary 5.18. Let C be a curve whose singularities are as in Theorem 5.12, consider
X D P2 n C , and consider †1.X/ the first characteristic variety of X . For any ⇢ 2 †1.X/

torsion point ⇢ of order ı of †1.X/ there exists an admissible orbifold map f W P2 ! Sm

such that ⇢ 2 f ⇤
†1.Sm/.

Proof. Let ⇢ D .!
"1

ı
; : : : ; !

"r

ı
/ 2 †1.X/ be a torsion point of order ı in †1.X/. Note

that the homomorphism induced by " WD ."1; : : : ; "r/ is such that the cyclotomic polynomial
'ı.t/ of the ı-roots of unity divides ÅCe;".t/. Hence the hypotheses of Theorem 5.16 (3) are
satisfied and therefore there exists an orbifold Riemann surface Sm such that 'ı.t/ divides
Å⇡orb

1 .Sm/.t/ and a dominant orbifold morphism f W X ! Sm. After performing a Stein fac-
torization, we may assume that the induced homomorphism f W X ! Sm is surjective. Finally
note that any such surjection induces an inclusion of characteristic varieties, that is,

f
⇤
†1.Sm/ ⇢ †1.X/:

Moreover, since 'ı.t/ divides Å⇡orb
1 .Sm/.t/, it follows that ⇢ 2 f ⇤

†1.Sm/.

Remark 5.19. Theorem 5.16 cannot be generalized to ı-essential curves outside of the
range ı D 3; 4; 6. For instance, note that in [5] an example of an irreducible affine quintic
C5 ⇢ C2 with 2A4 as affine singularities is shown. The curve C5 is 10-total since

ÅC5
.t/ D t

5 � t4 C t
3 � t2 C t � 1:

However, there is no quasi-toric decomposition of C5 of type .2; 5/. According to [29, The-
orem 1] this implies that the Albanese dimension of C5 is two and moreover, the Albanese
image of any cyclic covering of P2 ramified along C5 must have either dimension zero or two.

Remark 5.20. Since no irreducible sextic has an Alexander polynomial of the form
ÅC .t/ D .t C 1/

q (cf. [13]), Theorem 5.16 is another way to show that any irreducible sextic
(with simple singularities) has a non-trivial Alexander polynomial if and only if it is of torus
type (note that an irreducible sextic admits a quasi-toric decomposition if and only if it is of
torus type as shown in Example 2.17). This is a weaker version of what is now known as Oka’s
conjecture (cf. [15, 16, 22]).

Remark 5.21. Consider the case when C is union of 6 concurrent lines. To these 6
lines `i D 0 correspond 6 points Li in P1 parameterizing lines in the pencil containing `i .
The 3-fold cover V`i

W z3 �Q
`i has as compactification surface in the weighted projective
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space P .2; 1; 1; 1/, which after a weighted blow-up has a map onto the 3-fold cyclic cover CLi

of P1 branched over the points Li and having rational curves are fibers. Hence Alb.V`i
/ is

isomorphic to the Jacobian of CLi
. If the Li form a collection of roots of a polynomial over Q

having as the Galois group over the later the symmetric (or alternating) group, then the results
of [56] show that the above Jacobian is simple and hence does not have maps onto the elliptic
curve E0. On the other hand the Jacobian of the 3-fold cover of P1 branched over the roots
of the polynomial z3 D x

6 � 1 has E0 as a factor, since E0 is a quotient of the former by the
involution. Note that the characteristic polynomial of the deck transformation on H1.V`i

/ is
.t

2 C t C 1/
4
.t � 1/5.

Remark 5.22. Note that Oka’s conjecture cannot be generalized to general reducible
sextics as shown in Remark 5.17.

However, in light of Theorem 5.16 it seems that one can ask the following version of
Oka’s conjecture to non-reduced curves, namely:

Question 5.23. Is it true that a (possibly non-reduced) sextic C D πF D 0º (such that
degF D 6) whose singularities are as in Theorem 5.12 has a non-trivial Alexander polynomial
if and only if it admits a quasi-toric relation?

According to Theorem 5.16, one has the following rewriting of Question 5.23.

Proposition 5.24. The answer to Question 5.23 is affirmative if and only if

ÅC ;".t/ ¤ .t � 1/r�1
.t C 1/

q

for any non-reduced curve C of total degree 6 whose singularities are as in Theorem 5.14.

6. Examples

The purpose of this section is to exhibit the different examples of elliptic quasi-toric rela-
tions. In Example 6.1 (resp. 6.2) we present quasi-toric relations of type .2; 3; 6/ and describe
generators for the Mordell–Weil group of elliptic sections, which is of rank 3 (resp. 2). In
Example 6.3 we present a cuspidal curve whose Alexander polynomial has the largest degree
known to our knowledge. Finally, Examples 6.4 (resp. 6.5) show examples of quasi-toric rela-
tions of type .2; 4; 4/ (resp. .3; 3; 3/) and Example 6.6 shows an example of a curve with both
.2; 3; 6/ and .3; 3; 3/ quasi-toric relations.

Example 6.1. Consider the sextic curve C6;9 with nine cusps. One easy way to obtain
equations is as the preimage of the conic C2 WD πx2 C y

2 C z
2 � 2.xy C xz C yz/ D 0º by

the Kummer abelian cover Œx W y W zç 7! Œx
3 W y3 W z3

ç. It is well known that the Alexander
polynomial of C6;9 isÅC6;9

.t/ D .t
2 � t C 1/

3. Note that C2 belongs to the following pencils:

C2 D .x C y � z/2 C 4xz;

C2 D .x C z � y/2 C 4yx;

C2 D .y C z C x/
2 � 4yz:
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Therefore C6 has the following three quasi-toric relations:

�0 ⌘ C6;9 D .x
3 C y

3 � z3
/
2 C 4.xz/

3
;

�1 ⌘ C6;9 D .x
3 C z

3 � y3
/
2 C 4.yx/

3
;

�2 ⌘ C6;9 D .y
3 C z

3 C x
3
/
2 � 4.yz/3:

In addition, note that

�3 ⌘ C6;9 D 4.x
2 C y

2 C z
2 C xz C yz C xy/

3

� 3.x3 C y
3 C z

3 C 2.xz
2 C x

2
z C yz

2 C xyz C x
2
y C y

2
z C xy

2
//

2

leads to another quasi-toric relation.

If we consider �i D .g2;i ; g3;i / as elements of the elliptic curve

E0 D πu3 C v
2 D F.x; y/º

over C.x; y/, then ZŒ!6ç�1 ˚ ZŒ!6ç�2 ˚ ZŒ!6ç�3 is the group of all quasi-toric relations
of C6;9. For instance,

(6.1) �0 D ��1 � �2 C .2!6 � 1/�3 D �Œ1;1;1�2!6ç:

One can obtain the above relation using (4.3), (4.5), and (4.4).
This example was first considered in this context by Tokunaga [54, Theorem 0.2]. Note

that the author exhibits 12 primitive quasi-toric relations of C6;9 such that h D 1. Whether or
not those decompositions are the only ones satisfying h D 1 remains open.

Example 6.2. Consider the tricuspidal quartic

C4;3 WD πC4;3 D x
2
y

2 C y
2
z

2 C z
2
x

2 � 2xyz.x C y C z/ D 0º:

Since C4;3 is the dual of a nodal cubic, it should contain a bitangent, which is the dual of
the node. In our case one can check that `0 WD πL0 D x C y C z D 0º is the bitangent at the
points P WD Œ1 W !3 W !2

3 ç and Q WD Œ1 W !2
3 W !3ç, where !3 is a root of t2 C t C 1.

We shall note that C4;3L
2
0 is a non-reduced sextic whose singularities are 6-essential

(see Remark 5.2). Its twisted Alexander polynomial w.r.t. the multiplicities .1; 2/ is given by
.t

2 � t C 1/
2.

By Theorem 5.14, the group of quasi-toric relations has ZŒ!6ç-rank one. In fact, it is
generated by the following:

�1 ⌘ C4;3L
2
0 D 4C

3
2 C C

2
3 ;

�2 ⌘ C4;3L
2
0 D 4eC 3

2 C eC 2
3;
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where

C2 WD zx C !3yz � .1C !3/xy;

C3 WD .x
2
y � x2

z � y2
x � 3.1C 2!3/xyz C y

2
z C z

2
x � yz2

/;

eC 2.x; y; z/ WD C2.x; z; y/;

eC 3.x; y; z/ WD C3.x; z; y/:

In addition we show some interesting primitive quasi-toric relations coming from the
combinations of the generators

�
Œ!i

6;!j
6 ç

WD !
i
6�1 C !

j
6�2:

Such primitive quasi-toric relations have the following form:

�Œ1;1ç ⌘ C4;3L
2
0x

6 D 4C
3
4;Œ1;1ç C C

2
6;Œ1;1ç;

�Œ1;!6ç ⌘ C4;3L
2
0.x � z/6 D 4C

3
4;Œ1;!6ç C C

2
6;Œ1;!6ç;

�Œ1;!2
6 ç ⌘ C4;3L

2
0z

6 D 4C
3
4;Œ1;!2

6 ç
C C

2
6;Œ1;!2

6 ç
;

�Œ1;!3
6 ç ⌘ C4;3L

2
0.z � y/6 D 4C

3
4;Œ1;!3

6 ç
C C

2
6;Œ1;!3

6 ç
;

�Œ1;!4
6 ç ⌘ C4;3L

2
0y

6 D 4C
3
4;Œ1;!4

6 ç
C C

2
6;Œ1;!4

6 ç
;

�Œ1;!5
6 ç ⌘ C4;3L

2
0.x � y/6 D 4C

3
4;Œ1;!5

6 ç
C C

2
6;Œ1;!5

6 ç
;

where Ck; Œ!i
6; !j

6 ç denotes a homogeneous polynomial of degree k corresponding to the quasi-
toric relation �

Œ!i
6;!j

6 ç
. For simplicity we only show the first pair of polynomials:

C4;Œ1;1ç D !6

3
.x

4 C z
2
y

2 C x
2
z

2 � 2xyz2 � 2xy2
z C x

3
z � 2x2

yz C x
3
y C x

2
y

2
/;

C6;Œ1;1ç D .x
4 C x

3
y C x

3
z � 2x2

z
2 C 4x

2
yz � 2x2

y
2 C 4xy

2
z C 4xyz

2 � 2z2
y

2
/

⇥ .2x2 C xy � yz C zx/:

The equations above can easily be obtained using (4.3), (4.5) and (4.4).

Example 6.3. Consider the tricuspidal quartic

C4;3 WD πx2
y

2 C z
2
y

2 C x
2
z

2 � 2xyz.x C y C z/º

as above, the bitangent
`0 WD πl0 D x C y C z D 0º;

and two tangent lines, say

`1 WD πl1 D �8x C y C z D 0º (at R D Œ1; 4; 4ç),
`2 WD πl2 D x � 8y C z D 0º (at S D Œ4; 1; 4ç).

The Kummer cover Œx W y W zç 7! Œl
3
0 W l31 W l32 ç produces a curve C12;39 of degree 12 with 39

cusps.
In order to obtain equations for C12;39, one can proceed as follows. Consider the projec-

tive isomorphism

(6.2)  .Œx W y W zç/ D Œl0 W l1 W l2ç D Œu W v W wç;
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which corresponds to the change of coordinates (given by  �1)

(6.3)

8
<̂

:̂

x D uC v;

y D uC w;

z D 7u � v � w:

Without explicitly mentioning  its use will be clear from using coordinates Œx W y W zç
or Œu W v W wç.

After the change of coordinates (6.3), the quartic C4;3 can be given by the following
equation in terms of u; v;w:

f .u; v; w/ WD 12uvw
2 � 138u2

vw C 12v
2
uw C 2v

3
w C w

4 C v
4 � 36u3

w C 42u
2
w

2

C 3v
2
w

2 � 27u4 � 12uw3 C 2vw
3 C 42v

2
u

2 � 36u3
v � 12uv3

and hence the lines `0, `1, and `2 are defined by the equations u D l0 D 0, v D l1 D 0, and
w D l2 D 0 respectively (see (6.2)).

Therefore, the map
Œx W y W zç 7! Œl

3
0 W l31 W l32 ç

can also be described as
Œx W y W zç 7! Œu

3 W v3 W w3
ç:

Note that u D 0 is bitangent since

f .0; v; w/ D .w
2 C vw C v

2
/
2
:

Also note that v D 0 is a simple tangent at Œ1 W 0 W 3ç D  .R/ since

f .u; 0; w/ D �.3u2 C 6uw � w2
/.w � 3u/2:

Analogously, w D 0 is a simple tangent at Œ1 W 3 W 0ç D  .S/ since

f .u; v; 0/ D .v
2 � 6uv � 3u2

/.v � 3u/2:

Hence

C12;39 WD πf .u3
; v

3
; w

3
/ D f ..x C y C z/

3
; .�8x C y C z/

3
; .x � 8y C z/

3
/ D 0º

is a curve of degree 12. Moreover, since the degree of ⇡ is 9 and the preimage of each of the
four tangencies of C4;3 with `i is three cusps, we can conclude that C12;39 contains exactly
39 D 3 � 9C 4 � 3 cusps and no other singularities. Here is an equation for C12;39:

f12.u; v; w/ WD 27u
12 � v12 � w12 � 12u3

v
3
w

6 C 36u
9
w

3 � 42u6
w

6 C 36u
9
v

3

� 42u6
v

6 � 3v6
w

6 C 12u
3
w

9 � 2v3
w

9 C 12u
3
v

9 � 2v9
w

3

C 138u
6
v

3
w

3 � 12u3
v

6
w

3
:

We compute the superabundance of C12;39 as follows. Let J be the ideal sheaf supported
on the 39 cusps and such that J D m the maximal ideal at any  cusp of C12;39. The super-
abundance of C12;39 is h1

.J.7// and it coincides with the multiplicity of the 6-th root of unity
as a root of the Alexander polynomial ÅC12;39

.t/ of C12;39.
Note that

�.O.7// � �.O=J/ D �.J.7// D h
1
.J.7// � h0

.J.7//:
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Since �.O.7// D
�7C2

2

�
D 36, �.O=J/ D # D 39, and h0

.J.7// D 1, one has that

h
1
.J.7// D 4:

Note that h0
.J.7// D 1 since the only curve of degree 7 passing through all cusps is zef 2,

where ef 2 is the preimage by the Kummer map of the conic passing through the three cusps,
R, and S .

Therefore, ÅC12;39
.t/ D .t

2 � t C 1/
4. This is, to our knowledge, the first example of

a cuspidal curve whose Alexander polynomial has a non-trivial root with multiplicity greater
than 3. As was discussed already in Example 6.1 as a cuspidal curve for which the Alexander
polynomial has factors of multiplicity 3 one can take the dual curve of a smooth cubic (its
fundamental group was calculated by Zariski [57]). For other examples cf. [10].

Example 6.4. Consider the moduli space of sextics with three singular points P , Q,
R of types A15, A3, and A1 respectively. Such a moduli space has been studied in [4] and it
consists of two connected components M1, M2. Both have as representatives reducible sextics
which are the product of a quartic C4 and a smooth conic C2 intersecting at the point P (of type
A15) and hence Q;R 2 C4. There is a geometrical difference between sextics in M1 and M2.
For one kind of sextics, say C

.1/
6 2 M1, the tangent line at P also contains Q, whereas for the

other sextics, say C
.2/
6 2 M2, it does not. The Alexander polynomial of both kinds is trivial;

however, if we consider the homomorphism " D ."4; "2/ D .1; 2/, where "i is the image of
a meridian around Ci , then

Å
C

.i/
6 ;"

.t/ D
´
.t

2 C 1/ if i D 1;

1 if i D 2:

Note that C
.1/
6 is a 4-total curve, but not all of its singularities are 4-essential, since one can

check that A15 has a local Alexander polynomialÅA15;".t/ D .1C t12
/.1C t6/.1C t3/.1� t /.

One can also use Degtyarev’s Divisibility Criterion [14] to prove that the factors coming from
ÅA15;".t/ do not contribute.

Therefore, Theorem 5.14 can be applied and hence C
.1/
6 has a quasi-toric relation of ellip-

tic type .2; 4; 4/, whereas C
.2/
6 does not. In particular, these are the equations for the irreducible

components of C
.1/
6 D C4 [ C2,

C4 WD 2xy
3 C 3x

2
y

2 C 108y
2
z

2 � x4
;

C2 WD 3x
2 C 2xy C 108x

2
;

which fit in the following quasi-toric relation:

C2h
2
1 C h

4
2 � C4h

4
3 D 0;

where h1 WD y, h2 WD x, and h3 WD 1.

Example 6.5. As an example of a quasi-toric relation of elliptic type .3; 3; 3/ we can
present the classical example F D .y

3 �z3
/.z

3 �x3
/.x

3 �y3
/. The classical Alexander poly-

nomial of C WD πF D 0º is ÅC .t/ D .t
2 C t C 1/

2
.t � 1/8 and it is readily seen that it is a

3-total curve, since its singularities (besides the nodes) are ordinary triple points, which are
3-essential singularities. Hence one can apply Theorem 5.16 and derive that F fits in a quasi-
toric relation of elliptic type .3; 3; 3/. For instance:

(6.4) x
3
.y

3 � z3
/C y

3
.z

3 � x3
/C z

3
.x

3 � y3
/ D 0:
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However, according to Theorem 5.12 there should exist another relation independent from
equation (6.4), namely

(6.5) `
3
1F1 C `

3
2F2 C `

3
3F3 D 0;

where
Fi D .y � !i

3z/.z � !iC1
3 x/.x � !iC2

3 y/; i D 1; 2; 3;

!3 is a third-root of unity, and

`1 D .!3 � !2
3/x C .!3 � !2

3/y C .!
2
3 � 1/z;

`2 D .!3 � !2
3/z C .!3 � !2

3/x C .!
2
3 � 1/y;

`3 D .!3 � !2
3/y C .!3 � !2

3/z C .!
2
3 � 1/x:

Example 6.6. In Remark 5.4 we have presented a 6-total sextic curve C which is also
3-partial. In particular, according to Theorem 5.16, C admits quasi-toric relations both of type
.2; 3; 6/ and .3; 3; 3/. We will show this explicitly. Note that C is the union of two cuspidal
cubics (cf. [44, Corollary 1.2]) C1 WD πF1 D 0º and C2 WD πF2 D 0º given by the following
equations:

F1 D y
3 � z3 C 3x

2
z C 2x

3
;

F2 D y
3 � z3 C 3x

2
z � 2x3

:

One can check that the curve C satisfies the following relations:

3f
2

3 � 4f 3
2 C F1F2h

6 D 0;

4x
3 � F1h

3 C F2h
3 D 0;

where f2 WD yz C y
2 C z

2 � x2, f3 WD z
3 � x2

z � 2yx2 C 2yz
2 C 2y

2
z C y

3, and h D 1.
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