
Multivariable Hodge theoretical invariants of germs

of plane curves. II

Pierrette Cassou-Noguès and Anatoly Libgober

Abstract. The paper describes several invariants of plane curve singularities in terms of
the data of associated Newton trees. Newton trees of singularities are discussed in detail
also. The invariants which we study include the constants and faces of quasi-adjunction,
log-canonical walls and Arnold-Steenbrink spectrum. As one of the consequences of these
calculations we show the failure of ACC for the set of constants of quasi-adjunction of all
plane curve singularities which contains the set of log-canonical thresholds as a subset.
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1. Introduction

In the first part of this work, [6], we studied Hodge theoretical invariants of local
systems of the complements to germs of plane curve singularities. These invari-
ants, called the faces of quasi-adjunction, yield a refinement of the multivariable
Alexander polynomial of a link of isolated singularity or, more precisely, the refine-
ment of the characteristic varieties associated with the fundamental group of the
complements to the links. They also provide (in the case of curves) a multivariable
generalization of the spectrum of singularity due to Arnold and Steenbrink.

In the present paper we develop algorithmic methods for calculating these
Hodge theoretical invariants in terms of power series which are the defining equa-
tions of the germs. Given such a power series we describe a decorated by integers
graph with two types of 0-dimensional cells and two types of 1-dimensional cells (cf.
below in this introduction). This graph is called the Newton tree (cf. sect.2.3). Af-
ter dropping distinction between types of edges in the Newton tree one essentially
obtains the splice diagram of Eisenbud and Neumann ([9]) for the link of the sin-
gularity of f . Newton trees earlier were used for the study of quasi-ordinary power
series in [2] and [3], ideals in C[[x, y]] in [7] and plane algebraic curves in [5]. Here
we also associate with a germ the toroidal (in the sense of [15]) pair (Uf , D) which
provides a resolution in the category of toroidal pairs of the pair (B,C), where C
is the germ of plane curve and B is a small ball about the singular point of C.
Our resolution can as well be viewed as a resolution in the category of orbifolds.

⇤First author is partially supported by the grants MTM2010-21740-C02-01 and MTM2010-
21740-C02-02. The second author was supported by a grant from J.Simons Foundation.



Unlike previously used smooth resolutions (cf. references in [26]) use of toroidal
resolutions allows to encode whole resolution process into the combinatorial data
i.e. the Newton tree. Previous attempts to use mildly singular resolutions in this
context were made in [22], [4], [11]. Use of such type of resolutions is also consis-
tent with philosophy used in the minimal model program (cf. [13] and references
there and [28]).

One of the main results in this paper describes the polytopes of quasi-adjunction
in terms of Newton tree (cf.theorem 4.4). Among other things such description
allows to get results on the structure of the polytopes of quasi-adjunction and make
many explicit calculations. Since the log-canonical threshold is one of the constants
of quasi-adjunction 1, as a consequence we also obtain explicit description of the
polytope which is the (multivariable) log-canonical threshold 2 and also the part
of the toroidal resolution Uf which determines it. Using the relation between the
faces of quasi-adjunction and Bernstein ideals obtained in [6], here we obtain a
polynomial (a product of linear forms) which divides all the polynomials in the
Bernstein ideal associated with a multibranched singularity (cf. [6]).

Here is one of the consequences of calculations in this paper. In example 5.1 we
consider a sequence of singularities such that the sequence of constants of quasi-
adjunction (corresponding to � = y2) is given by 13+6q

18+8q which is increasing sequence
when q ! 1. The sequence of log-canonical thresholds for this sequence of sin-
gularities is (decreasing) sequence 2+q

4q . Recall that set of log-canonical thresholds

of singularities contains only finite ascending sequences (cf. [25] for a much more
general discussion).

Let us describe the content of the paper in more details. In the first section we
recall the definition and construction of Newton trees of a germ f . The Newton tree
is a tree (with additional structure), built from the Newton polygons that appear
at each stage of the Newton algorithm. This additional structure consists with
splitting 0-dimensional (resp. 1-dimensional) cells of the tree into two types called
vertices and arrows (resp. horizontal and vertical). Each vertex in the Newton
tree corresponds to a face of the Newton polygon of a polynomial appearing in a
step of the Newton algorithm. It is decorated by integers extracted from the data
obtained from the linear form vanishing on a face. The Newton tree determines the
dual graph of the smooth resolution of the singularity of f obtained after resolving
cyclic quotient singularities of our toroidal resolution. More precisely, we have a
bijection between the vertices of the Newton tree and the exceptional divisors in the
resolution which intersect other exceptional divisors at least three times (“rupture
points” of the dual graph). One of the results in this section is that the Newton tree
is su�cient to compute the polytopes of quasi-adjunction i.e. only the “rupture
points” contribute to the calculation of the polytopes of quasi-adjunction (this was
observe in [6] already). In the following section, we prove that this condition is
also necessary, that means that all the vertices in the Newton tree contribute to
a face of a polytope of quasi-adjunction. This is done using induction. Firstly

1recall that these constants depend of a choice of germ � 2 C2
0,0 and the log-canonical threshold

corresponds to the choice � = 1 cf. [18].
2called here the log-canonical wall cf. Section 4.1 or [19].
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we show that the intersections of the polytopes of quasi-adjunction of f1, · · · , fr
with {s1 = 1} are the polytopes of quasi-adjunction of f2, · · · , fr. Then we prove
the result for r = 1. In particular we retrieve the computation of M.Saito of
the exponents between 0 and 1. Recall that the identification of the constants of
quasi-adjunction and the spectrum was made in [20]. The result for r branches
follows from the result for r � 1 branches except in the cases where some vertex
doesn’t appear in hyperplane {si = 1} for any i. We have to work out these cases
separately (r = 2 and r = 3).

The final section is devoted to the computation of the log canonical walls. Let
f be a germ, we define the Newton nest of f , the following way. It is a set of
vertices of the Newton tree, consisting in all vertices that correspond to faces of
the Newton polygon of f in some system of coordinates. It is a connected set of
vertices in the Newton tree. We show that the log canonical polytope is exactly
given by the Newton nest of f . One can compare this with the result of J.Kollar
showing the constant which is the log-canonical threshold of a germ depends only
on the first characteristic pair (cf. [13]). The article ends with discussion of ACC
conditions for constants and polytopes of quasi-adjunction and with additional
explicit examples.

We would like to thank Manuel Gonazalez Villa for carefull reading of the
preliminary version of this paper and useful comments, which helped to correct
exposition in section 3.2.

2. Newton trees

2.1. Newton polygons. For a subset E ⇢ N2, let �(E) denotes the convex hull
of the set E + R2

+ = {a + b, a 2 E, b 2 R2
+}. The boundary of �(E) is a polygon

with a finite number of vertices and edges. A subset � ⇢ R2 is called a Newton
diagram if there exists a set E ⇢ N2 such that � = �(E). Let E0 = {v0, · · · , vm}

be the set of vertices of � and let vi = (↵i,�i) 2 N2 with ordering such that ↵i�1 <
↵i,�i�1 > �i for i = 1, · · · ,m. For i = 1, · · · ,m we denote by Si = [vi�1, vi] and
by lSi the line supporting the segment Si. The union of compact edges of the
boundary of a Newton diagram is called the Newton polygon. In above notation,
it is the union of the edges Si and denoted N (�). The Newton polygon N (�) is
empty i↵ � = (↵0,�0) + R2

+. The integer h(�) = �0 � �m is called the height of
�.

Let

f(x, y) =
X

(↵,�)2N2

c↵,�x
↵y� 2 C[[x, y]]

The support of f is

Suppf = {(↵,�) 2 N⇥ N | c↵,� 6= 0}.

We use �(f) = �(Suppf) and N (f) = N (�(f)). For a line l in R2, the initial
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part of f with respect to l is

in(f, l) =
X

(↵,�)2l

c↵,�x
↵y� .

If the line l has equation p↵+ q� = N , with (p, q) 2 (N⇤)2 and gcd(p, q) = 1, then
in(f, l) is zero or a monomial or, if l = lS for some segment S of N (�), of the form

in(f, l) = xalyblFS(x
q, yp),

where (al, bl) 2 N2 and

FS(x, y) = c
Y

1in

(y � µix)
⌫i ,

with c 2 C⇤, n 2 N⇤, µi 2 C⇤ (all di↵erent) and ⌫i 2 N⇤.

2.2. Newton algorithm.

Definition 2.1. (Newton maps) Let (p, q) 2 N2, gcd(p, q) = 1 and µ 2 C⇤. Let
(p0, q0) 2 N2 such that qq0 � pp0 = 1. The map ⇧(p,q,µ) : C2

(x1,y1)
! C2

(x,y) given by

x = µq0xp
1, y = xq

1(y1 + µp0
) is called Newton map.

We denote by ⇧⇤
(p,q,µ) the induced homomorphim C[[x, y]] �! C[[x1, y1]]. The

change (p0, q0) ! (p0 + iq, q0 + ip) results in change of coordinates: (x1, y1) 7!

(µix1, µ�iqy1) and does not a↵ect results.
In the sequel we will always assume that p0 < q and q0 < p. This will make

procedures canonical.

Lemma 2.2. [7] Let f(x, y) 2 C[[x, y]], f 6= 0 and ⇧⇤
(p,q,µ)(f)(x1, y1) = f1(x1, y1) 2

C[[x1, y1]].

(1) If there does not exist a face S of N (f) whose supporting line has equation
p↵+ q� = k with k 2 N, then

f1(x1, y1) = xm
1 u(x1, y1)

with m 2 N, u(x1, y1) 2 C[[x1, y1]] and u(0, 0) 6= 0.

(2) If there exists a face S of N (f) whose supporting line has equation p↵+q� =
k0 for some k0 2 N, and if FS(1, µ) 6= 0, then

f1(x1, y1) = xk0
1 u(x1, y1)

with u(x1, y1) 2 C[[x1, y1]] and u(0, 0) 6= 0.

(3) If there exists a face S of N (f) whose supporting line has equation p↵+q� =
k0 for some k0 2 N, and if FS(1, µ) = 0, then

f1(x1, y1) = xk0
1 g1(x1, y1)

with g1(x1, y1) 2 C[[x1, y1]] and g1(0, 0) = 0, g1(0, y1) 6= 0.
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For the proof see [7].
From this lemma, we see that there are a finite number of (p, q, µ) such that

⇧⇤
(p,q,µ)(f) is not a monomial times a unit in C[[x1, y1]]. These triples are given by

the equations of the faces of the Newton polygon and the roots of the corresponding
face polynomials.

Remark 2.3. In the first and second case of Lemma 2.2, the Newton polygon of
f1 is empty. In the third case, the height of the Newton diagram of f1 is less than
or equal to the multiplicity of µ as root of FS(1, X).

We say that f 2 C[[x, y]] is in good coordinates if

(1) �m 6= 0 or

(2) if �m = 0 and

(a) either lSm has equation p↵+ q� = N with p 6= 1 or

(b) if p = 1, and m � 1 then FSm has at least two factors,

(c) if p = 1 and m = 1 FSm is not of the form

FSm = c(y � µ1x)
⌫1(y � µ2x)

⌫2

Lemma 2.4. If f 2 C[[x, y]] is not in good coordinates, there exist changes of
variables in C[[x, y]] in which it is in good coordinates.

The proof can be found in [16]. One has to take in account that our definition
of good coordinates corresponds to their definition of quasi-good coordinates. The
changes of coordinates we use to put f in good coordinates are x = x, y = y+h(x)
with h 2 C[[x]].

We say that f 2 C[[x, y]] is in very good coordinates if it is in good coordinates
and

(1) ↵0 6= 0 or

(2) if ↵0 = 0 and

(a) either lS1 has equation p↵+ q� = N with p 6= 1 or

(b) if p = 1 and m � 1 then FS1 has at least two factors.

Let f 2 C[[x, y]] in very good coordinates. Let ⇧ = ⇧(p,q,µ) be a Newton map.
We denote by f⇧ the result of ⇧⇤(f) after a change of variables so that f⇧ is in
good coordinates. Let ⌃n = (⇧1, · · · ,⇧n) where ⇧i is a Newton map for all i, we
define f⌃n by induction: f⌃1 = f⇧1 , f⌃i = (f⌃i�1)⇧i .

Theorem 2.5. Let f(x, y) 2 C[[x, y]], there exists an integer n0 such that, for any
sequence ⌃n = (⇧1, · · · ,⇧n) where ⇧i is a Newton map for all i, of length at least
n0, f⌃n is a monomial up to a unit.
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Proof. From Lemma 1.1, we first observe that the number of Newton maps ⇧,
such that f⇧ is not a monomial times a unit is finite, bounded by the sum on all
faces S of the number of roots of FS . What we have to show is that the number
of successive Newton maps we have to perform so that f⌃ is a monomial up to a
unit, is also finite.

We start with f in very good coordinates. In this system of coordinates, we
denote by h the height of �(f). We argue by induction on h. If h = 0, then
f is a monomial up to a unit, and n = 0. Consider the case where h > 0. In
that case, N (f) is not empty. Choose a face of N (f), S, and a root of FS with
multiplicity ⌫. Let ↵p+�q = N be the equation of the supporting line of S. Then
f1(x1, y1) = xN

1 g1(x1, y1) 2 C[[x1, y1]] and the height of �(f1) is ⌫ < h since f is
in good coordinates.

If f is in very good coordinates, we define the length of the Newton algorithm
A applied to f , d(f,A) by induction 3 . If f is a monomial up to a unit, then
d(f,A) = 0. Otherwise d(f,A) = max d(f⇧)+1 where the maximum is taken over
all faces S of the Newton polygon and all roots of FS . Note that the definition of
the length depends on the choice of good coordinates at each step of the Newton
algorithm.

2.3. Newton trees. Given f 2 C[[x, y]] in very good coordinates, the New-
ton algorithm consists in applying successive Newton maps attached to successive
Newton polygons and changes of variables until the result is a monomial times a
unit.

Newton trees are trees that encode the Newton algorithm. They are build by
induction, and defined via gluing certain graphs associated to a Newton diagram.
More specifically:

Definition 2.6. An abstract Newton tree is a graph with no loops with two types
of 0-dimensional cells, called vertices and arrows and two types of 1-dimensional
cells called horizontal and vertical edges.

Decoration of an abstract Newton tree is assignment of an integer to a vertex or
arrow (represented below in parenthesis) and assignment an integer to each end of
an edge. Below the integers assigned to unmarked ends are considered to be equal
to 1.

All abstract Newton trees have one marked arrow called upper arrow.

2.3.1. Graph associated to a Newton diagram.

Definition 2.7. 1. Graph associated to a Newton diagram is an abstract Newton
tree with vertices a1, a2, ....am which are in (ordered) 1-1-correspondence with com-
pact 1-dimensional faces Si of the boundary of Newton diagram, arrows a0, am+1

corresponding to the non-compact faces of the boundary of Newton diagram and
m+ 1 vertical edges connecting ai and ai+1 for i = 0, ...,m. Increase of subscript

3sometimes the term “depth” was used earlier
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corresponds to the downward moving on the graph. The arrow a0 is called the upper
arrow.

If � = (↵0,�0) + R2
+ then the graph of � is defined as follows: the graph has

no vertices and it has one edge incident to two arrows and the edge is vertical.
The upper arrow is defined as the arrow decorated by (↵0) and the arrow at the
bottom is decorated by (�0).

Now let us describe the decoration of the graph of a Newton diagram. If the
non compact faces of the Newton diagram are ↵ = ↵0 and � = �m then the upper
arrow is decorated by (↵0) and the arrow at the bottom is decorated by �m. The
edges incident to the arrows are decorated with 1 near the arrows. The extremities
of the edges are decorated the following way: A vertex corresponds to a face S
whose supporting line has equation p↵ + q� = N . We decorate the extremity of
the edge above the vertex by q, and the extremity of the edge under the vertex by
p. We decorate the vertex by (N).

Note that one can recover the whole Newton polygon from the graph since we
can read the equations of the supporting lines of the faces on the graph i.e. the
data given by the graph and by the Newton diagram are identical.

ppx+qy=N

x=i

(i)

(0)

q

(N)

Figure 1.

2.3.2. ] ]Newtontreeof f2 C[[x, y]].
The Newton tree of f is defined by induction on the length. Suppose that f

has length 0. Then f is a monomial times a unit and we define its Newton tree as
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the graph of its Newton diagram (cf. def. 2.7).
Assume that we have constructed the Newton tree for all f of length less than

or equal to n � 1. Let f 2 C[[x, y]] in very good coordinates and having length
n. We define the Newton tree of f in terms of the following data. On one hand
the definition 2.7 provides the graph associated to its Newton diagram. On the
other hand, for each edge of the Newton polygon and each root of the polynomial
corresponding to this edge via the Newton map ⇧ and subsequent change to good
coordinates we obtain the polynomial f⇧ of length at most n� 1. The assumption
of induction yields the Newton tree of f⇧ (for each edge of the Newton polygon of
f).

Definition 2.8. The Newton tree of f is the tree obtained from the above data
as follows. Delete the upper arrow of the Newton tree of each f⇧ (recall that each
⇧ corresponds to a vertex of the graph of Newton diagram of f) and glue the edge
which was incident to that arrow to the corresponding vertex on the graph of the
Newton diagram of f for all ⇧. Moreover, the edges that are glued are renamed
to horizontal edges. All other edges of the graph of the Newton diagram of f and
the Newton trees of f⇧ retain the labels which they had as edges of the trees. The
upper arrow of the graph of the Newton diagram of f is declared the upper arrow
of the Newton tree of f .

To sum up, in this construction the vertices on graph of f are all incident to
vertical edges and correspond to the faces on the Newton polygon of some f⇧.
The horizontal edges correspond to the successive Newton maps used to construct
polynomials f⇧.

Decorations of the Newton tree of f are defined in terms of decorations of the
graph of Newton diagram of f and the decorations of f⇧ as follows.

Definition 2.9. Let v be a vertex of a Newton tree. If v corresponds to a face
of the Newton polygon of f , we say that v has no preceding vertex and we define
S(v) = {v}. Let v be a vertex on a Newton tree. It is on the Newton polygon of f⌃.
The Newton tree of f⌃ has been glued on a vertex v1 which is called the preceding
vertex of v. If v1 does not correspond to a face of the Newton polygon of f , we
can consider its preceding vertex v2. Then we can define S(v) = {vi, · · · , v2, v1, v},
where vi has no preceding vertex and vj is the preceding vertex of vj�1 for 2  j  i
.

The final Newton tree is decorated the following way. The decorations of the
arrows and vertices are not changed. The decorations of the edges are changed.
Let v be a vertex on the Newton tree. If S(v) = {v} then the decorations near
v are not changed. If S(v) = {vi, · · · , v2, v1, v} and if the decoration near v on
the Newton tree such that S(v) = {vi�1, · · · , v2, v1, v} (that is on the Newton
tree which is glued at vi), are (m, p), after the gluing, the decorations near v are
(m+ piqip2i�1 · · · p

2
1p, p).

As an example the following is the Newton tree of f(x, y) = (x2
� y3)2(x3

�

y2)2 + x6y3 + x5y5 + x4y7
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(0)

(20)
2

3

(20)
3

2

(20)

(24)
2

1

(20)

(42)
1

2

(24) (24)

(42)

(0)

(0)

(0)

(20)

(20)

(0)

2

3

3

2

(24)

(20)

2

1

(0)

(20)

(42)

(0)

(0)

(20)

(20)

2

3

3

2

(0)

8

1

(0)

13

2

(0)

(24)

(42)

(0)

Figure 2.

If we add an arrow to a vertex of a Newton tree, this arrow defines a germ of
curve. This germ of curve is called a curvette of the vertex. If v is the vertex, we
denote by Cv its curvette. It is called a virtual component in [9].

Note that on the edges arising for a vertex there are at most two decorations
on the ends near the vertex which are di↵erent from 1. We call them nearby
decorations of the vertex.

2.4. Change of variables. Newton trees are constructed using a very good
system of coordinates. But very good systems of coordinates are not unique. We
want to study the Newton trees in di↵erent systems of very good coordinates.

Consider a system of very good coordinates for f . Consider the Newton polygon
of f in this system of coordinates.

If there is no face of the Newton polygon with equation p↵ + q� = N with p
or q equal to 1, then there is no other system of good coordinates.

If there is a face of the Newton polygon with equation p↵+ q� = N with p or
q equal to 1, assume p = 1. Let

cxaSybS
kSY

(y � µix
q)⌫i

be the face polynomial. Since we are in very good coordinates, we have bS 6= 0 or
if q 6= 1, kS > 1, and if q = 1, kS > 2.

We make the change of variables x = x, y = y + axq.
The faces above S do not change neither their face polynomial. The face S has

the same supporting line but its face polynomial is now

cxaS (y � axq)bS
kSY

(y � (µi � a)xq)⌫i
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If a = µi, for some i, the face doesn’t hit the x-axis. If a 6= µi for all i, the face
hits the x-axis, but anyway we are still in very good coordinates.

We want to compare the Newton trees in these two systems of coordinates.

1

v

v’

v1

vi

vk

q

Figure 3.

We consider the vertex v which represents the face S. There are kS horizontal
edges starting from v corresponding to each root µ of the face polynomial. There
is a vertical edge decorated with 1 near v under v and a vertical edge decorated
with q above v. All the edges can be ended by vertices or arrows. We denote these
ends by vi for the horizontal edges and v0 for the vertical edge pointing downward.
We make the change of variables x = x, y = y + axq.

(1) If a 6= µi for all i. Then the new Newton tree is in Figure 4. We have kS +1
horizontal edges, one for each of the roots µi and one for a. We proved in [8]
that in this case, we cut out the Newton tree in two pieces on the vertical edge
under v. We have Ta which contains v and Tu which contains the vertical
edge ending with v0. We stick back Tu on v making the vertical edge ending
with v0, horizontal and we add a vertical edge decorated with 1 ending with
an arrow decorated with (0) (On Figure 6, we start with Newton tree 2 or 3
and get Newton tree 1).

(0)

v

v1

vi

vk

q

1

v’

Figure 4.
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(2) If a = µi, We cut the Newton tree in 3 pieces. We cut the vertical edge
ending with v0, we cut the horizontal edge ending with vi. We have the piece
containing v, the piece containing v0 and the piece containing vi. We stick
the piece containing vi making the edge ending with vi vertical. We stick the
piece containing v0 on v making the edge containing v0 horizontal. We call
this operation exchange of vertical edge (On Figure 6, we exchange Newton
trees 2 and 3).

kv

v1

q

1

vi

v’

v

Figure 5.

Note that some faces may appear on the Newton polygon in some system of
very good coordinates, but that there is not always a system of coordinates such
that they all appear at the same time.

Example 2.10. :

2
3

1

(0)

(0)

(0)

7
2

9

2

(0)

(0)

(0)

(0)

(0)

(0) (0)

3

7

2

9

2

3

9

2

7

Figure 6.

In this example, the 3 vertices can correspond to faces of a Newton polygon in
some system of coordinates, but at most two of them appear in the same system of
coordinates.
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Definition 2.11. We say that two Newton trees are equivalent if they di↵er by
exchanging vertical and horizontal edges, and eventually deleting horizontal edges
ending with arrows decorated with (0).

We can chose a canonical representant of an equivalent class of Newton tree
the following way: At each vertex the only possible edge decorated with 1 near the
vertex which is not horizontal ends with an arrow decorated with (0).

In Figure 6, the three Newton trees are equivalent. The canonical representant
of the class is the first one.

Equivalent Newton trees represent f in di↵erent systems of good coordinates.

Proposition 2.12. Newton trees of f 2 C[[x, y]] in di↵erent systems of good
coordinates have the same number of vertices. This number is called the Newton
complexity of f .

2.5. Combinatorial properties of Newton trees. .

Proposition 2.13. If v0 is the preceding vertex of v with nearby decorations re-
spectively (q0, p0) and (q, p), we have

q = p0q0p+ m̃.

where (m̃, p) are the nearby decorations of v on the Newton tree where S(v) = {v}.

Proof. See [7].

Definition 2.14. Consider a path on a Newton tree. We say that a number is
adjacent to this path if it is not on the path and is a nearby decoration of a vertex
on the path. If the path contains an arrow, the decoration of the arrow is a number
adjacent to the path.

Definition 2.15. Consider an edge on a Newton tree, its edge determinant is the
di↵erence between the product of the numbers on the edge and the product of the
numbers adjacent to the edge when the edge is incident to two vertices. If the edge
is incident to one arrow, its edge determinant is the product of the decorations on
the edge.

Corollary 2.16. (1) In the process of gluing, the edge determinants remain con-
stant.

(2) All edges determinants are strictly positive integers.

Proof. This is a consequence of the previous proposition.

Proposition 2.17. The decoration (N) of a vertex v on a Newton tree is the sum
over all the arrows F of the tree, of the products of the numbers adjacent to the
paths [v,F ].

For a proof see [7], Proposition 3.3.
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Remark 2.18. From this proposition we see that when the tree is constructed, the
decorations of the vertices are not needed any more because we can compute them
from the decorations of the edges. But, anyway, we have to keep in mind that we
know them from the beginning.

2.6. Computation of the intersection multiplicity using Newton trees.

Proposition 2.19. The intersection multiplicity of two branches f and g is equal
to the product of all the numbers adjacent to the path going from the arrow rep-
resenting f to the arrow representing g on any Newton tree where f and g are
represented.

Corollary 2.20. The decoration Nv of a vertex v of a Newton tree of a germ f
is equal to the intersection multiplicity of the curvette Cv and f .

See [7] Proposition 5.3.
Given a Newton tree, the arrows decorated with positive multiplicities corre-

spond to branches with the same multiplicity. Along horizontal paths from the
first vertical line to any arrow one can compute the Puiseux pairs of the branch.
One can also compute the intersection multiplicity of any two branches. Then the
data of the Newton tree of f give the topological type of f . Given a decorated
tree satisfying the condition of positivity of edge determinants there exist germs f
with this Newton tree.

The Newton tree of f ,without specification of edges as horizontal or vertical
coincide with the splice diagram of the link of the singularity of f at the origin
defined by Eisenbud and Neumann [9].

3. Newton space

In this section for a series f 2 C[[x, y]], we describe a morphism ⇡f : Uf ! C2,
where Uf is a toroidal variety with quotient singularites, ⇡f is birational and has
the property that the proper preimage of f = 0 does not intersect the singular
locus of Uf and is transversal to the exceptional set of ⇡f . Its construction is
much simpler than the construction of log-resolution of pair (C2, C) where C is
the zero set of f . We show that Uf comes with the atlas of a�ne surfaces which
are global quotients by cyclic group and hence provides resolution of pair (C2, C)
in the category of orbifolds.

3.1. Factorization of monomial maps.. Let N be a free abelian group of
rank two with fixed basis {E1, E2}. We use the latter to identify N with Z2.
Elements of N will be represented as column vectors e.g. E1 and E2 correspond
to t(0, 1) and t(1, 0) respectively. Let N+ be the subset of vectors with positive
coordinates.
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3.1.1. The variety U�. Let {P1, P2} be a pair of primitive vectors in N+. Let
Pi =t (pi, qi) and assume that � = det(P1, P2) = p2q1 � p1q2 > 0. Let

� = cone(P1, P2) = {tP1 + sP2, t, s � 0}

The toric surface corresponding to this cone will be denoted U� (cf. [10], p. 4). It
is biregular to a quotient of C2 by a cyclic group. Let us recall the description of
the order of this cyclic group and its action yielding U�.

Let t(p01, q
0
1) be the unique vector such that p01q1�p1q01 = 1 and 0  p2q01�q2p01 <

p2q1 � p1q2. The relation

t(p2, q2) = ct(p1, q1) + dt(p01 � p1, q
0
1 � q1)

yields two integers c, d and we have

d = �, c = �� (p2q
0
1 � q2p

0
1) > 0, gcd(c, d) = 1

LetGd be the group of d-roots of unity. Then the variety U� can be parametrized
via

C2
�! C2/Gd ' U�

(t1, t2) 7! (⇣�c
d t1, ⇣dt2) 7! (u1 = t1tc2, u2 = td1, u3 = td2)

We can also define the variety U� the following way. Let t(p002 , q
00
2 ) be the unique

vector such that p2q002 � p002q2 = 1 and p002q1 � q002p1 < p2q1 � q2p1. We can write

t(p1, q1) = c̃t(p2, q2) + dt(p002 � p2, q
00
2 � q2),

where c̃ = �� (p002q1 � q002p1) > 0.

C2
�! C2/Gd ' U�

(t1, t2) 7! (⇣dt1, ⇣
�c̃
d t2) 7! (ũ1 = td2, ũ2 = tc̃1t2, ũ3 = td1)

Note that cc̃ is congruent to 1 modulo d.

Definition 3.1. Let ⇧� : C2
! C2 be given by:

(t1, t2) 7! (x = tp1
1 tp2

2 , y = tq11 tq22 )

The maps � and ⇡� appearing in the diagram:

C2 �
�! U�

⇡�
�! C2

will be called the (toric) uniformization and the (toric) blow up respectively.

Lemma 3.2. The morphism ⇡� : U� ! C2 is birational.

Proof. Let (x, y) be the coordinates on C2. We have

u1 =
yp

0
1�p1

xq01�q1
, u2 =

yp2

xq2
, u3 =

xq1

yp1

15



The lines D3 := {u1 = 0, u2 = 0} and D2 := {u1 = 0, u3 = 0} are contained in
U�. The line D3 contracts by ⇡� on the origin in C2 if and only if p1 is di↵erent
from 0, and the line D2 contracts by ⇡� on the origin in C2 if and only if q2 is
di↵erent from 0. If d > 1 the origin in C3 is a singular point in U� with a quotient
singularity.

3.1.2. Gluing U� and U�0 . Let � be the cone cone(P1, P2) as before and �0 be
the cone(P2, P3) with P3 =t (p3, q3) and p3q2 � p2q3 > 0.

We have

C2
�! U� �! C2

(t1, t2) 7! (x = tp1
1 tp2

2 , y = tq11 tq22 )
C2

�! U�0 �! C2

(t1, t2) 7! (x = tp2
1 tp3

2 , y = tq21 tq32 )

We glue U� and U�0 along D2 on U� and D0
3 on U�0 . We have u2 = yp2

xq2
and

u0
3 = xq2

yp2
. Then let A be a point on D2. Its coordinates are (0, ⇠, 0) on U�, (0, 0, ⇠)

on U�0 and ⇡�(A) = ⇡�0(A).

3.1.3. Decomposition of � into �1 [ �0
1. Let P3 =t (p3, q3) be such that

p3q1 � q3p1 > 0 and p2q3 � p3q2 > 0. Denote by �1 the cone cone(P1, P3). Let
(u1, u2, u3) the coordinates in C3 such that U� ⇢ C3

u1,u2,u3
and (u1

1, u
1
2, u

1
3) the

coordinates in C3 such that U�1 ⇢ C3
u1
1,u

1
2,u

1
3
. Let (c1, d1) be defined as before for

the cone �1.
We have by ⇡�1

�

C2
�! U�

(x, y) 7! (u1 = yp01�p1

xq01�q1
, u2 = yp2

xq2
, u3 = xq1

yp1
)

The morphism ⇡�1 is the factorization to U�1 of the morphism

C2
�! U�1 �! C2

(v1, v2) 7! (x = vp1
1 vp3

2 , y = vq11 vq32 )

After a short computation, we deduce

u1 = v1v
c1
2 = u1

1, u2 = vq1p2�q2p1
1 vq3p2�p3q2

2 , u3 = vd1
2 = u1

3

Then we have a morphism from C2 to U� which factorizes to U�1 . Denote by
⇡�1,� this factorization. We have

⇡�1 = ⇡� � ⇡�1,�

The morphism ⇡�1,� is the identity from D1
3 on D3 and the line D1

2 contracts
to the singular point in U�.

We can also consider the cone �0
1, cone(P3, P2). Using the second parametriza-

tion of U� we can define the same way as before, a morphism ⇡�0
1,�

. We have

⇡�0
1
= ⇡� � ⇡�0

1,�
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Now the morphism ⇡�0
1,�

is the identity from D10
2 on D2 and D10

3 contracts on the
singularity of U�. We can glue U�1 and U�0

1
as before and we have a morphism

from this new variety to U�.

3.1.4. Newton maps. Let {P1, · · · , Pm} be given positive primitive integral vec-
tors in N+. We denote by P0 = E1 and Pm+1 = E2.

To begin, we consider the cone �m = cone(P0, Pm) and the cone �0
m = cone(Pm, Pm+1).

We consider the variety U�m and the morphism ⇡�m which is the factorization of
the Newton map

C2
�! U�m �! C2

(t1, t2) 7! (x = tpm
2 , y = t1t

qm
2 )

We glue U�m and U�0
m
alongDm

2 andD
0m
3 . We get a variety Um and a birational

morphism ⇡m which is ⇡�m on the chart U�m . The line Dm
2 = D

0m
3 contracts on

the origin of C2. The lines Dm
3 and D

0m
2 are not contracted. There is a singularity

at the origin of U�m (resp. U�0
m
) if and only if the cone �m (resp. �0

m) is not
regular.

Next we consider the subdivision of �m in two cones �m�1 = cone(P0, Pm�1)
and the cone �0

m�1 = cone(Pm�1, Pm). We consider the variety U�m�1 and the
map ⇡�m�1 which is the factorization of the Newton map

C2
�! U�m�1 �! C2

(t1, t2) 7! (x = tpm�1

2 , y = t1t
qm�1

2 )

This map factorizes through U�m . When we glue U�m�1 and U�0
m�1

we have a
birational morphism ⇡m,m�1 from this variety on U�m which is the identity on

D
0m�1
2 . We glue U�0

m
along D

0m
3 and extend ⇡m,m�1 by the identity in this chart.

We obtain a variety Um�1 and a birational map ⇡m,m�1 from Um�1 to Um. On
the chart U�m�1 we have

⇡�m � ⇡m,m�1 = ⇡�m�1

Finally we get a toric variety U associated to the subdivision and a birational
morphism ⇡ from U to C2. Along one exceptional divisor E, the morphism ⇡ is
the Newton map ⇡�i where E = Di

2 on U�i . The variety U is smooth if and only
if the subdivision is regular.

We denote ⇡�1(0) = [
i=m
i=1 E(Pi) where E(P1) = D1

2, E(P2) = D
01
2 · · ·E(Pm) =

D
0m�1
2 .
The configuration graph of the exceptional divisor of ⇡ : U �! C2 is a linear

graph withm vertices. We will represent this graph on a vertical line. We represent
the divisors E(P1), · · · , E(Pm) from top to bottom. We connect the vertices by
a segment since the divisors intersect. We add an edge at the top and at the
bottom with arrows since they represent E1 and E2 but not exceptional divisors.
To keep the information on the subdivision, we decorate the vertex corresponding
to E(Pi) with qi on the edge above the vertex and pi on the edge under the vertex.
Usually we don’t write the decorations for E1 and E2, but they appear in the
computations as (0, 1) and (1, 0). The number d attached to a cone is computed
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Figure 7.

as the edge determinant of the corresponding edge, ie. the product of the numbers
on the edge minus the product of the numbers adjacent to the edge.

Each edge of the dual graph corresponds to a quotient singularity, of type the
determinant of the edge. For the top and bottom edge it is q1 and pm respectively.

Example 3.3. We start with a Newton polygon with two faces with equations
3↵ + 2� = 12 and 3↵ + 4� = 21. We obtain the set of primitive vectors {P1 =t

(3, 4), P2 =t (3, 2)}. We set as before P0 = (0, 1) and P3 = (1, 0). We consider
the cones �2 = cone(P0, P2) and �0

2 = cone(P2, P3). We have a toric variety U2

which is the gluing of U�2 and U�0
2
and a birational map ⇡2 from U2 to C2 with

one exceptional divisor E2 and ⇡2|E2 is the restriction of the morphism

C2
�! U�2 �! C2

(t1, t2) 7! (x = t32, y = t1t22)

Now we split the cone �2 in �1 = cone(P0, P1) and �0
1 = cone(P1, P2). We have

a toric variety U which is the gluing of U�1 , U�0
1
and U�0

2
and a birational map

⇡ from U to C2 with two exceptional divisors E1 and E2 intersecting each other.
The restriction of ⇡ to E2 is the restriction of ⇡2 to E2. The restriction of ⇡ to
E1 is the restriction to E1 of the morphism

C2
�! U�1 �! C2

(t1, t2) 7! (x = t32, y = t1t42)

18



1

2

3

4

3

(0) 

(0) 

E2

E2

E1

E

Figure 8.

The toric variety U is singular with 3 quotient singularities.
We represent the two exceptional divisors by two vertices with an edge connect-

ing them since they intersect. We represent the lines D1
2 on U�1 and D

02
3 on U�0

2

by an arrow decorated with (0). They are not exceptional divisors.

3.2. Resolution of germs of plane curves. Let us begin by an example:

Example 3.4. Consider the germ

f(x, y) = x3
� y2

The Newton polygon of f has one face with equation 2↵+3� = 6. We consider
the two cones � = cone(t(0, 1),t (2, 3)) and �0 = cone(t(2, 3),t (1, 0)). The gluing
of U� and U�0 gives a toric variety U and a birational morphism from U to C2.
There is one exceptional divisor E1 and the restriction of ⇡ on E1 is given by the
restriction of the morphism

C2
�! U� �! C2

(t1, t2) 7! (x = t22, y = t1t32)

We have
f(t22, t1t

3
2) = t62(1� t21)

which means
⇡⇤f = C̃ + 6E(P1)

where C̃ is the proper transform which intersects transversally the divisor E1 in
one point and is smooth.

The Newton tree associated to this germ is given on Figure 9.
The vertex represents the divisor E1. It is decorated with (6) which is the

multiplicity of f on this divisor. The numbers 2 and 3 represent the quotient
singularities in U� and U�0 , and the arrow represents the strict transform of C.
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Figure 9.

Let f be a given complex analytic function of two variables defined on an open
neighborhood of the origin such that f(0, 0) = 0.

We can consider the Newton polygon of f . Let S 2 N (f). Assume the line
supporting S has equation p↵+ q� = N , then we associate to S the vector t(p, q).
Then to N (f), we associate {P1, · · · , Pm}. It gives us a simplicial cone subdivision
⌃ of N+. Then we can associate a toric variety U and a birational morphism
⇡ : U ! C2 such that ⇡�1(0) = [

i=m
i=1 E(Pi). Notice that if we forget about the

decorations of the arrows and of the vertices, the graph associated to the Newton
polygon of f is the graph dual to the divisor ⇡�1(0) with two arrows decorated
with (0) at the top and the bottom.

Let infS = cxaSybS
QkS

l=1(x
q
� µlyp)⌫l . The exceptional divisor intersects the

proper transform C̃ at kS points. Let C̃l be the union of the components of C̃
which pass through (µl, 0). The divisor ⇡⇤f is given by

⇡⇤f =
mX

i=1

kiX

l=1

C̃i,l +
m�1X

i=0

NiE(Pi).

If the germ is non degenerate, the components of the proper transform are smooth
and transversal to the E(Pi). And the vertices of Newton tree of f represent the
E(Pi) and the arrows not decorated with (0) represent the components of C̃.

If the germ is degenerate: Now if C̃l is not smooth or doesn’t intersect transver-
sally with E(P ), we consider (µl, 0) as the origin in C2 identifying E(P ) with E1.
If ⇧⇤

(p,q,µl)
(f) is not in good coordinates, we perform a change of variables which

leaves E(P ) fixed. We consider the Newton polygon of f⇧(p,q,µl)
and the corre-

sponding morphism ⇡1 : U1 ! U . And we do the process again until we get the
strict transform of C, smooth and transverse to the exceptionnal divisor.

Now recall the following (cf. [14],[27]).

Definition 3.5. A toroidal variety is a pair (X,B) where X is an algebraic variety
and B a Zariski closed subset such that for any x 2 X there exist a toric variety
(Vx, Dx) with a fixed 0-dimensional orbit x0 and neighbourhoods Ux, Ux0 in complex
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analytic topology of x and x0 respectively in X and Vx such that (Ux, Ux \ B) =
(Ux0 , Dx \ Ux0).

With his we have the following:

Theorem 3.6. There exists a toroidal variety U and a birational morphism ⇡ :
U ! (C2, 0) such that

⇡⇤f =
X

C̃n +
X

NmEm

and such that the strict transforms of the components of f are smooth with this
divisor having only normal crossings. Moreover, Newton tree of f is the dual graph
of this divisor and the Nm are the decorations of the corresponding vertices. The
singularities of U are on the intersections of the divisors Em, they are cyclic quo-
tient singularities by the group given by the edge determinant of the corresponding
edge in the Newton tree. In particular U (and the Newton tree) determine the dual
graph of smooth resolution via standard resolution of cyclic quotient singularities
of U

Proof. Let Ū be the variety obtained after the final step iteration of toric blow ups
corresponding to subdivisions of the first quadrant corresponding to the Newton
diagrams and changes to good systems of coordinates at the points intersection
of the proper preimage of the zero set of the power series which singularitiy get
resolved with the exceptional set of the toric blow up. Let [Em be the union
of the proper preimages of the exceptional sets of all iterations. For each step,
the toric blow up preserves toric structure, but good change of coordinates may
destroy toric structure only at the smooth point of an exceptional curve at which
this coordinate change is made. Denote them P and EP respectively. Toric blow
up at P , produces toric variety with respect to the toric structure in the new
coordinate system. The proper preimage of EP intersects the exceptional set of
the toric blow up at P at smooth point. The boundary divisor consists of two
smooth at this point, curves (i.e. the proper preimage of EP and the exceptional
curve) and hence has obvious toric structure.

Remark 3.7. The variety Ū together with the uniformization of sets U� providing
the cover of Ū also has the canonical structure of orbifold (cf. [1]) or stack. The
resulting orbifold is not a global quotient in general. This provides the alternative
category in which one has canonical resolution of singularities of f

Remark 3.8. In the next section we shall consider the problem of extendability
of 2-forms on the abelian covers zmi

i = fi where fi are irreducible components
of a germ f = 0 (cf. 4.1). After pull back this abelian cover on Ū the problem
becomes about holomorphic extention of forms on resolution of singularities of the
abelian cover of Ū ramified over the exceptional set of Ū . Since singularities of
Ū are cyclic quotients with exceptional curves near such singularity forming at
most two orbits in resolution, one adds to exceptional curves of Ū only curves
intersected by at most two other components of exceptional set i.e. resolution of
quotient singularities does not add “rupture” curves. Such components in smooth
resolution do not add restrictions on extendability (cf. [6]) Hence extendability
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of forms on abelian covers enough to check only on the exceptional curves which
appear on Ū .

We shall finish this section with calculation in terms of the Newton tree of the
multiplicities of the pull back on the canonical resolution Ū of holomorphic on C2

2-form. If v is a vertex on the Newton tree, denote by ⌫v � 1 = multE⇡⇤(dx^ dy),
if E is the divisor corresponding to v.

Proposition 3.9. (1) If the vertex v corresponds to a face of the Newton polygon
of f and is decorated by (q, p) then ⌫v = p+ q.

(2) If the vertex v with nearby decorations (q, p) has preceding vertex v0 with
nearby decorations (q0, p0), then ⌫v = ⌫v0p+ �, where � = q � pp0q0.

Proof. We can compute the di↵erential using the Newton map.
Consider the Newton map:

x = xp
1µ

p0

k , y = xq
1(y1 + µq0

k )

Then
dx = pxp�1

1 µp0

k dx1, dy = qxq�1
1 (y1 + µq0

k )dx1 + xq
1dy1

Then
dx ^ dy = pxp+q�1

1 µp0

k dx1 ^ dy1

which proves the first part of the proposition and

x⌫v�1dx ^ dy = px⌫vp+��1
1 µ⌫vp

0

k dx1 ^ dy1

because the Newton map is in this case

x = xp
1µ

p0

k , y = x�
1(y1 + µq0

k )

4. Polytopes of quasi-adjunction

In this section, we will show how to compute explicitly polytopes of quasi-adjunction
using Newton trees.

We first recall some definitions and results concerning polytopes of quasi-
adjunction [6].

4.1. Ideals and polytopes of quasi-adjunction. Let B be a small ball about
the origin in C2 and let C be a germ of a plane curve having at 0 a singularity with
r branches . Let f1(x, y) · · · fr(x, y) = 0 be a local equation of this curve (each fi
is assumed to be irreducible). An abelian cover of type (m1, · · · ,mr) of @B is the
link of complete intersection surface singularity

Vm1,··· ,mr : zm1
1 = f1(x, y), · · · , z

mr
r = fr(x, y) (1)
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The covering map is given by p : (z1, · · · , zr, x, y) ! (x, y).

An ideal of quasi-adjunction A(j1, · · · , jr|m1, · · · ,mr) having type

(j1, · · · , jr|m1, · · · ,mr) is the ideal in the local ring of the singularity of C consisting
of germs � such that the 2-form:

!� =
�zj11 · · · zjrr dx ^ dy

zm1�1
1 · · · zmr�1

r
(2)

extends to a holomorphic form on a resolution of the singularity of Vm1,··· ,mr .

Let

U = {(x1, · · · , xr) 2 Rr, 0  xi < 1}

be the unit cube with coordinates corresponding to f1, · · · , fr. Consider an ideal
of quasi-adjunction A. There is a unique polytope P(A) opensubset in U such
that: For (m1, · · · ,mr) 2 Zr and (j1, · · · , jr) 2 Zr with 0  ji < mi, 1  i  r

A ✓ A(j1, ..., jr|m1, ...,mr) , (
j1 + 1

m1
, · · ·

jr + 1

mr
) 2 P(A)

A face of quasi-adjunction is a face of the boundary of the polytope P(A). It
follows that it can be characterized as follows. Let Ei be the exceptional curves of
an embedded resolution ⇡ : C̃2

! C2 of f1 · ... · fr = 0. Let Ni,k = multEk⇡
⇤(fi)

be the multiplicity of pullback of fi to C̃2, ⌫k � 1 = multEk⇡
⇤(dx ^ dy) 4 and for

a germ � 2 OC2,(0,0), ek(�) = multEk⇡
⇤(�). Then the face of quasi-adjunction

containing } = ( j1+1
m1

, ..., jr+1
mr

) 2 U is the face ↵ of the boundary of the set of
points satisfying:

X

i

Ni,kxi >
X

i

Ni,k � ek(�)� ⌫k (3)

for all � in the ideal of quasi-adjunction A(j1, .., jr|m1, ...,mr) (and such that
} 2 ↵). In particular for (j01, ..., j

0
r|m

0
1, ...,m

0
r) for which the corresponding point

satisfies (3) the form !� extends over all Ei. However for (j01, ..., j
0
r|m

0
1, ...,m

0
r) on

the face itself there exist � in the ideal of quasi-adjunction for which !� has pole
on one of the exceptional curves.

Finally recall (cf. [18] Prop.4.2) that the whole local ring O(C2,(0,0)) is of ideals
of quasi-adjunction. Moreover, the convex hull of vectors (�1, ..., �r) such that the
R-divisor �1div(f1) + ...�rdiv(fr) is log-canonical (here div(f) denotes the divisor
of a function f(x, y)) consists of vectors (�1, ..., �r) such that (��1+1, ...,��r+1) is
the polytope of quasi-adjunction correpsonding to the this ideal of quasiadjunction
(i.e. O(C2,(0,0)). We call this convex hull the log-canonial wall of singularity f1 ·
.... · fr. For r = 1 we obtain the log-canonical threshold of divisor div(f).

4there should be no confusion with notations used in section 2.1 where ⌫i was used to denote
the multiplicity of a factor.
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4.2. Computation of faces of quasi-adjunction. Let f1, · · · , fr a collection
of irreducible germs. We consider the Newton tree associated to f1f2 · · · fr. Denote
by V the set of vertices of the Newton tree. To each v 2 V we associate the linear
form

lv(s) =
X

i

Nv,i(si � 1) + ⌫v (4)

where Nv,i is the intersection multiplicity of fi with a curvette Cv and ⌫v is com-
puted by Proposition 3.9.

Theorem 4.1. (1) Let � be a germ, then the polytope of quasi-adjunction asso-
ciated to � is defined by the set of inequalities

lv(s) > �ev(�)

for all v 2 V, where ev(�) is the intersection multiplicity of � with a curvette
Cv.

(2) For all v 2 V there exist � and a face of the polytope of quasi-adjunction
associated to � with equation

lv(s) = �ev(�)

.

The first part of the theorem is a consequence of the discussion of part 3 which
says that there is a bijection between the vertices of the Newton tree and the
rupture divisors in a resolution, and Proposition 3.1 of [6], which says that we only
need those divisors to compute the polytopes of quasi-adjunction.

The proof of the second part will occupy the remain of the section.

4.2.1. The case r=1. As we have seen in [6], the polytopes of quasi-adjunction
c (which in this case are called the constant of quasi-adjunction) are such that
1 � c is an exponent between 0 and 1. We will recover Saito’s theorem. We will
compute exponents instead of constants of quasi-adjunction.

Let f be an irreducible germ. Its Newton tree is as Figure 10.
We denote (q, p) = (q0, p0), the decorations of the first vertex. We assume

q0 > p0. We denote �i = qi � pipi�1qi�1.
We have indexed the vertices from 0 to r. The first part of theorem 4.1 says

that the constant of quasi-adjunction associated to � is given by 1� ✏(�) where

✏(�) = min
i=0,··· ,r

⌫i + ei(�)

piqi
Qr

i+1 pj
.

We denote by

✏i(�) =
⌫i + ei(�)

piqi
Qr

i+1 pj

and we call it the invariant of the vertex vi associated to �.
We will define a set of � which gives all the exponents and such that the invari-

ant along the horizontal path is decreasing to the minimum and then increasing.
We need some technical lemma.
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(0)

q

p

q1

p1

q2

p2

qr

pr

(0)

(0) (0) (0)

Figure 10.

Lemma 4.2. For i from 0 to r, we have

piqi � ⌫i > 0

Proof. For i = 0, we have p0q0 � ⌫0 = p0q0 � p0 � q0 > 0 since p0 � 2.
Assume that piqi � ⌫i > 0.

pi+1qi+1 � ⌫i+1 = pi+1(qipipi+1 + �i+1)� (⌫ipi+1 + �i+1)

pi+1qi+1 � ⌫i+1 = pi+1(piqipi+1 � ⌫i) + (pi+1 � 1)�i+1 > piqi � ⌫i > 0

Definition 4.3. We consider irreducible germs C 0
0, C0, C1, · · · , Cr with Newton

trees as in Figure 11.

r

q

p

q1

p1

q2

p2

qr

pr

C’0

C0
C1 C2 C

Figure 11.

We define
� = C

0a
0 Cb

0C
c1
1 · · ·Ccr

r
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We assume
8i, 1  i  r, 0  ci < pi

Define
A0 = ap0 + bq0

Ai+1 = Aipi+1 + ci+1qi+1, i = 0, · · · r � 1

Lemma 4.4. For i from 0 to r � 1, we have

✏i(�)� ✏i+1(�) =
�i+1

qiqi+1
Qr

i pj
(⌫i � piqi +Ai)

Proof.

⌫iqi+1 � ⌫i+1piqi = ⌫i(piqipi+1 + �i+1)� (⌫ipi+1 + �i+1)piqi

⌫iqi+1 � ⌫i+1piqi = �i+1(⌫i � piqi)

We have to compute qi+1ei(�)� piqiei+1(�).

ei(�) = (ap0 + bq0)
iY

1

pj + q1c1

iY

2

pj + · · ·+ qici + piqi(ci+1 + · · ·+ cr

r�1Y

i+1

pj)

ei+1(�) = (ap0 + bq0)
i+1Y

1

pj + q1c1

i+1Y

2

pj + · · ·+ qicipi+1 + qi+1ci+1

+pi+1qi+1(ci+2 + · · ·+ cr

r�1Y

i+2

pj)

Then
qi+1ei(�)� piqiei+1(�) = �i+1Ai

Lemma 4.5. If Ai0 < pi0qi0 � ⌫i0 , then 8i, i0  i  r, Ai < piqi � ⌫i.

Proof. Assume Ai < piqi � ⌫i.

Ai+1 = Aipi+1 + ci+1qi+1 < (piqi � ⌫i)pi+1 + qi+1(pi+1 � 1) =

qi+1 � ⌫i+1 + pi+1qi+1 � qi+1 = pi+1qi+1 � ⌫i+1

Next proposition will be used in all the remain of the article.

Proposition 4.6. Let � be as in definition 4.3. Then

✏(�) = ✏i0(�)

where i0 is such that for 0  i < i0, Ai > piqi�⌫i and Ai0 < pi0qi0�⌫i0 . Moreover,
the sequence ✏i(�) is decreasing for i  i0 and increasing for i � i0.
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Proof. If, for 0  i  i0 � 1, we have Ai > piqi � ⌫i, then

✏i(�) > ✏i+1(�)

Then for 0  i  i0 � 1
✏i(�) > ✏i0(�)

We have for i0  i  r, Ai < piqi � ⌫i and

✏i(�) < ✏i+1(�)

M. Saito [24] has proven the following

Theorem 4.7. Let f be an irreducible plane singularity with Newton tree as in
Figure 10

Then the exponents between 0 and 1 are given by the following formula

ei(k1, k2, k3) =
1Qr

i+1 pj
(
k1
pi

+
k2
qi
) +

k3Qr
i+1 pj

where 0 < k1 < pi, 0 < k2 < qi,
k1
pi

+ k2
qi

< 1, 0  k3 <
Qr

i+1 pj for 0  i  r.

We prove that

Proposition 4.8. For each i and k1, k2, k3, there exists � as in proposition 4.6
such that ei(k1, k2, k3) = ✏i(�) = ✏(�).

Proof. We have to prove that for each i, 0  i  r and for each (k1, k2, k3) there
exists � such that

1Qr
i+1 pj

(
k1
pi

+
k2
qi
) +

k3Qr
i+1 pj

= ✏i(�)

and
✏i(�) = ✏(�)

We can write
⌫i = qi � pi(pi�1qi�1 � ⌫i�1)

ei(�) = ↵ipi + �iqi + �ipiqi

Then
⌫i + ei(�)

piqi
Qr

i+1 pj
=

1Qr
i+1 pj

(
�i + 1

pi
+

↵i � pi�1qi�1 + ⌫i�1

qi
+ �i)

Let
↵i = pi�1qi�1 � ⌫i�1 + k2,�i = k1 � 1, �i = k3.

We have
↵ipi + �iqi = k2pi + k1qi � ⌫i < piqi � ⌫i
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Now we show that we can find (a, b, c1, · · · , cr) with 0  ci < pi for 1  i  r,
such that

� = C
0a
0 Cb

0C
c1
1 · · ·Ccr

r .

We have 0  k3 <
Qr

i+1 pj , then we can write

�i = ci+1 + ci+2pi+1 + · · ·+ crpi+1 · · · pr�1

with 0  cl < pl for i+ 1  l  r.
We will show that there exists (a, b, c1, · · · , ci) positive integers such that ↵i =

Ai and we set �i = ci < pi. We need the following

Lemma 4.9. Let p, q positive integers prime to each other. Let a be a positive
integer a = pq + k with �p� q < k. Then there exist 0  n, 0  m < p such that
a = np+mq.

Proof. Choose a pair (n,m) 2 Z2 such that a = np+mq. One can choose m such
that 0  m < p. If a = pq + k with k > �p� q then n � 0.

Lemma 4.10. For 0  i  r, we have ⌫i  pi + qi.

Proof. For i = 0, we have ⌫0 = p0 + q0. For 0 < i,

⌫i = ⌫i�1pi + �i�1 = ⌫i�1pi + qi � pi�1qi�1pi = (⌫i�1 � pi�1qi�1)pi + qi  pi + qi

We have
↵i = pi�1qi�1 � ⌫i�1 + k2.

with k2 � 0. Then the equation ↵i = ↵i,1pi�1 + �i,1qi�1 admits a solution in
positive integers with �i�1 < pi�1.

We have
↵i,1 > pi�2qi�2 � ⌫i�2

Since
↵i,1pi�1 + �i,1qi�1 > pi�1qi�1 � ⌫i�1

↵i,1pi�1 > (pi�1 � �i,1)qi�1 � ⌫i�1

↵i,1pi�1 > (pi�1 � �i,1)(pi�2qi�2pi�1 + �i�1)� (⌫i�2pi�1 + �i�1)

↵i,1pi�1 > (pi�1 � �i,1 � 1)�i�1 + (pi�2qi�2 � ⌫i�2)pi�1

Then we can write
↵i,1 = ↵i,2pi�2 + �i,2qi�2

with 0  �i,2 < pi�2 and ↵i,2 > pi�3qi�3 � ⌫i�3.
We define ↵i = Ai�1,�i = ci, ↵i,1 = Ai�2,�i,1 = ci�1 · · ·↵i,i�1 = A0,�i,i�1 =

c1. We have A0 > p0q0 � ⌫0 and we write A0 = ap0 + bq0.
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Remark 4.11. (1) The last proposition prove that the numbers ei(k1, k2, k3) are
exponents between 0 and 1. Then the bounds for k1, k2, k3 imply that they
are all the exponents between 0 and 1 and then we have a new proof of Saito
theorem.

(2) We have

min
i

⌫i
piqi

Q
i+1 pj

=
⌫0

p0q0
Q

1 pj
= ✏0(1) = ✏(1).

This is the minimum of the exponents and is called the log-canonical thresh-
old.

(3) For all i 6= 0 1� ⌫i
piqi

Q
i+1 pj

= 1� ✏i(1) is an exponent. In fact we can write

piqi
Y

i+1

pj�qi+pi(pi�1qi�1�⌫i�1) = qi(pi�1)+pi(pi�1qi�1�⌫i�1)+piqi(
Y

i+1

pj�1)

This is not true that for any � the minimum ⌫i+ei(�)
piqi

Q
i+1 pj

is an exponent and

1 � ⌫l+el(�)
plql

Q
l+1 pj

is an exponent for l 6= i. One example is given by (p0, q0) =

(2, 3), (p1, q1) = (2, 13), (p2, q2) = (2, 53) and � = C1C2. We have 23/24 <
50/52 < 102/106, 23/24 is an exponent, but 2/52 and 4/106 are not. This
remark is connected to the monodromy conjecture and the recent work of
Nemethi and Veys [21].

We can show that for each vertex there is an exponent obtained by this vertex
and no other.

Proposition 4.12. For each i, there exist � such that ✏i(�) = ✏(�) and for all �0

and j 6= i, ✏(�) 6= ✏j(�0).

To prove this result we need some lemma.

Lemma 4.13. For all j > i, and all k < i, we have

1Q
i+1 pl

(
1

pi
+

1

qi
) 6=

1Q
j+1 pl

(
k1
pj

+
k2
qj

+ k3)

and
1Q

i+1 pl
(
1

pi
+

1

qi
) 6=

1Q
k+1 pl

(
k1
pk

+
k2
qk

+ k3)

Proof. Assume that there exists (k1, k2, k3) such that

1Q
i+1 pl

(
1

pi
+

1

qi
) =

1Q
j+1 pl

(
k1
pj

+
k2
qj

+ k3)

that is
1

Qj
i+1 pl

(
1

pi
+

1

qi
) = (

k1
pj

+
k2
qj

+ k3)
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We have k1
pj

+ k2
qj

+ k3 �
1
pj

and 1Qj
i+1 pl

( 1
pi

+ 1
qi
) < 1

pj
. Then the first assertion is

proved.
Assume that there exists (k1, k2, k3) such that

1Q
i+1 pl

(
1

pi
+

1

qi
) =

1Q
k+1 pl

(
k1
pk

+
k2
qk

+ k3),

that is
1

pi
+

1

qi
=

1
Qi

k+1 pl
(
k1
pk

+
k2
qk

+ k3).

On the left hand side, the denominator is piqi. On the right hand side, the de-
nominator is a divisor of qk

Qi
k pl. But piqi > qk

Qi
k pl. The second assertion is

proved.

Now we can prove proposition

Proof. Consider a vertex of the Newton tree v decorated with (pi, qi).
Consider the exponent 1Q

i+1 pl
( 1
pi

+ 1
qi
). We found a � such that

1Q
i+1 pl

(
1

pi
+

1

qi
) =

⌫i + ei(�)

piqi
Q

i+1 pl
<

⌫j + ej(�)

pjqj
Q

j+1 pl

for j 6= i. Assume there exits m 6= i and �0 such that

1Q
i+1 pl

(
1

pi
+

1

qi
) =

⌫m + em(�0)

pmqm
Q

m+1 pl
<

⌫j + ej(�0)

pjqj
Q

j+1 pl

for j 6= m. Since ⌫m+em(�0)
pmqm

Q
m+1 pl

is 1� c with c a constant of quasi-adjunction, it is

an exponent and so can be written 1Q
j+1 pl

(k1
pj

+ k2
qj

+k3). This is not possible using

the previous lemma. Then the exponent 1Q
i+1 pl

( 1
pi

+ 1
qi
) is given by the vertex v

and no other.

4.2.2. Induction step. We want to prove the theorem by induction. We need
the following proposition.

Proposition 4.14. The intersection of the polytopes of quasi-adjunction of f1, · · · , fr
with the hyperplane s1 = 1 are the polytopes of quasi-adjunction of f2, · · · , fr.

Proof. The polytopes of quasi-adjunction of f1 · · · fr are given by inequalities

rX

i

Nv,i(si � 1) + ⌫v + ev(�) > 0

where v runs over all the vertices of the Newton tree of f1 · · · fr. We have to show
that when s1 = 1 we only need inequalities with v running over the vertices of the
Newton tree of f2 · · · fr.
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1

v
q

p

q’

p’

v’

f

Figure 12.

To delete f1 we cut an horizontal edge e arising from a vertex v. We have two
cases. Either the edge e ends by an arrow and we do not delete any vertices except
eventually v, or we delete a line of vertices. We study this case.

Let v and v0 be the two vertices ending e. If we cut e the vertex v0 is deleted.
We prove that the inequality

rX

2

Nv,i(si � 1) + ⌫v + ev(�) > 0

implies
rX

2

Nv0,i(si � 1) + ⌫v0 + ev0(�) > 0

The vertex v is decorated with (q, p) (neither one on e) and the vertex v0 is dec-
orated with (q0, p0) (with q0 on e), we denote by � = q0 � pqp0 > 0. We have, for
i 6= 1, Nv0,i = p0Nv,i, ⌫v0 = ⌫vp0 + �, and we can write

ev(�) = a+ �bpq + cpq, ev0(�) = ap0 + ↵bp0 + cq0

rX

2

Nv0,i(si � 1) + ⌫v0 + ev0(�)

= (
rX

2

Nv,i(si � 1) + ⌫v + ev(�))p
0 + p0b(↵� �pq) + (c+ 1)�

>
rX

2

Nv,i(si � 1) + ⌫v + ev(�)

for all �. The same computation shows that if v00 is the vertex attached to v0 on
the Newton tree of f1, we have the inequality

rX

2

Nv0,i(si � 1) + ⌫v0 + ev0(�) > 0
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implies
rX

2

Nv00,i(si � 1) + ⌫v00 + ev00(�) > 0

Now if v is not a vertex on the Newton tree of f2 · · · fr the inequality corre-
sponding to v is not needed from Proposition 3.1 in [6].

Now we can prove the theorem. We use induction on the number r of irreducible
branches. It is true for r = 1. Assume it is true for any set of r � 1 of irreducible
functions. Consider f1, · · · fr. We consider the intersection of the polytopes of
quasi-adjunction of f1, · · · , fr with the hyperplane s1 = 1. This gives the polytopes
of quasi-adjunction of f2, · · · , fr. Then all the vertices on the Newton tree of
f2 · · · fr contribute. If we have all the vertices of f1 · · · fr we are done. Otherwise
we consider all the possible choices of r � 1 functions amongst f1, · · · , fr. All the
vertices of the Newton tree of f1 · · · fr will appear except in the two cases:

(1) r = 2 and v is decorated with (q, 1)

(2) r = 3 and v is decorated with (1, 1).

4.2.3. Exceptional cases. The rest of the section is devoted to the proof of
these particular cases.

We have to consider those cases separately.
Case I.1
This is the case where v is connected by an edge to the arrows representing f1

and f2.
We consider first the case where we have only one vertex.

(0)

q

(0)

Figure 13.

The log canonical threshold is q(s1 � 1) + q(s2 � 1) + q + 1 > 0.
The polytopes of quasi-adjunction are given by the following inequalities:

q0p0
Qr

1 pj(s1 � 1) +q0p0
Qr

1 pj(s2 � 1) +⌫0 +e0(�) > 0
...

qrpr(s1 � 1) +qrpr(s2 � 1) +⌫r +er(�) > 0
q(s1 � 1) +q(s2 � 1) +⌫ +e(�) > 0
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(0)

qr

pr

q

(0)

Figure 14.

All the hyperplanes defined by the equality are parallel.

If we could erase the last inequality, we would have the inequalities defining
the polytopes of quasi-adjunction in the case the two germs separate on the vertex
decorated with (qr, pr) (Figure 15).

(0)

qr

pr

(0)

Figure 15.

But we know that the number of intersections of the polytopes of quasi-adjunction
with the line s1 = s2 inside the cube is the Milnor number. The Milnor numbers
of the two singularities di↵er by q � prqr. Then we need all the inequalities.

Example 4.15. (see Figure 16)

2

3

2

13

2 2

53 107

C’0

C0 C1 C

Figure 16.
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The polytopes of quasi-adjunction are given by

24(s1 � 1) + 24(s2 � 1) + 5 + e0(�) > 0
52(s1 � 1) + 52(s2 � 1) + 11 + e1(�) > 0
106(s1 � 1) + 106(s2 � 1) + 23 + e2(�) > 0
107(s1 � 1) + 107(s2 � 1) + 24 + e(�) > 0

We take � = C 0
0C1C2 and the corresponding face of quasi-adjunction is given by

107(s1 � 1) + 107(s2 � 1) + 111 = 0

Case I.2
We first consider the following case (see Figure 17).

2

(0)

(0)

(0) (0)

q

q0

p0

f1

f

Figure 17.

We consider � = 1.
We have the set of following inequalities to compute the log-canonical wall.

q
Qr

0 pj(s1 � 1) +q(s2 � 1) +⌫ > 0
q0p0

Qr
1 pj(s1 � 1) +qp0(s2 � 1) +⌫0 > 0

qipi
Qr

i+1 pj(s1 � 1) +q
Qi

0 pj(s2 � 1) +⌫i > 0

Since we have for all i from 0 to r � 1,

1�
⌫i

piqi
Q

i+1 pj
> 1�

⌫i+1

pi+1qi+1
Q

i+2 pj

and
1�

⌫i

q
Qi

0 pj
> 1�

⌫i+1

q
Qi+1

0 pj

the inequality q0p0
Qr

1 pj(s1 � 1) + qp0(s2 � 1) + ⌫0 > 0 implies the inequalities

qipi
Qr

i+1 pj(s1 � 1) + q
Qi

0 pj(s2 � 1) + ⌫i > 0 for i from 1 to r. We are left with
the two inequalities

q
Qr

0 pj(s1 � 1) +q(s2 � 1) +⌫ > 0
q0p0

Qr
1 pj(s1 � 1) +qp0(s2 � 1) +⌫0 > 0
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We compute the intersection of the two lines q
Qr

0 pj(s1 � 1) + q(s2 � 1) + ⌫ = 0
and q0p0

Qr
1 pj(s1�1)+ qp0(s2�1)+⌫0 = 0, which is (s1 = 1� 1Qr

0 pj
, s2 = 1� 1

q ),

which means that the log-canonical wall is a breaking line and that the equation
q
Qr

0 pj(s1 � 1) + q(s2 � 1) + ⌫ = 0 does occur.
Now we consider (see Figure 18)

(0)

qi

pi

q

qi+1 pi+1

(0)

Figure 18.

We chose � as in proposition 4.6 such that

max
j

(1�
⌫j + ej(�)

pjqj
Q

j+1 pl
) = 1�

1Q
i+2 pl

(
1

qi+1
+

1

pi+1
)

That means that with the notation of Definition 4.3 we have � = C
0a
0 Cb

0C
c1
1 · · ·Cci

i ,
ei(�) = Ai = piqi � ⌫i + 1.

We have to consider

qjpj
Q

j+1 pl(s1 � 1) + qjpj
Qi

j+1 pl(s2 � 1) + ⌫j + ej(�) > 0, j < i
qipi

Q
i+1 pl(s1 � 1) + qipi(s2 � 1) + ⌫i + ei(�) > 0

q
Q

i+1 pl(s1 � 1) + q(s2 � 1) + ⌫ + e(�) > 0
qi+1pi+1

Q
i+2 pl(s1 � 1) + qpi+1(s2 � 1) + ⌫i+1 + ei+1(�) > 0

qjpj
Q

j+1 pl(s1 � 1) + q
Qj

i+1 pl(s2 � 1) + ⌫j + ej(�) > 0, j > i+ 1

Since, for j � i+ 1

1�
⌫j + ej(�)

pjqj
Q

j+1 pl
> 1�

⌫j+1 + ej+1(�)

pj+1qj+1
Q

j+2 pl

and

1�
⌫j + ej(�)

q
Qj

i+1 pl
> 1�

⌫j+1 + ej+1(�)

q
Qj+1

i+1 pl
,

because ⌫j+1+ej+1(�)�(⌫j+ej(�))pj+1 = �j+1. Then the inequality qi+1pi+1
Q

i+2 pl(s1�
1) + qpi+1(s2 � 1) + ⌫i+1 + ei+1(�) > 0 implies the inequalities qjpj

Q
j+1 pl(s1 �

1) + q
Qj

i+1 pl(s2 � 1) + ⌫j + ej(�) > 0, j > i+ 1.
We have, for j  i,

1�
⌫j + ej(�)

pjqj
Qr

j+1 pl
> 1�

⌫j�1 + ej�1(�)

pj�1qj�1
Qr

j pl
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1�
⌫j + ej(�)

pjqj
Qi

j+1 pl
> 1�

⌫j�1 + ej�1(�)

pj�1qj�1
Qi

j pl

Then the inequality qipi
Q

i+1 pl(s1 � 1) + qipi(s2 � 1) + ⌫i + ei(�) > 0 implies the

inequalities qjpj
Q

j+1 pl(s1 � 1) + qjpj
Qi

j+1 pl(s2 � 1) + ⌫j + ej(�) > 0, j < i.
Then we are left with the inequalities

qipi
Q

i+1 pl(s1 � 1) + qipi(s2 � 1) + ⌫i + ei(�) > 0
q
Q

i+1 pl(s1 � 1) + q(s2 � 1) + ⌫ + e(�) > 0
qi+1pi+1

Q
i+2 pl(s1 � 1) + qpi+1(s2 � 1) + ⌫i+1 + ei+1(�) > 0

The second one implies the first one. In fact since ei(�) = piqi � ⌫i +1 = e(�), we
have

1�
⌫i + ei(�)

piqi
Qr

i+1 pl
< 1�

⌫ + e(�)

q
Qr

i+1 pl

1�
⌫i + ei(�)

piqi
< 1�

⌫ + e(�)

q

Then finally we have to consider two inequalities

q
Q

i+1 pl(s1 � 1) + q(s2 � 1) + ⌫ + e(�) > 0
qi+1pi+1

Q
i+2 pl(s1 � 1) + qpi+1(s2 � 1) + ⌫i+1 + ei+1(�) > 0

The intersection point of the lines q
Q

i+1 pl(s1�1)+q(s2�1)+⌫+e(�) = 0 and

qi+1pi+1
Q

i+2 pl(s1�1)+qpi+1(s2�1)+⌫i+1+ei+1(�) = 0 is (s1 = 1� 1Qr
i+1 pj

, s2 =

1 �
1
q ). Then we have a polytope of quasi-adjunction with a broken line as face

and the inequality q
Q

i+1 pl(s1 � 1) + q(s2 � 1) + ⌫ + e(�) = 0 does occur.

Example 4.16. (see Figure 19)

2

(0)

(0)

(0) (0)

3

2

7

15
2

61

Figure 19.

We have a face of quasi-adjunction given by

28(s1 � 1) + 7(s2 � 1) + 8 > 0, 60(s1 � 1) + 14(s2 � 1) + 17 > 0
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(0)

q

1

q0
1

p0
1

q0
2

p0
2

f1

f2

(0)

(0)

(0)

(0)

(0)

Figure 20.

Case I.3 (See Figure 20)
The log-canonical wall is given by the equations

q
Qr1

0 p1l (s1 � 1) +q
Qr2

0 p2l (s2 � 1) +⌫ > 0

p10q
1
0

Qr1

1 p1l (s1 � 1) +qp10
Qr2

0 p2l (s2 � 1) +⌫10 > 0

p1jq
1
j

Qr1

j+1 p
1
l (s1 � 1) +q

Qj
0 p

1
l

Qr2

0 p2l (s2 � 1) +⌫1j > 0, 0 < j < r1

qp20
Qr1

0 p1l (s1 � 1) +p20q
2
0

Qr2

1 p2l (s2 � 1) +⌫20 > 0

q
Qk

0 p
2
l

Qr1

0 p1l (s1 � 1) +p2kq
2
k

Qr2

k+1 p
2
l (s2 � 1) +⌫2k > 0, 0 < k < r2

We have

1�
⌫1j

p1jq
1
j

Q
j+1 p

1
l

> 1�
⌫1j+1

p1j+1q
1
j+1

Q
j+2 p

1
l

and

1�
⌫1j

q
Qj

0 p
1
l

Qr2

0 p2l
> 1�

⌫1j+1

q
Qj+1

0 p1l
Qr2

0 p2l

Then we have to consider the three inequalities

q
Qr1

0 p1l (s1 � 1) +q
Qr2

0 p2l (s2 � 1) +⌫ > 0

p10q
1
0

Qr1

1 p1l (s1 � 1) +qp10
Qr2

0 p2l (s2 � 1) +⌫10 > 0

qp20
Qr1

0 p1l (s1 � 1) +p20q
2
0

Qr2

1 p2l (s2 � 1) +⌫20 > 0

We show that the three lines

(0) q
Qr1

0 p1l (s1 � 1) +q
Qr2

0 p2l (s2 � 1) +⌫ = 0

(1) p10q
1
0

Qr1

1 p1l (s1 � 1) +qp10
Qr2

0 p2l (s2 � 1) +⌫10 = 0

(2) qp20
Qr1

0 p1l (s1 � 1) +p20q
2
0

Qr2

1 p2l (s2 � 1) +⌫20 = 0

constitute the log-canonical wall.
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(2)

(1)(0)

Figure 21.

We have

1�
⌫10

p10q
1
0

Qr1

1 p1l
> 1�

⌫

q
Qr1

0 p1l

Then the intersection of the line (1) with the line {s2 = 1} is greater than the
intersection of the line (0) with {s2 = 1}. The same for the intersection of (2) and
{s1 = 1}.

Now we show that the intersection of the lines (1) and (2) is on the same side
of the line (0) than the origin. The intersection of (1) and (2) is given by

(q10q
2
0 � q2p10p

2
0)

r1Y

0

p1l (s1 � 1) + ⌫10q
2
0 � ⌫20qp

1
0 = 0

(q10q
2
0 � q2p10p

2
0)

r2Y

0

p2l (s2 � 1) + ⌫20q
1
0 � ⌫10qp

2
0 = 0

We have

(q10q
2
0 � q2p10p

2
0) = q(�1p20 + �2p10) + �1�2

⌫10q
2
0 � ⌫20qp

1
0 = q(�1p20 � �2p10) + �1�2 + ⌫p10�

2

A simple computation gives the result.
Then the log canonical wall is given by the three lines

(0) q
Qr1

0 p1l (s1 � 1) +q
Qr2

0 p2l (s2 � 1) +⌫ = 0

(1) p10q
1
0

Qr1

1 p1l (s1 � 1) +qp10
Qr2

0 p2l (s2 � 1) +⌫10 = 0

(2) qp20
Qr1

0 p1l (s1 � 1) +p20q
2
0

Qr2

1 p2l (s2 � 1) +⌫20 = 0

and the first vertex does occur.

Example 4.17. (see Figure 22)
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Figure 22.

The log-canonical wall is given by the three inequalities

4(s1 � 1) + 4(s2 � 1) + 2 > 0
10(s1 � 1) + 8(s2 � 1) + 5 > 0
8(s1 � 1) + 10(s2 � 1) + 5 > 0

Now we study the case where the separation occurs as in Figure 23.

2

p0

q0 qi

pi

q

qi+1
1

pI+1
1

qI+1
2

pI+1
2

C’0

C0
CI

(0)

(0)

f1

f

Figure 23.

We consider � such that

1�
1

Qr1

i+2 p
1
l

(
1

q1i+1

+
1

p1i+1

) = 1�
⌫1i+1 + e1i+1(�)

q1i+1p
1
i+1

Qr1

i+2 p
1
l

is max0jr1 1�
⌫1
j+e1j (�)

q1jp
1
j

Qr1
j+1 p1

l

and

1�
1

Qr2

i+2 p
2
l

(
1

q2i+1

+
1

p2i+2

) = 1�
⌫2i+1 + e2i+1(�)

q2i+1p
2
i+1

Qr2

i+2 p
2
l
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is max0jr2 1�
⌫2
j+e2j (�)

q2jp
2
j

Qr2
j+1 p2

l

.

This can be achieve with � = C
0a
0 Cb

0 · · ·C
ci
i with Ai = piqi � ⌫i + 1 with

notations of 4.6.
We have to consider the inequalities

qjpj
Qr1

j+1 p
1
l (s1 � 1) + qjpj

Qr2

j+1 p
2
l (s2 � 1) + ⌫j + ej(�) > 0, 0  j < i

qipi
Qr1

i+1 p
1
l (s1 � 1) + qipi

Qr2

i+1 p
2
l (s2 � 1) + ⌫i + ei(�) > 0

q
Qr1

i+1 p
1
l (s1 � 1) + q

Qr2

i+1 p
2
l (s2 � 1) + ⌫ + e(�) > 0

q1i+1p
1
i+1

Qr1

i+2 p
1
l (s1 � 1) + qp1i+1

Qr2

i+1 p
2
l (s2 � 1) + ⌫1i+1 + e1i+1(�) > 0

qp2i+1

Qr1

i+1 p
1
l (s1 � 1) + q2i+1p

2
i+1

Qr2

i+2 p
2
l (s2 � 1) + ⌫2i+1 + e2i+1(�) > 0

q1np
1
n

Qr1

n+1 p
1
l (s1 � 1) + q

Qn
i+1 p

1
l

Qr2

i+1 p
2
l (s2 � 1) + ⌫1n + e1n(�) > 0, i+ 1 < n  r1

q
Qm

i+1 p
2
l

Qr1

i+1 p
1
l (s1 � 1) + qmp2m

Qr2

m+1 p
2
l (s2 � 1) + ⌫2m + e2m(�) > 0, i+ 1 < m  r2

where for 0  j < i pj = p1j = p2j and qj = q1j = q2j .
As before, we don’t need the two last sets of inequalities.
We have

1�
⌫j + ej(�)

qjpj
Qr1

j+1 p
1
l

> 1�
⌫j�1 + ej�1(�)

qj�1pj�1
Qr1

j p1l

and

1�
⌫j + ej(�)

qjpj
Qr2

j+1 p
2
l

> 1�
⌫j�1 + ej�1(�)

qj�1pj�1
Qr2

j p2l

Then we don’t need either the first set of inequalities. We are left with

qipi
Qr1

i+1 p
1
l (s1 � 1) + qipi

Qr2

i+1 p
2
l (s2 � 1) + ⌫i + ei(�) > 0

q
Qr1

i+1 p
1
l (s1 � 1) + q

Qr2

i+1 p
2
l (s2 � 1) + ⌫ + e(�) > 0

q1i+1p
1
i+1

Qr1

i+2 p
1
l (s1 � 1) + qp1i+1

Qr2

i+1 p
2
l (s2 � 1) + ⌫1i+1 + e1i+1(�) > 0

qp2i+1

Qr1

i+1 p
1
l (s1 � 1) + q2i+1p

2
i+1

Qr2

i+2 p
2
l (s2 � 1) + ⌫2i+1 + e2i+1(�) > 0

We show that we don’t need the first inequality and that the three last give a
polytope of quasi-adjunction. Then the second inequality does occur.

We have

1�
⌫i + ei(�)

qipi
Qr1

i+1 p
1
l

< 1�
⌫ + e(�)

q
Qr1

i+1 p
1
l

1�
⌫i + ei(�)

qipi
Qr2

i+1 p
2
l

< 1�
⌫ + e(�)

q
Qr2

i+1 p
2
l

then the second inequality implies the first one.
We consider

(0)q
Qr1

i+1 p
1
l (s1 � 1) + q

Qr2

i+1 p
2
l (s2 � 1) + ⌫ + e(�) = 0

(1)q1i+1p
1
i+1

Qr1

i+2 p
1
l (s1 � 1) + qp1i+1

Qr2

i+1 p
2
l (s2 � 1) + ⌫1i+1 + e1i+1(�) = 0

(2)qp2i+1

Qr1

i+1 p
1
l (s1 � 1) + q2i+1p

2
i+1

Qr2

i+2 p
2
l (s2 � 1) + ⌫2i+1 + e2i+1(�) = 0
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As before, we show that the abscissa of the intersection of line (1) with {s2 = 1}
is greater than the abscissa of the intersection of line (0) with {s2 = 1}. In fact,
we have

1�
⌫i+1 + ei+1(�)

qi+1pi+1
Qr1

i+2 p
1
l

> 1�
⌫ + e(�)

q
Qr1

i+1 p
1
l

since
(⌫ + e(�))q1i+1 � q(⌫i+1 + ei+1(�)) = �1(e(�) + ⌫ � q) = �1

since e(�) = piqi � ⌫i + 1. Now, the intersection point of (1) and (2) is given by

(q1i+1q
2
i+1 � q2p1i+1p

2
i+1)

r1Y

i+1

p1l (s1 � 1)+

q2i+1⌫
1
i+1 � qp1i+1⌫

2
i+1) + e1i+1(�)q

2
i+1 � e2i+1(�)qp

1
i+1 = 0

(q1i+1q
2
i+1 � q2p1i+1p

2
i+1)

r2Y

i+1

p2l (s2 � 1)+

q1i+1⌫
2
i+1 � qp2i+1⌫

1
i+1) + e2i+1(�)q

1
i+1 � e1i+1(�)qp

2
i+1 = 0

We have

q1i+1q
2
i+1 � q2p1i+1p

2
i+1 = q(�1p2i+1 + �2p1i+1) + �1�2

q2i+1⌫
1
i+1 � qp1i+1⌫

2
i+1) = �1p2i+1(⌫ � q) + �2qp1i+1 + �1�2

e1i+1(�)q
2
i+1 � e2i+1(�)qp

1
i+1 = e(�)p1i+1�

2

using the fact that e(�) = piqi � ⌫i +1, we can show that the intersection point of
the two lines (1) and (2) is on the same side of the line (0) than the origin.

Example 4.18. (see Figure 24)
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2

15

Figure 24.
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The three inequalities give a polytope of quasi-adjunction.

14(s1 � 1) + 14(s2 � 1) + 8 > 0
30(s1 � 1) + 28(s2 � 1) + 17 > 0
28(s1 � 1) + 30(s2 � 1) + 17 > 0

Then Case I is proved
Case II
We study the case where r = 3 and the three germs are connected by a vertex

decorated by (1, 1).

(0)

q1
1

p1
1

q1
2

p1
2

q1
3

p1
3

(0)

(0)

(0)

(0)

Figure 25.

We compute the log-canonical wall. We have to consider the following inequal-
ities.

Qr1

1 p1l (s1 � 1) +
Qr2

1 p2l (s2 � 1) +
Qr3

1 p3l (s3 � 1) + 2 > 0

q11p
1
1

Qr1

2 p1l (s1 � 1) + p11
Qr2

1 p2l (s2 � 1) + p11
Qr3

1 p3l (s3 � 1) + ⌫11 > 0

p21
Qr1

1 p1l (s1 � 1) + q21p
2
1

Qr2

2 p2l (s2 � 1) + p21
Qr3

1 p3l (s3 � 1) + ⌫21 > 0

p31
Qr1

1 p1l (s1 � 1) + p31
Qr2

1 p2l (s2 � 1) + q31p
3
1

Qr3

2 p3l (s3 � 1) + ⌫31 > 0

q1i p
1
i

Qr1

i+1 p
1
l (s1 � 1) +

Qi
1 p

1
l

Qr2

1 p2l (s2 � 1) +
Qi

1 p
1
l

Qr3

1 p3l (s3 � 1) + ⌫1i > 0, 2  i  r1
Qj

1 p
2
l

Qr1

1 p1l (s1 � 1) + q2j p
2
j

Qr2

j+1 p
2
l (s2 � 1) +

Qj
1 p

2
l

Qr3

1 p3l (s3 � 1) + ⌫2j > 0, 2  j  r2
Qk

1 p
3
l

Qr1

1 p1l (s1 � 1) +
Qk

1 p
3
l

Qr2

1 p2l (s2 � 1) + q3kp
3
k

Qr3

k+1 p
3
l (s3 � 1) + ⌫3k > 0, 2  k  r3

It is easy to check that the three last sets of inequality do not contribute to the
log-canonical wall. We show that the four remaining inequalities all contribute to
the log-canonical wall. Let

(0)
Qr1

1 p1l (s1 � 1) +
Qr2

1 p2l (s2 � 1) +
Qr3

1 p3l (s3 � 1) + 2 = 0

(1)q11p
1
1

Qr1

2 p1l (s1 � 1) + p11
Qr2

1 p2l (s2 � 1) + p11
Qr3

1 p3l (s3 � 1) + ⌫11 = 0

(2)p21
Qr1

1 p1l (s1 � 1) + q21p
2
1

Qr2

2 p2l (s2 � 1) + p21
Qr3

1 p3l (s3 � 1) + ⌫21 = 0

(3)p31
Qr1

1 p1l (s1 � 1) + p31
Qr2

1 p2l (s2 � 1) + q31p
3
1

Qr3

2 p3l (s3 � 1) + ⌫31 = 0
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We consider the intersection of the planes (0), (1), (2) with {s3 = 1}. It is easy to
verify that the trace of the log-canonical wall is given by (1) and (2) and that the
the three lines intersect. Then the first inequality does occur in the log-canonical
wall.

(2)

(0) (1)

Figure 26.

Figure 27.

We have finished the proof of Theorem 4.1 (see Figure 27).

4.3. Computation of the log-canonical wall.

Definition 4.19. The Newton nest of a Newton tree is the set of vertices v whose
set of preceding vertices Sv is empty or satisfies, for all v0 2 Sv with nearby deco-
rations (q0, p0) either p0 = 1 or q0 = 1.

Remark 4.20. The Newton nest of a Newton tree doesn’t depend on the system
of coordinates since for all vertex in the Newton tree there exists a system of co-
ordinates such that this vertex is on the Newton polygon. Note that there doesn’t
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exist in general a system of coordinates such that all vertices are on the Newton
polygon.

Example 4.21. (see figure 28)
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(0)

13

2

7

15

2

Figure 28.

In this example all vertices of the Newton tree belong to the Newton nest of the
Newton tree. On the right hand side of the figure we show the Newton tree in a
di↵erent system of coordinates.

Theorem 4.22. (1) The log-canonical wall is given by the set of inequalities

X
Ni,v(si � 1) + ⌫v > 0
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where v runs through the Newton nest of f1 · · · fr.

(2) For each v in the Newton nest of f1 · · · fr there exists a face of the log canon-
ical wall with equation

X
Ni,v(si � 1) + ⌫v = 0

Corollary 4.23. The product of
P

Ni,v(si�1)+⌫v where v runs over the Newton
nest divides all polynomials in the Bernstein ideal.

The corollary is a consequence of Theorem 4.22 and [6].

Proof. The log-canonical wall is given by the inequalities

X
Ni,v(si � 1) + ⌫v > 0

where v runs through all the vertices of the Newton tree. We first prove that if v
doesn’t belong to the Newton nest, then the corresponding inequality is implied
by the inequalities with v in the Newton nest. A vertex doesn’t belong to the
Newton nest if its set of preceding vertices Sv is not empty and if there exists
v0 2 Sv with nearby decorations (q0, p0) with p0 > 1 and q0 > 1. Let v with nearby
decorations (q, p) be a vertex not in the Newton nest, {v0, · · · , vk, v} its set of
preceding vertices. Let j be the biggest index such that the nearby decorations of
vj are (qj , pj) with pj > 1 and qj > 1.

We have

q = qkp+ �1, qk = qk�1 + �2, · · · qj+1 = qjpj + �k�j+1

Then q = qjpjp+ �1 + p(�2 + · · ·+ �k�j+1 = qjpjp+�.

⌫v = ⌫vkp+ �1, ⌫vk = ⌫vk�1 + �2, · · · , ⌫vj�1 = ⌫vj + �k�j+1, ⌫v = ⌫vjp+�

We have
⌫vqjpj � ⌫vjq = �(pjqj � ⌫j)

Consider 1  i  r. We have 3 cases: The intersection of the path between vj
and the arrow representing fi and the path between vj and v is

(1) empty

(2) is the path between vj and v

(3) is a non empty part of the path between vj and v

(1) In this case, we have Ni,v = pNi,vj , ⌫v > ⌫vjp. Then
⌫v

Ni,v
>

⌫vj

Ni,vj
.

(2) In this case, we have Ni,vjq = pjqjNv and since pj > 1 and qj > 1, pjqj�⌫j >

0 we deduce that ⌫v
Ni,v

>
⌫vj

Ni,vj
.

45



p

qj

pj

Q

P

ql

qk

fi

1

1

1

q

Figure 29.

(3) We denote by V the vertex where fi separates from the path between vj and
v. We assume that V has nearby decorations (Q,P ). We denote by vl�1 the
preceding vertex of V . We have Ni,vj = pjqjPN and Ni,v = pQN .

We have qP �Qp > 0, then pjqjNi,v < qNi,vj . Finally ⌫v
Ni,v

>
⌫vj

Ni,vj
. Then we

have proved that the inequality for v is implied by the inequality for vj .
Now we have to prove that indeed all inequalities for v in the Newton nest occur

in the log-canonical wall. We use induction on r. The trace of the log-canonical
wall on the hyperplane {s1 = 1} is the log-canonical wall of f2, · · · , fr.

If r = 1, the Newton nest consists in one vertex, the first one. Then the result
is proved in this case. Assume that it is true for r � 1. Consider f1, · · · , fr. The
Newton nest of f1 · · · fr is the union of the Newton nests of f1 · · · fi�1fi+1 · · · fr
for all i except in the exceptional cases. But we already proved that in these cases
the log canonical wall is given by the Newton nest.

Example 4.24.
f1 = y2 � x5, f2 = x4

� y3

The inequalities to be satisfied are

10s1 + 8s2 > 11� (5a+ 2b) (8s1 + 12s2 > 13� (4a+ 3b)
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Figure 30.

for all (a, b) 2 N2.
There are three pairs of half faces of quasi-adjunction given as the boundary of

the sets
10s1 + 8s2 � 11, 8s1 + 12s2 � 13

10s1 + 8s2 � 9, 8s1 + 12s2 � 10

10s1 + 8s2 � 7, 8s1 + 12s2 � 7

The other faces of quasi-adjunction are:

10s1 + 8s2 = 5, 10s1 + 8s2 = 3, 10s1 + 8s2 = 1

8s1+12s2 = 9, 8s1+12s2 = 6, 8s1+12s2 = 5, 8s1+12s2 = 3, 8s1+12s2 = 2, 8s1+12s2 = 1

Any polynomial in the Bernstein ideal Bf1,f2 is divisible by

i=8Y

i=3

(10s1+8s2+2i+1)(8s1+12s2+7)(8s1+12s2+10)(8s1+12s2+11)(8s1+12s2+13)

(8s1+12s2+14)(8s1+12s2+15)(8s1+12s2+17)(8s1+12s2+18)(8s1+12s2+19)

Example 4.25. The following example is degenerate.

f1 = (x3
� y4), f2 = ((x2

� y3)2 + x3y2)

The log canonical wall is given by the two inequalities:

12s1 + 8s2 > 15 16s1 + 12s2 > 21

There are two interesting features to notice in this example.
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Figure 31.

First we have a polytope of quasi-adjunction given by the three inequalities

12s1 + 8s2 > 13 26s1 + 16s2 > 27 16s1 + 12s2 > 18

Second, we have a polytope of quasi-adjunction given by

16s1 + 12s2 > 17 26s1 + 16s2 > 25

which shows that the set of vertices given a polytope of quasi-adjunction is not
always connected in the Newton tree.

5. Distribution of constant and polytopes of quasi-adjunction

Shokurov made the conjecture and prove it in dimension two, that the set of
log canonical thresholds satisfy the ACC condition. This means that there are no
strictly increasing sequences of log canonical thresholds. More over it is proven also
that the set of limits of strictly decreasing sequences of log canonical thresholds is
the set {0, 1/n}, n 2 N.

One can ask the question for other constant of quasi-adjunction. We can answer
this question for the constants of quasi-adjunction associated to � = x↵y� .

Let f be any germ in C[[x, y]]. Consider its Newton tree, and denote by V

the set of vertices of its Newton tree. Then the constant of quasi-adjunction of f
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(0)

(0)

(0)

2

3

3

4

13

Figure 32.

associated to � is

min
v2V

⌫v + ev(�)

Nv

If � = 1, i.e. ↵ = � = 0, it is the log canonical threshold.
First, we will give an example of a sequence of f ’s and � for which the sequence

of constants of quasi-adjunction is increasing.

Example 5.1. Consider a germ with the following Newton tree.

2

(0)

(0) (0)

q0

2

4q0 +9

Figure 33.

Let � = y2. Then the associated constant of quasi-adjunction is

min{
2 + 3q0
4q0

,
13 + 6q0
18 + 8q0

} =
13 + 6q0
18 + 8q0

When q0 goes to infinity 13+6q0
18+8q0

is an increasing sequence which converges to 3
4 .

In [19], it is proven that the Ascending Chain Condition holds for LCT-polytopes,
that is that all increasing chain of LCT-polytopes is eventually stationary. We give
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an example to show that it is no more true for the polytopes of quasi-adjunction
associated to a � 6= 1.

Example 5.2. We consider the germ with two irreducible components whose New-
ton tree is the following.

2

(0)

(0) (0)

(0)

2

3

q

2

13

2

4q+9

Figure 34.

We take � = y2. we have the four inequalities

(1) 12(s1 � 1)+ 8(s2 � 1) > �9
(2) 26(s1 � 1)+ 16(s2 � 1) > �19
(3) 8(s1 � 1)+ 4q(s2 � 1) > �(2 + 3q)
(4) 16(s1 � 1)+ 2(4q + 9)(s2 � 1) > �(13 + 6q)

The polytope of quasi-adjunction is given by the three lines

(1) 12(s1 � 1)+ 8(s2 � 1) = �9
(2) 26(s1 � 1)+ 16(s2 � 1) = �19
(4) 16(s1 � 1)+ 2(4q + 9)(s2 � 1) = �(13 + 6q)

When q goes to infinity, the two first lines are fixed and the third one tends to
the line s2 = 1/4. Then we have a non stationary increasing sequence of polytopes.

Proposition 5.3. Consider a germ f 2 C[[x, y]]. Assume that the nearby deco-
rations of the vertex connected by an edge to the upper arrow are (q0, p0) and that
q0 goes to infinity. Then the constant of quasi-adjunction associated to � = x↵y�

tends to �+1
n , where n is the multiplicity of f .

Remark 5.4. We retrieve the result for the log canonical threshold that is when
↵ = 0,� = 0 the limit is 1

n proven by [13].
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1 2

4

Figure 35.

Proof. Let V be the set of vertices of the Newton tree. We have to consider

min
V

⌫v + ev(�)

Nv

We will show that for all v 2 V, ⌫v+ev(�)
Nv

tends to �
n when q0 goes to infinity.

We prove the result by induction on the number of successive vertical lines of
the Newton tree.

Consider a vertex on the first vertical line.
For each vertex vi of the first vertical line, we define by ni the sum of the

products of the numbers adjacent to the paths containing the horizontal edges
issued from vi, between vi and the arrows. We have

n =
X

i

pjnj

We have

⌫i + ei(�) = (↵+ 1)pi + (� + 1)qi
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q0

p0

qr

pr

n0

n

Figure 36.

and

Ni = qi

rX

i

pjnj + pi

i�1X

1

qjnj

We denote by �i the edge determinant between vi�1 and vi. We can write

qj = q0pj/p0 + fj(�, p)

where fj depends only on the �’s and p’s. We have q1p0 � q0p1 = �1. Then
q1 = q0p1/p0 + �1/p0. Assume qj = q0pj/p0 + fj(�, p). We have qj+1pj � qjpj+1 =
�j+1, then qj+1 = q0pj+1/p0 + fj(�, p)pj+1/pj + �j+1/pj , then qj+1 = q0pj+1/pj +
fj+1(�, p). We can write

Ni = q0pi/p0

rX

i

pjnj + pi

i�1X

1

(q0pj/p0 + fj(�, p))nj

Ni = q0pi/p0n+ pi

i�1X

1

fj(�, p)nj

⌫i + ei(�) = (↵+ 1)pi + (� + 1)(q0pi/p0 + fi(�, p)

Then the assertion is proved for every vertex on the first vertical line.
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Figure 37.

We assume now that the assertion is true for all the vertices of the k-th vertical
line.

We consider a vertex v on the k-th vertical line and we assume that for this
vertex

lim
q0!1

⌫ + e(�)

N
=

� + 1

n

Consider a vertex vi on a k + 1-th vertical line issued from v. We have

⌫i + ei(�) = ⌫pi + �0i + e(�)pi

where �0i = qi � qppi. We can write

N = N 0 + pq
rX

1

pjnj

Then

Ni = N 0pi + pi

i�1X

1

qjnj + qi

rX

i

pjnj

Ni = N 0pi + pi

i�1X

1

(qppj + �0j)nj + (qppi + �0i)
rX

i

pjnj

Ni = piN + pi

i�1X

1

�0jnj + �0i

rX

i

pjnj
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Then
⌫i + ei(�)

Ni
=

(⌫ + e(�))pi + �0i
piN + pi

Pi�1
1 �0jnj + �0i

Pr
i pjnj

Then the result is proved.
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