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1. Introduction

Infinite cyclic covers are fundamental objects of study in topology (e.g., in knot theory
[28], but see also [25]) and algebraic geometry (e.g., for the study of Alexander-type
invariants of complex hypersurface complements, see [9,10,16,17,23]).

The Milnor fiber of a hypersurface singularity germ (cf. [24]), can be viewed as an
example of an infinite cyclic cover, since it is a retract of the infinite cyclic cover of
the complement to the germ in a small ball about the singular point. Moreover, in
this interpretation, the monodromy of the Milnor fiber corresponds to the action of the
generator of the group of deck transformations of the infinite cyclic cover (cf. Section 2
below; but see also [18], where such an identification was used to define an abelian version
of the Milnor fiber, and [8] for a detailed discussion in the homogeneous case).

Motivated by connections between the Igusa zeta functions, Bernstein—Sato polynomi-
als and the topology of hypersurface singularities, Denef and Loeser defined in [5-7] the
motivic zeta function and the motivic Milnor fiber of a hypersurface singularity germ;
the latter is a virtual variety endowed with an action of the group scheme of roots of
unity, from which one can retrieve several invariants of the (topological) Milnor fiber,
e.g., the Hodge—Steenbrink spectrum, Euler characteristic, etc. The motivic Milnor fiber
has also appeared in the Soibelman—Kontsevich theory of motivic Donaldson—Thomas
invariants.

In this paper, we attach to an infinite cyclic cover associated to a punctured neighbor-
hood of a simple normal crossing divisor F on a complex quasi-projective manifold X, an
element in the Grothendieck ring K (Varé) of algebraic C-varieties endowed with a good
action of the pro-finite group i = lim u,, of roots of unity, which we call a motivic infinite
cyclic cover; see Section 3 for details. (Our terminology is inspired by the standard notion
of “motivic Milnor fiber”, cf. [7].) Among other consequences, this construction allows us
to define a motivic infinite cyclic cover of a hypersurface singularity germ complement,
which as we show later on coincides (in the localization of K (Varé) at the class L of the
affine line) with the above-mentioned Denef-Loeser motivic Milnor fiber. Our class of
coverings guarantees certain finiteness conditions (see Definition 2.1) which are present
in the case of Milnor fibers, but which are not satisfied in general. Note that while these
infinite cyclic covers are complex manifolds, they are not algebraic varieties in general.
This paper provides an algebro-geometric interpretation of such covering spaces.

Our construction of motivic infinite cyclic covers is topological in the sense that it
does not make use of arc spaces as is the case in earlier constructions of motivic Mil-
nor fibers. We rely instead on the weak factorization theorem [1,4]. One of our main
results, Theorem 3.7, shows that our notion of motivic infinite cyclic cover is a birational
invariant, or equivalently, it is an invariant of the punctured neighborhood of FE in X.
Moreover, in Section 4 we show that the Betti realization of the motivic infinite cyclic
cover is given by the cohomology with compact support of the infinite cyclic cover of the
punctured neighborhood, e.g., their Euler characteristics coincide.



M. Gonzdlez Villa et al. / Advances in Mathematics 298 (2016) 413447 415

Finally, in Sections 5 and 6, we explain how the present construction of a motivic
infinite cyclic cover generalizes the above-mentioned notion of motivic Milnor fiber of a
hypersurface singularity germ, as well as the notion of motivic Milnor fiber of a rational
function (compare with [27]).

2. Infinite cyclic cover of finite type

Let X be a smooth complex quasi-projective variety and F an algebraic (reduced)
simple normal crossing divisor on X which shall be called a deletion (or deleted) divisor.
Assume that £/ =), ; E; is a decomposition of £ into irreducible components E;, where
we assume that all divisors E; are smooth. We use the following natural stratification of
X given by the intersections of the irreducible components of E: for each I C J consider

E;=(\E; and E}=E/\|]JE; (1)
i€l jeI
Clearly, X = U;c; E7, X\ E = Ej and E = Uy, s E7-
Let Tt i be a punctured neighborhood of E'on X. Sometimes we omit the subscript X
and just write T;. We recall here the construction of such a punctured neighborhood. For

each smooth irreducible component F; of E (i € J), we choose a tubular neighborhood
Tg, — E;, and define the corresponding neighborhood of E; (with § # I C J) by:

TEI = m ij7
iel

We set

TX,E = U TEI-
PDAICT

Note that if the chosen tubular neighborhoods T, of the components E; are small
enough, then Tg, — Ey is also a tubular neighborhood for the submanifold E; (for a
suitable projection map), and Tx g is a regular neighborhood of E, i.e., E is a defor-
mation retract of T'x g. Moreover, the germs of all these neighborhoods (and projection
maps) are independent of all choices by the corresponding uniqueness result for Trg,. We
define punctured tubular neighborhoods of the strata E} by:

Tpo = (T, lw3) \ | B,
icl
and the punctured tubular neighborhood of E in X is then given by:

T)*(,E = U TEIO.
0AICT
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By construction, the homotopy types of the (germs of the) punctured neighborhood
Tk g and projection map T*? — EY are well-defined (i.e., independent of all choices).
Moreover, T p is a union of locally trivial topological fibrations T, — E7 over the
strata E9 (with @ # I C J) of E, the fiber of the latter fibration being homeomorphic
to (C*)M) where |I| denotes the number of elements in the set I.

Note that the punctured neighborhood T’ j is homotopy equivalent to the boundary
of the regular neighborhood T'x g, which sometimes is called the link of I in X.

Definition 2.1 (Infinite cyclic cover of finite type). Let A : m1(Tx ) — Z be an epi-

morphism,!

and denote by T)”; p.a the corresponding infinite cyclic cover (with Galois
group Z) of the punctured neighborhood T% g of a simple normal crossing divisor
E C X. For any i € J, let ¢; be the boundary of a small (oriented) disk transversal
to the irreducible component F;. We call the infinite cyclic cover T )*( EA of finite type
it m; = A(d;) # 0 for all i € J (see Proposition 2.4 below for a justification of the

terminology).

Remark 2.2. The surjectivity of the restriction of A on the kernel of m (T%) — m(Tr) =
71(E) is equivalent to the condition ged(m;|i € J) = 1. Sometimes we omit A and X in
the notation and write simply TE The map A will also be referred to as the holonomy
of this infinite cyclic cover. Note also that A factors through H;(T}), so the infinite
cyclic covering T)*( g.a depends only on the epimorphism H; (T}) — Z. Therefore, in the
following we can assume that E and 7%, are connected, and the choice of the basepoint
for m1(T},) has no relevance.

The infinite cyclic cover T)*( . has the structure of complex manifold, but it is not
an algebraic variety. In the following section, we will give an algebro-geometric (motivic)
realization of T %.g.a- The type of algebraic structure we consider is specified further in
the following definition.

Definition 2.3. Let 71 = T'x, g, and T = Tx, g, be two regular neighborhoods of normal
crossing divisors, and A; : m (T7) — Z, i = 1,2, be surjections on the fundamental groups
of the corresponding punctured neighborhoods. We say that (77, A1) and (T3, Ag) are
equivalent if there exist a birational map ® : X; — Xy, which is regular on 77 C X3
(and respectively, @1 is regular on Ty C X»), and which moreover induces a map
|7 : 1T — T3 such that ®(77) and T3 are deformation retracts of each other and the
diagram:

L The surjectivity assumption is made here solely for convenience (in which case the corresponding infinite

cyclic cover is connected), all results in this paper being valid for arbitrary homomorphisms to Z. The only

=

instance when non-surjective homomorphisms are considered is in Section 5.
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(@lrg )
w1 (T7) — m1(15) 5
AVERNW Ay (2)

7

is commutative. Here (®|r; ). is the homomorphism induced by ®|7+ on the fundamental

groups.

The following result justifies the terminology used in Definition 2.1. We will use ra-
tional coefficients, unless otherwise stated.

Proposition 2.4. Let Tvg be an infinite cyclic cover of finite type (as in Definition 2.1).
Then for any i € Z, the rational vector spaces Hi(T%) and H (T}, are finite dimensional.
Moreover, these cohomology groups are trivial for |i| large enough.

Proof. We begin by discussing the case of H (’f %). First note that, under the action of the
group Z of deck transformations, the cohomology groups H, g(Tg) become in a usual way
Q[Z] ~ Q[t,t~']-modules. Then it suffices to show that H:(T5; %) is a finite dimensional
rational vector space, where . is the local coefficient system on T3, with stalk Q[t,¢™!]
corresponding to the representation defined on the meridians §; by §; — t™, i € J.

Recall that Tg is a union of locally trivial fibrations T, — E7 over the strata E7
(with § #£ I C J) of E, the fiber of the latter fibration being homeomorphic to (C*)II,
where |I| denotes the number of elements in the set I. Moreover, T, has an open cover
ier T'o = T So by the
associated Mayer—Vietoris spectral sequence, it suffices to show that each vector space
H (TE? ;Z) (with the induced local coefficients) is finite dimensional.

The claim follows from the Leray spectral sequence for the fibration TE? — B3, ie.,

consisting of the sets {T5o }ics, with intersections given by [

By = HY(Bf; HU(C:.2)) = HEY(Thy: 2)

since the (stalk of the local) coefficients H?((C*)/l; #) appearing in the Ep-term are
torsion Q[t,t~!]-modules, hence finite dimensional vector spaces. Indeed, the torsion
property follows from the assumption that m; # 0, for all ¢ € J.

The case of H* (TE) follows now by Poincaré duality. O

Remark 2.5. The above proof shows in fact that the cohomology groups Hﬁ(fg) and
H(T},) are torsion Q[t, ¢~ ']-modules of finite type. Since Q[t,¢~!] is a principal ideal
domain, it follows that H(T}) has a well-defined associated order A;(t), called the
i-th Alexzander polynomial of E, see [25]. Note that A;(t) can be identified with the
characteristic polynomial det(t - Id — T;") of the (monodromy) action induced by the
generating deck transformation 7" on H, é(fg) Then it follows from the arguments used
in the proof of Proposition 2.4 that all roots of the Alexander polynomials A;(¢) are roots

of unity, so in particular, the semi-simple part of T;" is a finite order automorphism.
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Remark 2.6. Proposition 2.4 motivates our search for a “motive” (in the sense of Sec-
tion 3), whose Betti realization is that of T} (cf. Section 4). Note that if instead of
the punctured neighborhood T} of E in X we consider the complement X \ E, then
the corresponding infinite cyclic cover is in general not of finite type, in the sense that
some of its cohomology groups can be infinite dimensional. In the case of complements
to projective hypersurfaces see [9,23] for such an example.

Let us now consider the local situation of the hypersurface singularity germ which,
together with the work of Denef-Loeser about the motivic Milnor fiber, inspired our
Definition 2.1 and the results of the following sections.

Let f(x1, - ,2,) = 0 define a hypersurface singularity germ at the origin in C”. Let
B, be a small enough ball about the origin in C™ and D} a small punctured disc in C, for
0<d<<e Set Bes:=B.N f1(D}) and let F = {f = 0} N B.. By Milnor’s fibration
theorem [24], one has a locally trivial topological fibration 7 : B, 5 — D}, whose fiber M
is called the Milnor fiber of f at the origin. If exp : R — S ~ D3 is the universal covering
map, then the fiber product Bc s x px R formed by using the above maps 7 and exp is the
infinite cyclic cover of B, s corresponding to the homomorphism 71 (B 5) = m(D}) = Z
given by the linking number with F. The covering map is just the projection of the
fiber product on the first factor. Note that if f = [], /" is the decomposition of the
germ f as a product of distinct irreducible factors, the linking number homomorphism
is defined by mapping the meridian generators ¢; of m1(B¢s) to m; € Z, with m; # 0
for each i. Moreover, if m = ged(m;);, this infinite cyclic cover has exactly m connected
components. On the other hand, the second projection of Be 5 X p: R — R has the same
fiber over € R as the Milnor fibration has over exp(r). Since R is contractible, we
obtain the homotopy equivalence between the infinite cyclic cover of B, s and the Milnor
fiber My, hence this (local) infinite cyclic cover is of finite type (since My is so). Note that
under this identification the monodromy of 7 corresponds to the deck transformation of
the infinite cyclic cover, see also [8, pp. 106-107], and [18].

3. Motivic infinite cyclic covers

Most of our calculations will be done in the Grothendieck ring Ko(Varé) of the cat-
egory Varé of complex algebraic varieties endowed with good fi-actions. Let us briefly
recall the relevant definitions, e.g., see [7].

For a positive integer n, we denote by p, the group of all n-th roots of unity (in C).
The groups p,, form a projective system with respect to the maps pgq.,, — 1, defined by
a+— a?, and we denote by /i := lim j,, the projective limit of the f,.

Let X be a complex algebraic variety. A good p,-action on X is an algebraic action
tn X X — X such that each orbit is contained in an affine subvariety of X. (This last
condition is automatically satisfied if X is quasi-projective.) A good fi-action on X is a
f-action which factors through a good u,-action, for some n.
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The Grothendieck ring Kg (Varé) of the category Varé of complex algebraic varieties
endowed with a good fi-action is generated by classes [Y, o] of isomorphic varieties en-
dowed with good ji-actions, modulo the following relations:

(i) scissor relation:
Y.o] =Y \Y' 01, ] +[Y", 0], (3)

if Y’ is a closed o-invariant subset of Y.
(ii) product relation:

Y x Y’ (0,0")] =[Y,0][Y', o] (4)
(iii)
[Y x Al, o] = [Y x AL, 0'], (5)
if o and ¢’ are two affine liftings of the same C*-action on Y.

The third relation above is included for completeness, though it is not needed in this
paper. We denote by L the class in Ko(Varé) of A}, with the trivial fi-action.

The following topological lemma provides the crucial ingredients for our definition of
motivic infinite cyclic covers.

Lemma 3.1. Let A, B, C be connected topological spaces and let A — B be a locally
trivial topological fibration with fiber C, so we have an exact sequence

7T1(C) — 7T1(A) — 7T1(B) — 0.

Let G be a group and let A be the covering space of A with Galois group G and holonomy
map o : m(A) = G. Then A is a disjoint union of [G : Ima] homeomorphic connected
components. Let H be the image of composition m1(C) — 71(A) = G and denote by C
the corTespondmg covemng of C with Galois group H. Then there is a locally trivial topo-
logical fibration A — B with connected fiber C’ where B is the cover of B corresponding
to the map m(B) = m1(A)/Immy (C) — G/H. The number of (homeomorphic) connected
components of B is equal to the index [G : Tma].

If A= B x C — B is a trivial fibration, then also A~ BxC — B is the projection
of a trivial fibration (by using the group isomorphism m(A) = 71(B) x 71(C)).

Proof. Clearly the map A — B induces the map of covering spaces A B. Indeed, one
can view A as A’ Xima G, Where A’ is the space of paths with initial point at the base
point of A modulo the equivalence relation that identifies paths with the same end point
such that the corresponding loop belongs to Ker(«). The action of Ima on A’ follows from
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this description of A’ and the action of Ima on G is via left multiplication. The space A
can be viewed as the set of equivalences classes of pairs (a,g),a € E, g € G, such that
(a1,91) and (a9, g2) are equivalent iff there exists h € Ima such that a1 = has, g1 = hgs.
The group G acts freely on A via action on the second factor and one has the canonical
identification A/G = A.

Next, we apply the same construction to the homomorphism

m1(B) = m(A)/Imm (C) —» G/H

to obtain the covering space B of B with covering group G/H. Writing B as a fiber
product of a path space as above, one sees that the map from the space of paths of A
to the space of paths of B starting at the respective base points induced by the map
A — B, is compatible with the above mentioned equivalences. Thus, we have a map
A B.

The stabilizer of the fiber C of A — B is H. Finally the G-orbit of any point in C
intersects C in its H-orbit. Hence 5’/H =C. O

We shall apply the constructions of the Lemma 3.1 to describe certain covering spaces
associated with the punctured neighborhoods of strata of normal crossings divisors.

Lemma 3.2. Let (X, E) be as in the beginning of Section 2 and let I C J such that |I| = r.
The projection of the punctured neighborhood TE? onto the stratum EY induces an exact
sequence

Z" — m(Tge) — m(ET) — 0. (6)

Let A : m(T}) — Z be a homomorphism onto an infinite cyclic group as in Defini-
tion 2.1. Let N be the index of the image subgroup A(m(TE?)) in Z and, similarly, let
M be the index of the image of Z" in Z. Let

Ar:m(E}) = Z/MZ (7)

be the map induced by A according to Lemma 5.1. Then the corresponding covering
E} — E7 induced by A; has N connected components, each being the cyclic cover of
E¢ with the covering group NZ/MZ. Moreover, the infinite cyclic cover TE? (defined by

ker(A)) fibers over ES, with fiber (C*)7~1,

Proof. The exact sequence (6) is derived from the long exact sequence of homotopy
groups associated to a locally trivial topological fibration, by using the connectivity of
the fiber. Indeed, the fiber of

* o

is diffeomorphic to (C*)", hence 71 ((C*)") = Z" and 7o ((C*)") = 0.
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Let us discuss the second statement. First note that the image Im(Z" — m1(T}.)) is

)
I

the subgroup generated by the meridians d; with ¢ € I. Moreover,
A(m(Z" = m(Th:))) = MZ,
with
M =mjy:=ged(m; | i €I).

Since the homomorphism w1 (T
phism A : m (T}

o) = mi(E7) is surjective, it follows that the homomor-
?) — Z factors through 71 (EY). Hence we get a well-defined map

Ar:m(E}) > NZ/MZ

given by Aj(e) = A(9) for any e € m1(E7) and any 6 € m1(T) such that 6 — e.
Finally, by Lemma 3.1, the long exact sequence of homotopy groups associated to the
(C*)"-fibration T pe — E7 induces a locally trivial topological fibration

Tye — ET, (8)

with connected fiber (/C_:)/” ~ (C*)r~1, the infinite cyclic cover of (C*)" defined by the
kernel of the epimorphism Z" — m;Z induced by the holonomy map A.

We conclude the proof by noting that the definition of the map (7) and the finite
(algebraic) covering E}’ depend on the (homotopy class of the) projection T g — E7,
but they are nevertheless intrinsic objects associated to our context. 0O

Definition 3.3. We denote by E‘v‘[’ the unramified cover of EY with Galois group Z/MZ
defined by the map (7), and with M = m; := ged(m,; | i € I). The cover E;" is an
algebraic variety with a good pas-action oy such that E7 = E‘v}’ /par- It has N connected
components. The fundamental group m; (ETI’ ) is isomorphic to Ker(Ay).

Remark 3.4. The proof of Lemma 3.2 applies to the following more general situation. Let
F — W be a vector bundle on a quasi-projective manifold W, and let {E; C F | i € I}
be a collection of |I| > 1 independent sub-bundles of F of corank 1 (in particular, the
collection {E; | ¢ € I} forms a normal crossing divisor in F). Then one has a locally
trivial topological fibration F* := F \ U;e; F; — W with fiber F' homotopy equivalent to
(C*)M1. Moreover, a homomorphism 7 (F*) — Z with image NZ and so that the image
of 71 (F) is a subgroup of finite index M in NZ, defines an infinite cyclic cover F* of F*
having N connected components, each of which is a locally trivial topological fibration
with fiber equivalent to ((C*)‘I =1 and base W being an M-fold cyclic cover of W.
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We now have all the ingredients for defining the main object of the paper:

Definition 3.5 (Motivic infinite cyclic cover). Let Tj, be a punctured neighborhood of
a normal crossing divisor in a quasi-projective manifold X as in Section 2, and let
A : m1(T}) — Z be a surjection such that the corresponding infinite cyclic cover f)*( EA
has a finite type. For each fixed subset A C J, we define the corresponding motivic
infinite cyclic cover (of finite type) of TF as

Stpai= Y (“DIE; oL — 1)1 € Ko(Varl), (9)

0#AICT
ANT#D

where EA?E’ are the covering spaces corresponding to A; in Definition 3.3.
When A = J, we use the notation Sx g A or Sx g.

Remark 3.6. Recall from Lemma 3.2 that the infinite cyclic cover T g? of Tg? is a
(C*)MI='_fibration over EIO Therefore, one can regard the product [EV}’, or)(L — D)HI=1
appearing in (9) as a “motive” of the infinite cyclic cover Tg;, while the alternating sum
on the right-hand side of (9) can be interpreted as the inclusion-exclusion principle for
the cover T = U,y The-

The main result of this section is the following.

Theorem 3.7. The above notion of motivic infinite cyclic cover is invariant under the
equivalence relation described in Definition 2.3.

Since any birational map X; — Xy providing an equivalence between punctured
neighborhoods (cf. Definition 2.3) is, by the Weak Factorization Theorem [1] (see also
[4] for the non-complete case), a composition of blow-ups and blow-downs, each inducing
an equivalence between the corresponding punctured neighborhoods, it suffices to show
that the above expression (9) is invariant under blowing up along a smooth center in F.
Let us consider

p: X' =BizX - X

the blow-up of X along the smooth center Z C FE of codimension > 2 in X. Let us denote
by E. the exceptional divisor of the blow-up p, which is isomorphic to the projectivized
normal bundle over Z, i.e., E, = P(vz). We may also assume that the center Z of the
blow-up is contained in F and has normal crossings with the components of F (cf. [1,
Theorem 0.3.1, (6)]). Let us denote the preimage of the divisor F; in X’ by E.. Denote
by E’ the normal crossing divisor in X’ formed by the E/ together with E.. Denote by
J" = J U {x} the family of indices of the divisor E’. For I C J we denote by I’ C J’ the
family T U {x}. Finally, let A’ = AU {x}.
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By the above reduction to the normal crossing situation, we may assume that there
is I C J such that Z is contained in E;. We consider the (surjective) homomorphism
given by the composition

* * A
AI : ﬂ—l(TX/,E/) — ’/Tl(TX,E) =7

resulting from the identification T%, 5, 5 Ty g induced by the blow-down map. We have
A'(6]) = A(6;) = m; (i € I) and my := A'(d.) = >_,c; mi, where §; and 0. are the
meridians about the components E. and E, of E’. Indeed, the blow-down map takes
the 2-disk transversal to E, (at a generic point) and bounded by d., to the disk in X
transversal to the components E;,¢ € I containing Z and disjoint from the remaining
i1 0 in Hy(Tj). Note that T%, g A/

is of finite type since T}; g 18 so and T% g = T . Moreover, if m, # 0, then by

components of E, i.e., one has the relation J, = >

Lemma 3.2 and Definition 3.3 applied to (X', E', A’) we can define the corresponding
motivic infinite cyclic cover by:

S¥par= Y, (DFTER ox](L - DI, (10)

PAKCJ'
KNA'#0

If m, = 0, then Lemma 3.2 cannot be applied directly for defining a finite cover (as in
Definition 3.3) of the dense open stratum EJ of the exceptional divisor E,. However,
as already pointed out in Remark 3.6, the main ingredient needed at this point for the
definition of (10) is the “motive” of the infinite cyclic cover Tgo of the punctured tubular
neighborhood of Fg. Such a “motive” can be defined by rrIaking use of Remark 3.4
as follows. First note that T, is a C*-fibration over E?

*9

which in turn is a (Zariski)
locally trivial fibration over the open dense stratum Z° := Z N EY of Z, with fiber
Cs~HIF1 (C*)1=1 where s is the codimension of Z in E (see the proof of Proposition 3.8
below). Hence T, is a Cs~ 1+t x (C*)I-fibration over Z°, and Remark 3.4 together
with Lemma 3.1 can now be used to show that the infinite cyclic cover Tvgf isa Cs—HIH+1
(C*)I=1_fibration over the m-fold cover Z° of Z° defined as in Lemma 3.2. So, in this
case, we can replace the term [EE] of (10) (which would correspond to the “motive”
of T%.) by the product [Z°]Ls=I/1+1 (L — 1)171-1,

Firiaully7 note that since punctured neighborhoods remain unchanged under blow-ups,
it is easy to see by using Lemma 3.1 that, if m, # 0, the product [2;}]145_‘”'“1(]1_,— 1=t
coincides in fact with the motive [E’E], so as it will become clear from the proof of our
main theorem it suffices to assume from now on that m, # 0.

Theorem 3.7 follows now from the following proposition.

Proposition 3.8. With the above notations, we have the following equality of motives:

S% pa=S% p.a € Ko(Varf). (11)
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Note that we can always restrict the comparison of motives in Proposition 3.8 to
strata in the center of blowup and in the exceptional divisor, respectively. Indeed, the
blow-up map induces an isomorphism outside the center Z, so the strata in E \ Z and
E’"\ E, are in one-to-one isomorphic correspondence; moreover, these isomorphisms can
be lifted (e.g., by Lemma 3.2) to the corresponding unramified covers. It also suffices to
prove the above result only in the case A = J.

The proof of Proposition 3.8 is by induction on the dimension of the center of blow-up.

3.1. Beginning of induction

Let us consider the following examples in relation to the starting case of induction,
i.e., when the center Z is a point.

Example 3.9. Let X be a surface and let F; and Fs be two smooth curves intersecting
transversally at a point P. Let us consider the blow-up X’ = BlzX of X at the center
Z = P. The exceptional divisor is F, = P! and we have £ = C*. Let §; € Hy(T}.,Z)
(i = 1,2) be the class of the fiber of the projection of punctured neighborhoole*9
onto the stratum EP. If A(01) = m; and A(d2) = me, the contribution of P to Sx g is
—[Hged(my,ms)] (I — 1) and the contributions of the exceptional divisor E. to Sx g are’

—_—~ e~

[B2,00] = (IEL N Ee,oar] + [E5 0 Buyon] ) (L= 1).

Because ged(my, ma) = ged(my, my +ms) = ged(ma, my +ms), we get: [EZ_F\W/E,k7 oar] =
[EZ_F\W/E,k7 '] = [Pged(my,m»)]- Finally, Lemma 3.2 asserts that [EEZ oar] = [Peged(my,ms)] X
(L—1). To see this directly, let us describe explicitly the covering space of E¢ according to
Lemma 3.2. In the notations of the above-mentioned lemma, we have that M = mq +my
and N = gcd(mq,ms). Indeed, denoting by 4, the homology class of the meridian
about E7, the homomorphism defining the infinite cyclic cover of the punctured neigh-
borhood of E? is given by §; — m; (z =1,2) and §, — my + ma. So Lemma 3.2 ylelds
that the Galois group of the cover E° — E2 is Z/(m1 + m2) and, moreover, E° has

ged(my, me) connected components, each being a connected cyclic cover of C* (of degree

mi+mao
ged(my,ma)

motive of E? is [Mgcd(my,mz)] (I — 1). It follows that both contributions to the motivic

). Such a connected cover is biregular to C*, i.e., its motive is L. — 1, hence the

infinite cyclic cover coincide.

Note that in the case when P belongs to only one irreducible component, say Fj,
we have [EE,O’A] = [Wm,]L. In this case, the contribution to Sx g is [EE,O’A/] -
[BL N E.,0a](L —1) = [ftm,)L — [ftrmyJ(L — 1) = [ttm,]. This coincides with the con-
tribution of P to Sx g which is [ES|p] = [tm,]. O

2 For simplicity, here and in the sequel we denote by oas the good fi-action on the corresponding finite
cover (defined by using the holonomy A’) of a stratum in the exceptional divisor, cf. Definition 3.3.
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Example 3.10. Let X be a threefold and E1, E5, F3 be three divisors intersecting transver-
sally at a point P. Consider the blow-up X’ of X at the center Z = P. The divisor
E =", E; of X transforms into the divisor £ in X’ consisting of the proper transforms
E! of the irreducible components E; of E (i = 1,2, 3), together with the exceptional com-
ponent F, = P2. As already mentioned, it suffices to restrict the comparison of motives
Sx g and Sxs g only to contributions coming from the strata in the center of blowup
and the exceptional divisor, respectively.

The exceptional divisor E, acquires seven strata induced from the stratification of E’.
These strata are:

e Ly = E.OE/OE), fori,j € {1,2,3} with i # j,
o Ly =(E.NE)\ (L ULgey), with {7, 5, k} = {1,2,3},
o EX=FE,\ U?:1 B

Note that the strata E7 and Ly, are complex tori of dimension 2 and 1, respectively,
while the strata Ly, ;3 are points.

Let T¢ denote the punctured neighborhood (in X’) of a stratum S in E,, and let Ng
denote the fiber of the projection 7§ — S. The fibers Ngo, Ni,,, N, ;, corresponding
to the punctured neighborhoods of the strata in F, are homotopy equivalent to real
tori of dimensions 1, 2 and 3, respectively. The first homology group H1(T4,Z) of the
punctured neighborhood of a stratum S is generated by the image of H;(Ng,Z) under
the homomorphism A’ together with the classes of boundaries of normal disks (i.e.,
meridians) to components E/ which intersect the closure of S. This observation allows
us to calculate the image subgroup A’(m(T§)), which for each of the seven strata of E,
results in

Al(m1(T5)) = ged(mi, ma, m3) L. (12)

Indeed, the images of homomorphisms

A3V5 : Hl(NS,Z) — Hl(Tg,Z)—)Z
for each of the strata in E, are given as follows:

. ImA/NEg = (mq + mg + m3)Z, by the definition of the homomorphism A’ on the
meridian J, about E,.

. ImA’NLm = ged(my, m1 +mo+mg)Z. Indeed, Hy(Ny,,Z) is generated by the merid-
ian about the exceptional component E, and the meridian about E. (which also can
be viewed as a meridian of E;).

o Similarly, ImA?VL{i’j} = ged(my, mj, m1 + mo +mg)Z, for i, € {1,2,3} with i # j.
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So, to verify (12) for a stratum Lg;, we use the fact that the homomorphism A’
factors through the abelianization map, and the fact mentioned above that the im-
age A'(Hl(TE{i},Z)) is generated by gcd(mi,Z?zl m;) and by the integers m;, j €
{1,2,3} \ {¢} (which are the values of the holonomy on the boundaries of normal disks
to components EJ’-7 j # 14, which intersect the closure of Lg;). Similarly, the image
A'(H1(T}., Z)) is generated by Z?Zl m; and by the integers m;, ¢ = 1,2, 3, correspond-
ing to the values of the holonomy on the meridians to the components E., i = 1,2,3,
all of which intersect the closure F, of E. Finally, for a stratum Ly; j;, the image
A'(H(TF,

It follows from Lemma 3.2 that for each of seven strata of E,, the corresponding

Z)) is generated by ged(m;, mj;, m1 + mg + m3) = ged(mq, ma, m3).

unbranched covers of Definition 3.3 have ged(mq, ms, m3) components, each of which is
biregular to the stratum itself (since all these strata are tori). Hence the contribution of
E* to SX’,E’ is:

[Ugcd(ml,mg,mg)} ((H-‘ - 1)2 - B(L - 1)(]]-‘ - 1) =+ 3(H-‘ - 1)2)
which equals the contribution of P to Sx g, given by [tecd(m,,ma,ms)] (L — )2 O

Example 3.11. Let X be a threefold, and £ = E; + E5 be a simple normal crossing divi-
sor on X, with holonomy values m; and resp. ms on the meridians about its irreducible
components. Let m = ged(mq, mz). Choose a point Z contained in the (one-dimensional)
intersection Ej := FEy N Ey, for J = {1,2}, and consider the blow-up X’ = BlzX of X
along the center Z. We denote the exceptional divisor P(vz) by E.. The divisor E is
transformed under the blow-up into the divisor £’ in X’ consisting of the proper trans-
forms E; (i € J) of the irreducible components E; of E, together with the exceptional
divisor E, = P2,

Let us explicitly describe the contribution of the center Z and that of the exceptional
divisor E, to the motives Sx g and Sx- g/, respectively. Clearly, the class [E]|Z,UA]
equals [f,]. So the contribution of Z to Sx g consists of —[u,](IL —1). On the other
hand, the exceptional divisor F, acquires four strata induced from the stratification
of E’, namely,

o Lj;=FE];NE,YN E,, which is just a point.
. L{i} ZE*ﬂEl{\LJgC, foriel.
o E2=FE,\(F{UE}) =ZCxC*.
So the contribution of F, to Sx/ g/ is given by:

(B2 05 = (L oad + [Lizpoal) (L= 1)+ [LyoalL-1D% (13)

Note that, since any of the four strata in F, is either simply-connected or a product
of a simply-connected space with a torus, any finite connected (unbranched) cover of
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such a stratum is biregular to the stratum itself. So in order to understand the motives
of covering spaces appearing in (13), it suffices to compute the number of connected
components of each cover. This can be done easily by using Lemma 3.2 as follows. First,
recall that for a given stratum S of F,, the number of connected components of the
corresponding unbranched cover S (as in Definition 3.3) equals the index (in Z) of the
image (under the homomorphism A’) of the fundamental group w1 (7%) of a punctured
neighborhood of S in X’. Moreover, since A’ factorizes through the abelianization map,
it suffices to compute the index [Z : ImH; (T¢§)]. Finally, H;(T§) is generated by Hq(Ng)
together with the (classes of) meridians to components E/ intersecting the closure of S,
where Ng denotes as before the (normal) fiber of the projection T¢§ — S. In our situation,
for each of the above strata in E,, it can be easily seen that the image of Hy(T§) is
generated by mj +msa, my and ma, i.e., each of the covering space appearing in (13) has
exactly ged(my + ma, m1, ma) = m connected components. It follows that (13) can be
computed as:

(] L(L — 1) = 2[pn]L(L = 1) + [n] (L = 1)* = ~[pn] (L — 1),
which equals the contribution of Z to Sx . O
Let us now prove the beginning case of induction for Proposition 3.8.

Proposition 3.12. The assertion of Proposition 3.8 holds in the case when the center of

blow-up Z is zero-dimensional.

It suffices to prove Proposition 3.12 in the case when the center of blow-up is a single
point. Indeed, the blow-up at a finite number of points can be regarded as a finite number
of single point blow-ups.

We can thus assume that 7 is a point. Let r4+1 = codim x Z, which, by our assumption,
equals dimX. Then the exceptional divisor is F, = P". The divisor £ = ), E; of X
transforms under the blow-up into the divisor £’ in X’ consisting of the proper transforms
E! of the irreducible components E; of E, together with the exceptional component E,.
It suffices to restrict the comparison of motives Sx g and Sx g/ only to contributions
coming from the strata in the center of blow-up and the exceptional divisor, respectively.

As in the above examples, we need to describe the stratification of E, = P" induced
from that of £’ (see (1) for the latter). Assume that Z C ﬂle E;. We have the following
result:

Lemma 3.13. For each k with 1 < k < r+1 we have the following identity in Ko(Varc):

k—1
#1=3 (o ye e (19

l
1=0
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The right-hand side describes the stratification of the exceptional divisor E, = P" induced
by the divisor Zle E! consisting of the proper transforms of components of E containing
the center of blow-up. More precisely, by setting K := {1,--- |k}, the strata of E. are:

o Lg:= (ﬂf:l E!)N E,, which is isomorphic to P" .
. (];) strata of dimension r — [ and of the form

Li=((E)nEN | B,

i€l i€R\T

with I ¢ K and 1 < |I| = 1 < k — 1, each of which is isomorphic to
Cr=F+l x (C*)*=1=1. The class of each such stratum in Kq(Varc) is equal to
LT—k-‘rl(L _ 1)k—l—1‘

o E2:=F, \Uf:1 E!, of dimension v, which is isomorphic to C'=*+1 x (C*)k=1  and
whose class in Ko(Varc) is L™= F (L — 1)k—1,

Proof. Note that the stratum Ly is just the projectivization of the normal bundle of
Z in ﬂle E;, i.e., the exceptional divisor of the blow-up of Z inside ﬂle E;. Also, the
stratum E? can be regarded as Ly (i.e., for I = 0), so all strata can be treated uniformly
(see below).

We prove the identity (14) by induction on k. For k = 1 the equality (14) becomes
[P"] = L™+ [P"~!], which corresponds to the stratification of the projective space consist-
ing of the affine part and the (projective) hyperplane at infinity. Clearly [Ly] = [P"1]
and [E2] =L". There are no strata of type L; with I C K.

For k = 2 we are considering a new irreducible component E5 of E containing Z.
The class [E°] transforms from L" (for k = 1) to L"~!(IL — 1). Moreover, we have
two strata L1y and Loy whose class is L"~1. In this case the equality (14) becomes
[P =L""'(L-1)+2L"" + [P"2].

For the general case, when moving from k£ — 1 to k, the stratum of minimal dimen-
sion 7 — k + 1 and with class [P"~**1] is subdivided into an affine piece L™ %+ and
(the class of) a hyperplane at infinity [P"~*]. Furthermore, each of the (kfl) strata of
dimension 7 — [ and with class L"7*+2(L — 1)*~!=2 is subdivided into a piece of dimen-
sion r — [ and type L"~**1(L — 1)*=!=1 and a piece of dimension r — [ — 1 and type
Lr=*+1(L — 1)k=1=2, Therefore, for the index k, the number of strata of dimension r — [
and type L™ (L — 1)*='~! is the sum of the (15:11) strata coming from strata of di-
mension r — [+ 1 for the index k—1, and the (kfl) strata of dimension r —[ coming from
strata of dimension r — [ for the index k — 1. Therefore, there are (];) = (];:11) + (kjl)
such strata of dimension r — [ for the index k. This proves the lemma. 0O

Proof of Proposition 3.12. As already pointed out, it suffices to check the invariance
(11) of motivic infinite cyclic cover under blow-up in the case when Z is a single point.
Assume Z C ﬂle E;. Let K = {1,2,...,k} and set m = ged(mq,--- ,my), where the
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m; are the values of the holonomy on the meridians §; about the components F;. Clearly,
the class [Eﬁﬂ 4,0A] equals [p,]. Therefore, the corresponding contribution of Z to the
left hand-side of (11) is (—1)*71[u,,](IL. — 1)*~1. On the other hand, for any stratum S of
the exceptional divisor E, (as described in Lemma 3.13), the motive of the corresponding
unbranched cover of Definition 3.3 can be computed by:

(S, oa1] = [m][S, 0a]- (15)

In order to see this, we note that, since any such stratum S in F, is (by Lemma 3.13)
either simply-connected or a product of a simply-connected space with a torus, any
finite connected (unbranched) cover of S is biregular to S. So in order to prove (15), it
suffices to show that the unbranched cover S of Definition 3.3 has exactly m connected
components. This can be done by using Lemma 3.2 as follows. First, recall that for
a given stratum S of F,, the number of connected components of the corresponding
unbranched cover S equals the index in Z of the image (under the homomorphism A')
of the fundamental group m1(7¢) of a punctured neighborhood of S in X’. Moreover,
since A’ factorizes through the abelianization map, it suffices to compute the index
[Z : ImH,(T¢)]. Finally, H,(T¢) is generated by H;(Ng) together with the (classes of)
meridians to components E; intersecting the closure of S, where Ng denotes as before
the (normal) fiber of the projection T¢ — S. In our situation, it is easy to see that, for
any stratum S in E,, we have:

[Z : TmH,(T3)] = gcd(z My, M1, -, M) = M. (16)
€K

Indeed, for any stratum Lj of E, (where we also include the extremal cases when I = () or
I = K), the image of H1(Np,,Z) is generated by the integers ) ., m; and {m;,i € I},
while the remaining integers {m;,i € K \ I} correspond to the values of holonomy on
the meridians about the components E! (i € K \ I), all of which intersect the closure
of Lj.

Taking into account the description of the stratification in Lemma 3.13 we have now
to check that (—1)*=1[u,,](IL — 1)*~! equals

k—1 k
(Z(l)l (})pmi i 1)’“) (D) ] PTHL - D

=0

Factoring out [1t,,,](L — 1)¥~! and using that [P"~*](L — 1) = L"~*+! — 1, it remains to
show the equality:

k

(71)k71 _ Z(fl)l (?)erJrl + (71)]671' (17)

=0
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And (17) holds because Zfzo(—l)l (];) = (1 — 1)* = 0. This finishes the proof of Propo-
sition 3.12. O

3.2. Invariance of motivic infinite cyclic covers under blowups: general case

We begin with a few examples.

Example 3.14. Let X be a threefold and £ = ), ; E;, with J = {1,2,3}, be a simple
normal crossing divisor. Let Z be the intersection of F; and Fs. Set I = {1, 2}, so in the
notations from the introduction, we have that Z = E;. The component Ej3 is transversal
to Z. Let us consider the blow-up X’ = BizX of X along the center Z. As before we
denote the exceptional divisor P(vz) by E..

The strata in Z are EY = E1NEy\ E3 and the point Ey = N;e s E;, so the contribution
of the center Z to the motivic infinite cyclic cover Sx g is:

~[E}, 0a)(L = 1) + [Ej, 0a)(L — 1)

The exceptional divisor F, acquires a stratification with strata of the form:

Lp:= (ﬂEz/) NE,\ U Ej,

el i€J\I

with I C J, where the dense open stratum F; in F, is identified with Ly. More precisely,
the strata of F, are in this case the following:

e Lugy=E.NENE;, Ligsy = E.NE)jNE;.
o Ly = (BN E)\ By, Lisy = (B. 0 E3) \ B}, Lygy = (E. N E3) \ (Bf U Ey).
o E:: = E* \ U?Il E;

So the contribution of the exceptional divisor E, to the motive Sx/ g/ is:

[B2,050) = (L), oar) + [Lpay o] + [Lay, oa]) (L= 1)
+ ([L{1,3}7 UA/] + [L{273}, O'A/]) (L _ 1)2

Note that by Example 3.9, applied to the blow-up of the point E; of intersection of
transversal curves Fy N F3 and E5 N E3 inside the surface F3, we have that:

—_—~—

(B, 08l —1) = [Lisy,oa] = (Lisy oa] + Lagysonl) (L= 1).

So in order to show that the contributions of Z and E, to the motives Sx g and respec-
tively Sx+ g/ coincide, it suffices to prove the equality of motives:
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~[Bf,0al(L— 1) = [E2,00] - (ILgy,oa] + Ly oal) L=1).  (18)
Next, note that by the definition of blow-up, we have isomorphisms
L{l} = E; = L{g}

which, moreover, extend (by Lemma 3.2) to the corresponding unbranched covers of
Definition 3.3. Also, by Lemma 3.1, the (Zariski) locally trivial fibration E? — EY (with
fiber P!\ {2 points} = C*) can be lifted to a C*-fibration E° — EE’ Finally, the Zariski
triviality implies that [E°, oa/] = [E’V‘I’, oa](L — 1), which proves the claim. O

Example 3.15. Let X be a fourfold and E = Fy + E5 + E3 + E4 be a simple normal
crossing divisor on X. Let the center Z be the intersection E1 N Ey (ie., Z = E 9)),
hence the components F3 and E4 of E intersect Z transversally.

The center Z = E; 5) is stratified by E&,z} (open dense stratum), EEI,Q’B}, E~({)1,2,4}
and Fyi 934y = E?172,374}' In the notations of Example 3.14, the exceptional divisor E,
is stratified by the open dense stratum E7, the codimension one strata Ly, L2y, Lyay
and L4y, the codimension two strata Ly 3y, L{1ay, L{23), L{24y and L34y, and by
the points L{1’3,4} and L{2,3’4}.

Therefore the invariance under blowup of the motivic infinite cyclic cover is equivalent
to the equality of the motives (where, for lack of space, we omit the reference to actions
from our notation)

—[Ef (L= 1) + (B 23] + [EQ oy )L = 1)? = [BR 5 5.0 ) (L~ 1)°

and

[E9) = ([Lyy] + [Ligy]) (L — 1)
+ ([z{l,s}] + [z{1,4}] + [z{z,s}] + [z{2,4}] + [z{3,4}])(L —1)?

- ([5{1,374}] + [5{273)4}])(]14 -1)°
respectively. Note that by transversality, the dimension of the intersection of Z with the
components F3 and Ey (and Fys 41) is less than the dimension of Z. So, by induction on

the dimension of the center, we can assume for the blowup of Ey3 4, along Ey 234y =
Z N Ey3 4y, with corresponding deleted divisor Eyy 3.4y + E{2 3.4}, that

—[Efy 5L —1) = [Lisgy) — (Lpsa) + [Lpsg)L—1). (19)

Similarly, for the blowup of Ej3 along the center Ey; 23y = Z N E3, with deleted divisor
E{13) + Eg23y + B34y, we have that
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- [551,273}}@ -1)+ [EE1,273,4}](L —1)?
= [Lisy) = (Lgaay) + [Lzay] + [Lizay)(L - 1) (20)
+ ([z{1,3,4}] + [5{2,3,4}])@‘ - 1)%

Finally, for the blowup of E4 along the center Ey; 34y = Z N Ey, with deleted divisor
E{ 4y + E{24y + E{3 4y, we have that

— (B 0,y J(L = 1) + [Ef) 5 5] (L — 1)°
= [Lig] = (L) + Liogy) + [Lpay)(L - 1) (21)
+ (Lg12.43] + [Liz3,0]) (L — 12

Note that in the two motives of infinite cyclic covers we can now cancel
(20) - (L —1) + (21) - (L — 1) + (19) - (L — 1)%.

This is a reflection of the inclusion-exclusion principle, showing that strata of the center Z
which are contained in the transversal components Ej3, Fy and their intersection Fy3 4,
give equal contributions to the two motives of infinite cyclic covers.

So it remains to show that the contribution of the dense open stratum of Z to the
motivic infinite cyclic cover coincides with the contribution of strata in the exceptional
divisor E, which are not contained in the proper transforms of E3 and E4. That is, the
invariance under blowup of the motivic infinite cyclic cover reduces to checking that

—[Efy oy )(L = 1) = [E2] = (L] + [Ty )L - 1).

Note that since L1y is contained in the intersection £, N E}, we have that L1y is con-
tained in the exceptional divisor of the blow up of E; along F1 N Z, which is isomorphic
to E1 N Z = E; N Ey (since the codimension of the center is one). Thus we have that
EEIQ} is isomorphic to Ly} and, after lifting this isomorphism to the corresponding cov-
ers of Definition 3.3, we obtain: Ef{’u} = Z{l}. Analogously, we have that Ef{)u} = E{Q}.
Furthermore, E. is a Zariski locally trivial fibration over Ey; oy with fiber P'. There-
fore, when we restrict F, over E?1,2}’ we get a Zariski locally trivial fibration FY with
fiber C*, because we delete the two different points in each fiber corresponding to the
intersections with Ly and Lyoy. Hence, as explained at the end of Example 3.14, we
have a similar C*-fibration for the corresponding covering spaces, and the claim follows
by multiplicativity of motives in a Zariski locally trivial fibration. O

Proof of Proposition 3.8. The proof is by induction on the dimension of the center of
blowup. The beginning of induction (i.e., the case of one point) is proved in Proposi-
tion 3.12. Note that, in general, the center of blowup Z is either contained in a component
E; of E, or it is transversal to it, or it doesn’t intersect it at all. We refer to components
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of the second kind as transversal components of F (with respect to Z). By collecting all
indices ¢ of components of E containing Z, we note that the center Z is contained in a
set Er (for some I C J) given by intersections of components of the deleted divisor. In
particular, Z gets an induced stratification from that of Ej. So, there is a dense open
stratum ZNE} in Z, together with positive codimension strata obtained by intersecting
Z with collections of transversal components.

We begin the proof by first studying the case when the center of blowup is of type E7y,
for some I C J. Let X’ be the blowup of X along the center Z defined as the intersection
Er = ﬂle FE; of some of the irreducible components of the deleted divisor E, and also
assume that the irreducible components E; for j = k+1,...,¢ of E intersect the center
Z transversally, and no other components of E intersect Z. In this case, Z is stratified by
a top dimensional open dense stratum E7, and by positive codimension strata obtained
by intersecting Z with some of the transversal components E; (with j =k +1,...,¢),
i.e., strata of the form Ef ., where K # () and K C {k + 1,...,¢}. Therefore, the
contributions to the motivic infinite cyclic cover Sx g supported on Z are

COMUEL - P YD (C)MHIEIE (L - )RR (22)
0AK C{k+1,....6}

After blowing up X along Z, we get the deleted divisor £' = (U;c; E£}) U Ex of
X' = BlzX, where E, is the exceptional locus of the blowup and E; is the proper
transform of E; (for j € J). Note that, by the choice of the center Z of blowup, the
k-fold intersection of the proper transforms of components F; with i = 1,..., k is empty,
ie., ﬂle E! = (). The exceptional divisor E, is stratified by the top dimensional open
stratum Ly = E2, by the codimension s (for s < k) strata obtained by intersecting F.,
with s-fold intersections of the components Ef, ..., E; of E’, i.e., by the strata Lg with
G C I a proper subset, and by strata contained in intersections of the proper transforms
E; for j = k+1,...,£ of the transversal components, i.e., strata of the type Laux where
G C I is a proper subset of I and K is a nonempty subset of {k + 1,...,¢}. Therefore
the contributions to the motivic infinite cyclic cover Sx/ g supported on E, are:

B+ Y (09— (Ll + > (~)FLeox]@ - 1)) (28)
GClI, KC{k+1,...,0}
G#0,1 K#0)

We can apply induction on the dimension of the center of blowup, and the exclusion-
inclusion principle, to show that strata of the center Z which are contained in intersec-
tions of the transversal components Ej, for j = k+1,--- ,/, give equal contributions to
the motives Sx g and Sx/ g/ of the corresponding infinite cyclic covers. More precisely,
for each positive codimension stratum E7j , of Z, we get by induction for the blowup
of Ex along the center Z N Ex = Eruk, and with deletion divisor Ex N (Zle E)),
a relation of the type
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(DI B (@ = DIFI 4 > (DB e (L = I
KCK'C{k+1,...,¢}
S Y Y (e -y, )
GCI, KCK'C{k+1,...,0}
G#0,1

By summing up all the products (+5) - (L — 1)/¥l for the positive codimension strata
E} i of Z, we reduce the comparison of (22) and (23) to proving the identity:

(—DF BRI - DR = (B + Y (—DICLe)(L - 1), (24)

Gcl,
G#0,T

i.e., it remains to show that the contribution of the dense open stratum of the center
Z to the motivic infinite cyclic cover Sx g coincides with the contribution to Sxs g/ of
any of the strata supported on the exceptional divisor E, which are not contained in the
proper transforms of the components of E which are transversal to Z.

Note that, for any subset G C I = {1,...,k} (including the empty set corresponding
to Ly = EY), we have that Lg is a Zariski locally trivial fibration over EY with fiber
(C*)k_m_l. Indeed, the closure L¢ of L is the exceptional divisor of the blowup of Eg
along Z. Therefore L is a Zariski locally trivial fibration over Z with fiber isomorphic to
PF=IGI=1 When we restrict the fibration Lg — Z over the open dense stratum E7 of Z,
we remove the fibers lying above the intersections of Z with the transversal components
Eyy1,...,Ep To obtain L, we need to further subtract the intersections of the total
space of the fibration (Eg)‘E? with the components E, with i € I\ G. Fiberwise, the
effect of the latter operation is that we remove k — |G| hyperplanes in general position,
hence the fiber of Lg — E is isomorphic to a complex torus (C*)*~I¢=1 of dimension
k—|G|—1.

By Lemma 3.1, the (Zariski) locally trivial fibration Lg — Ef with fiber isomorphic
to (C*)F~1G1=1 can be lifted to a (C*)*~I¢I~1_fibration Lo — Ev}’ Thus, the Zariski
triviality implies that

[Le] = [ER)(L — 1)k~ 1611,

Finally, the equality (24) follows from the Pascal triangle because the number of subsets
G of T of given size |G| equals the binomial coefficient (‘g‘).

Let us now explain the proof in the general case, i.e., when the center Z is strictly
contained in some set Ey, for I C J,and let I = {1,--- , k}. Assume that the codimension
of Z in X is r + 1 > k. Again, by induction, it suffices to show that the contribution of
the dense open stratum Z° := Z N EY} of the center Z to the motivic infinite cyclic cover
Sx E coincides with the contribution to Sx/ g/ of the strata supported on the exceptional
divisor E, = P(vz) which are not contained in the proper transforms of the transversal
components of E (with respect to Z), that is,
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(DM M2 - DR = (B4 Y (-9 L)L - 1)el. (25)
GClI,
G#0

On the right hand side of (25), we use the same notation as before for the stratification
of the exceptional divisor F,. Note that in this case we have to also allow GG = I in the
sum of the right hand side term of (25) because Z C E; and therefore ﬂle E! #0.
Note that, for any subset G C I = {1,...,k} (including the empty set corresponding
to Ly = E?), we have that Lg is a Zariski locally trivial fibration over Z° with fiber
Cr—F+1 x (C*)F~1G1=1, Indeed, the closure Lg of Lg is the exceptional divisor of the
blowup of E¢ along Z. Therefore Lg is a Zariski locally trivial fibration over Z with
fiber isomorphic to P"~!G!. When we restrict the fibration L — Z over the open dense
stratum Z° of Z, we remove the fibers lying above the intersections of Z with the
transversal components Fj1,...,Fy. To obtain Lg, we need to further subtract the

intersections of the total space of the fibration (Lg)| ., with the components E! with

z0
1 € I\G. Fiberwise, the effect of the latter operation is ‘Iuhat we remove k— |G| hyperplanes
in general position from P"~IG!  hence the fiber of Lg — Z° is isomorphic to the cartesian
product C™H1=F x (C*)*~I¢I=1 of a complex affine space of dimension r + 1 — k and a
complex torus of dimension k — |G| — 1. In the case G = I, we get that L; is a Zariski
locally trivial fibration over Z° with fiber the projective space P"~*.

By Lemma 3.1, the (Zariski) locally trivial fibration Ls — Z° with fiber isomorphic
to Cr=F+1 x (C*)*=IG1=1 can be lifted to a Cr—*+1 x (C*)*~ICI~1_fibration Lg — Z°.
Thus, the Zariski triviality implies that, for G C I = {1,...,k} (including the empty set
corresponding to Ly = E?), we have:

(L] = [ZoJL7 M (L — 1)F 191, (26)
For G = I, the fiber P"=* of L; — Z° is simply connected (as r — k > 1), hence the

covering L; — Z° can be lifted to a P"F-fibration L; — Z°. Thus, Zariski locally
triviality yields that

L] =[Z° )L % + L7 * 14 ... 4 L+1). (27)

By substituting the equalities (26) and (27) into (25), and factoring out [Z°)(L — 1)1,
it remains to show that:

(_1)k—1 — Lr—k-H + Z (_1)\G\Lr—k+1
GCI,
G#0

+(=DF@F LA L DI - 1), (28)

Note that the right hand side of (28) can be written as:
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§ (71)\G’\Lr7k+1 + (_1)k71.
GCI

So after canceling (—1)*~! from both sides of (28), it remains to show that:

> (-nlr=o. (29)

GCI

Since the number of subsets G of I of given size i equals the binomial coefficient (%), it
follows that (29) is equivalent to the following well-known identity:

Thus equation (25) holds. O
4. Betti realization
Let V@“d be the category of finite dimensional Q-vector spaces endowed with an
endomorphism. Remark that V(‘S“d is equivalent to the category of torsion Q[t]-modules,
e.g., see [15, Section 3|. There exists a Q-linear homomorphism
£V > Q)

defined by

n

Trace(M™) ..\ _ 1
(V,M) — exp (Z n t ) ~ det(Id —tM)’

which satisfies

E((V,M)) =& ((Vi, My)) - £ ((Va, Ma))

for each exact sequence 0 — V4 — V — Vo — 0 such that V; is M-invariant, M|y, = M;
and the map induced by M on V5 = V/V; coincides with Ms.

Remark 4.1. Note that if M* denotes the semi-simple part of the endomorphism M, then
E((V,M)) = £((V,M?)). So for the definition of £ it suffices to take into consideration
only the semi-simple part of M.

By [2, p. 377], there is a monomorphism

(€ for) : Ko(V5™) = Q(8)* x Ko(Vo),
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with Vg the abelian category of finite dimensional rational vector spaces, and
for : Ko(V5™) = Ko(Vo), [(V.M)] — [V]
the corresponding forgetful functor. Hence, by Remark 4.1, this identification yields that
[(V.M)] = [(V,M?)] € Ko(V5™). (30)

Denote by Véﬁut the category of finite dimensional Q-vector spaces endowed with a
finite order automorphism. Then there exists an additive map (called the Betti realiza-
tion)

Xb 1 Ko(Varl) — Ko(VE"™) — Ko(V§™)
such that

[Y.o] = [HZ(Y;Q),07]:= Y _(~1)'[HIY;Q), 7],

i>0

where o} denotes the automorphism of H(Y,Q) induced by the action of o. Here, the
compactly supported cohomology is used in order to fit with the scissor relation (3) in
the motivic Grothendieck group KO(Varé).

We can therefore define a homomorphism

Emot : Ko(Varé) —(Q(1)",-)

by the composition &,,4¢ := & o x», i.e.,

Emot([Y, 0]) = Zy (1),

where

ZY(t) = H [det(ld —t- 0-:‘, Hé(Y’ Q))] (—1)¥+t
i>0

is the zeta function of the fi-action o on Y.
Back to our geometric situation, the deck transformation 1" of the infinite cyclic cover

T% g A induces automorphisms 77" on each group Hé(T)*( ). The corresponding zeta
function of T is defined by:

) =11 {det (Id Ty, Hi(f}’EyA)ﬂ o
i>0

~*
T, B,A

Recall from Remark 4.1 that it suffices to take into consideration only the semisimple
(hence of finite order) part of T}
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The main result of this section describes the Betti realization of the motivic infinite
cyclic cover Sx g A.

Proposition 4.2. The Betti realization of the motivic infinite cyclic cover of finite type is
given by the cohomology with compact support of T% g A, i.e.,

Xo(Sx.m.a) =Y (1! [HATY p.a), T;] € Ko(VE™). (31)
i>0
FEquivalently,
gmot(SX,E,A) = Z,f)*(,E,A (t) (32)

In particular, (by taking degrees) the topological Euler characteristic of T)*(,E,A s com-
puted by

X(Tx p.a) = X(Sx.5.a). (33)

Proof. Consider the T-equivariant Mayer—Vietoris spectral sequence for the open cover

{ng bies of T p & e,

B = @ HUTg) = HEY(TE g o).
[I|=p+1

in which we identify the intersections ();c; T5o = E? as in Proposition 2.4. By using
the additivity of the universal Euler characteristic W — [W] € K(Vg"), for W € Vg,
we have the identity:

Y CVIH(Tx pa)l = D ()™ [EY]

i>0 4,720
=Y (" | @ HTE)
1,720 [T|=5+1
I|—1 i i (%
= D> (DI Y (1) [HUTE)]
0AICT i>0

By using the definition of the motivic infinite cyclic cover Sx g a, it thus suffices to
check formula (31) for each stratum EY, i.e., we have to show that the following identity
holds

Xe([EF(L = D)) =N " (1)1 [HY(TH, ), (34)
i>0
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or equivalently (after applying &),
70 [ I]—1 * i =
Emat((EFL = 1)1 o) =TT [aet(ud — - 777, BT, )]
i20 (35)
= Zf* (t)v

o
Br

with o denoting the corresponding pi,,,-action. On the other hand, by definition,

gmoth?](L - 1)‘1‘_1701) = ZE?X(C*)U\—l(t)’

S0 it remains to prove the equality of zeta functions:
Zg. (1) = Zgoy coyia (B): (36)

(Note that in (36), the product E‘}’ x (C*)MI=T can be replaced by any Zariski locally
trivial fibration over E}’ with fiber (C*)//I=1, as they give the same element in K (Varé).)

By Lemmas 3.1 and 3.2, the long exact sequence of homotopy groups associated to
the (C*)/I-fibration T, — Ej induces a locally trivial topological fibration

Tpo — E, (37)
with connected fiber (C*)I| ~ (C*)I/I=1 the infinite cyclic cover of (C*)!!I defined by
the kernel of the epimorphism ZH!! — m;Z induced by the holonomy map A. As before,
TE? is the infinite cyclic cover of T*? defined by A, and E}’ is the unbranched g, ,-cover
of E} with holonomy Aj.

For a sufficiently fine cover of E}’ by pm,-invariant sets, the fibration (37) becomes
trivial. Hence (36) follows from the multiplicativity of zeta functions, i.e., from the equal-

ity

ZUI (t) i ZUz (t)

ZUlUUQ (t) = 7y (t)

for T-invariant sets Uy, Uy with Uy = Uy N Us. This multiplicativity is easily deduced
from the corresponding Mayer—Vietoris long exact sequence.

It is now easy to see that the common value of the terms in (36) is (1 — ™)~ X(E7) if
[I] =1, and it is 1 otherwise. O

Remark 4.3. More generally, there is a Hodge realization homomorphism
Xh : Ko(Varé) — Ko(HS™")

defined by the same formula as y;, with Ko(HS™") the Grothendieck group of mon-
odromic Hodge structures (i.e., endowed with an automorphism of finite order), cf. [7].
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In the case when the compactly supported cohomology of the infinite cyclic cover of T’
admits mixed Hodge structures (e.g., see [21, Section 6] for such a situation), the above
proposition can be extended to show that the corresponding class in Ko(HS™") is the
Hodge realization of the motivic infinite cyclic cover of T. On the other hand, for an
arbitrary infinite cyclic cover T)*( . of finite type, even when a construction of a mixed
Hodge structure is absent, xj provides “its class”.

5. Relation with motivic Milnor fiber

Denef and Loeser introduced the local motivic Milnor fiber S¢ , at a point x for a non-
constant morphism f : C¥*! — C with f(z) = 0 (e.g., see [7, Def. 3.2.1, Def. 3.5.3] and
the references therein) as a limit in the sense of [12, Section 2.8] (see [6, Lemma 4.1.1]):

Sta=— lim Z(T)e€ Ko(Varg)[L "] (38)

of the motivic zeta function

Z(T) := Y [Xn L™ DT € Ko(Varf)[L™[(T]], (39)

n>1

where &, 1 denotes the set of (n+1)-jets ¢ of C?*! centered at x such that fop = t"+.. ..
Note that there is a good action of the group p, (hence of i) on X, 1 by Ax ¢ — p(A-1).

The following result relates the concepts of motivic Milnor fiber and the motivic
infinite cyclic cover, respectively.

Theorem 5.1. Let f : C¥T! — C be a non-constant morphism with f(z) = 0, and let
p: X — C¥ be a log-resolution of the singularities of pair (C4H1 f=1(0)). Choose
p in such a way that (p~1(x))rea is a union of components of (p~*(f71(0)))rea- Let
E =3 c;E; be the irreducible component decomposition of P H(f71(0))rea, and let
A={ie J|E; Cp~x)}. Then the following hold:

(1) For € > 0 small enough, and B(z,€) a ball of radius € centered at x € C*+L, the
map p provides a biholomorphic identification between B(x,e) \ {f = 0} and Tja,
the punctured regular neighborhood of the divisor E4 := > ica Ei. In particular, the
map vy — f,y % can be viewed as a holonomy homomorphism: A : w1 (Th.) — Z of
the punctured neighborhood of E4. This holonomy map takes the boundary 6; of any
small disk transversal to the irreducible component E; of EA to the multiplicity m;
of E; in the divisor of fop, i.e., A(6;) =m; for alli € A.

(2) One has the following identity in Ko(Varé)[L_l]:

A
Sf,w = SX7E,A'
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Proof. We shall use the following formula (e.g., [7, Def.3.5.3], which in turn is motivated
by the calculation in [6, Theorem 2.2.1] and [5, Theorem 2.4]) for the motivic Milnor
fiber Sy, in terms of a log-resolution p : X — C4*1 of f=1(0):

Spa= Y, (D) e (L -t (40)
PAICT
INAF#D

where c; is the class of the unramified Galois cover E‘I’ € Varé of E7, with Galois
group [im,, defined as follows. Let m; be the multiplicity of E; in the divisor of fop and
my = ged(m;|i € I). Given an affine Zariski open subset U of X such that fop = uv™
on U, with u € I'(U, Oy) a unit and v a morphism from U to C, the restriction EN‘I’ lu of

E‘; over Ef|y := ESNU is defined by

ES |y ={(2,y) € Cx ES|y| 2™ = cu™}. (41)

There is a natural p,,,-action defined by multiplying the z-coordinate with the elements

of tim,, whose corresponding quotient yields the covering map: ENf lu = Ef|u. We denote
this action 0. For proving our theorem, it suffices to show that, as elements of Varf:, the

cover (ENIO |u, o%) coincides with the cover (E§’|U, o) from Definitions 3.3 and 3.5, where
we let as above E}’|U denote the restriction of E‘}’ over U.

Let My denote the Milnor fiber {f = ¢} N B(x,€) C B(x,¢e) \ {f =0} =T;4. For a
sufficiently small subset U C EY we can choose a trivialization of Tga|y which yields a
trivialization as a (C*)/l-bundle of the subset T3 pe = Tge lv of Th4. Let

My, gy = My 0T go C 15 gy = Eflu < (C)",

with 7 = |I]. In the latter identification, My, ge is the hypersurface given by z{*" --- 2" =
cu~! (where z; are the coordinates in the torus). It follows that fibers of My, ge over E?|luy

my my

are disjoint unions of m; translated subgroups z;"! - - 2""! = Aw,,, where \™ = cu~

1
and Wy, € fm,. Bach such translated subgroup is biholomorphic to a torus (C*)"~1. In

fact, the Stein factorization presents My, ge as a (C*)"~1-torus fibration over Ef |z, with

~ my .
the map My ge — E7 v induced by (21, ...2;) = 2 = 2{"" -+ 2"
Next consider the following commutative diagram:
m (€)™ = m((C))
! ! \
« A
7T1(MU7E}>) — 7T1(TU,E1?) — 7z
1 1 1
A,

m(E;" v) = m(Efly) = Zm,
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induced by the fibrations described above. Here A is the holonomy described in (1) and
A,,, is the map induced by A as described in Lemma 3.1.

To conclude the proof of the theorem it is enough to show that image of my (Ef lv)
belongs to the kernel of the map A,,,, since ker(A,,,) = w1 (E¢|y) by our construction

and both groups wl(EﬂU) and 771(5}’ |v) have index m; in m1(E}|y). Notice that the
restriction of A on My C Tj, yields A : m(My) — Z, which is trivial since for any
v C Mjy one has fv % = 0 (as f(y) is constant). Hence the composition of maps in
the middle row of the above diagram is trivial. By commutativity, the image of the
composition

m(Mu,gg) = m(E7 [v) = m(E7|v) = Zp,

is also trivial. Moreover, the homomorphism 7 (My, ge ) — m (EN}’ |r) is surjective since it
is induced by the map My ge — ]EE; |u which is a fibration with connected fibers. There-

fore the composition 7y (ENf lu) = 71 (ES|u) = Zy, is trivial and the claim follows. O

Remark 5.2. Note that Theorems 5.1 and 3.7 give a direct proof of the fact that the
right-hand side of formula (40) expressing the Denef-Loeser motivic Milnor fiber in
terms of a log-resolution is actually independent of the choice of log-resolution. This was
apriori known only because of the relation (38) with the motivic zeta function (which
is intrinsically defined by Denef-Loeser in terms of arc spaces as in (39)), see also the
discussion in [7, Section 3.5]. It should also be noted that our proof of independence
of (40) of the choice of log resolution does not make sense of the third relation (5) in
the motivic Grothendieck group Ky (Varé). As a consequence, our results also imply the
well-definedness of the Denef-Loeser motivic nearby and vanishing cycles without the
use of the third relation (5) in the motivic Grothendieck group (which was needed for
the approach via arc spaces).

Let us consider now a non-constant morphism f : C4*! — C with f(0) = 0. As
described at the end of Section 2, by Milnor’s fibration theorem [24], there is a locally
trivial fibration 7 : B, s — Dj associated to f and the origin 0 € C". Let us call Ty the
corresponding monodromy map. Since the infinite cyclic cover of B, s and the Milnor
fiber My at the origin are homotopically equivalent, we have the following corollary as
a consequence of Theorems 4.2 and 5.1. This is a weak version of Theorem 4.2.1 in [6],
see also [5].

Corollary 5.3. The Betti realization of the motivic Milnor fiber of f at the origin coincides
with the Betti invariant of the monodromy Ty, i.e.,

Xo(Sp0) = Y (—1)'[HUMy), Tiy, -

%
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6. Motivic Milnor fibers at infinity and motivic Milnor fibers associated with rational
functions

In this last section, we outline further geometric situations in which our main con-
struction allows to obtain motivic invariants for which we also obtain Betti realizations.

Let f,g € Clzy,- -+ ,x,] be two polynomials, with deg(f) — deg(g) = k > 0. Consider
the pencil of hypersurfaces in P = Proj Clzg, z1, - , x,] of degree deg(f) given by

Af + pgag =0,

where f, g denote the homogenizations of f and g, respectively, and [\ : u] € P*. The
rational map 7y, : P* — P! corresponding to this pencil is given by [zg : -+ : z,]
[f : gzk]. Let ¢ : I@ﬁf,g — P™ be a resolution of the indeterminacy points of the rational
map 7y, (i.e., the set of solutions of f = gaf = 0), cf. [11, 7.1.2]; in a small ball about
an indeterminacy point the restriction of the map 7y 4 to the complement of {g = 0} is

given by f/g, where the target of f/g is identified with P*\ {[1 : 0]}. Let us denote by 77 4

the composition P" f.g 4 pn "¢ P! Note that the proper transforms under ¢ of divisors
7'(';;( [A: p]) and W;;([)\/ : i']) have empty intersection provided [A : u] # [N : p/]. After
possibly additional blow-ups, we can assume (using the same notations) that the fibers
Ey = %JT);([O :1]) and Es = %;;([1 : 0]) (i.e., the total transforr/nVOf the divisors f = 0
and grf = 0, respectively) are both normal crossing divisor on P 1,9- We shall assume
from now on that P» 1,9 already satisfies this condition.

The following is a standard consequence of transversality theory in the context of

stratified spaces.

Proposition 6.1. Let F' C PN"ﬁg be the union of components of the total transform of the
pencil such that for generic t € P! the proper preimage of t has non-empty intersection
with F. Then:

1. The variety F is always non-empty, and its irreducible components map surjectively
onto P1. There is a finite subset D C P! such that Tg.q 15 a locally trivial topological
fibration over P\ D and, for any t € P'\ D, the fiber %J;; (t) is transversal to F.

2. The restriction of T 4 to %E;(Pl\D)\(Fﬂ%;’;(Pl\D)) is a locally trivial topological
fibration with fiber homeomorphic to %;;(t) \ (FN %;;(t)).

3. Let S C P! be a sufficiently small disk in P* centered at [0 : 1] (resp. at [1:0]) such
that SND = (), and let S* be the disc S punctured at its center. Then %JZ;(S*) \(FN

%;!1] (8*)) is homeomorphic to a small punctured reqular neighborhood of Eg\ (EqNF)

(resp. Exo \ (Eoc NF)) in I@Ef’g\F.

4. Let c € C™ C P™ be such that f(c) = g(c) = 0, i.e., ¢ is an indeterminacy point of
the rational map 7y, outside the hyperplane at infinity. For sufficiently small €, let
B, be a ball of radius € about ¢ (so that the boundary of Be is transversal to both
{f = 0}, {g = 0} and their intersection, for all € < ¢). Finally, for 6 << ¢, let
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Sy C S* be a punctured disk, where S is like in (3). Then, the restriction of the map
Tf.q from (2) to ¢~ (Be) N %;;(S;) is a locally trivial topological fibration over Sj.

Using this set up we can now make the following definition.
Definition 6.2. In the notations of Proposition 6.1,

1. the Milnor fiber My 40 (resp. My g.00) for the value O (resp. for the value oo) of a
rational function g is the manifold %;;(t) \ (F ﬂ%ﬁ; (t)) for any t € P! closed enough
to [0 : 1] (resp. to [1 : 0]). The monodromy of this Milnor fiber is the monodromy map
of the locally trivial fibration from Proposition 6.1(2). We denote the monodromy of
this fibration by T 40 (resp. by T g 00 )-

2. the Milnor fiber My 40 (resp. My g.c00) of a germ of rational function at an inde-
terminacy point ¢ for the value 0 (resp. value oo) is a generic fiber of the fibration
from Proposition 6.1(4). We denote the monodromy of this fibration by T 4 0 (resp.

Tf,g7c,c>0)-

We shall refer to the composition
Vim (%;é(s*) \(Fn %;;(5*))) m(SY) =7

as the holonomy map of the punctured neighborhood of Ey\ F' (resp. Ex \ F) as in
Proposition 6.1(3).

Remark 6.3.

1. Generalizations of the notion of Milnor fiber in the context of rational functions were
initiated by Gusein-Zade, Luengo and Melle-Hernandez [13,14], but see also [3,31].

2. Recall that given f € Clzy,--- ,x,], the Milnor fiber of f at infinity is defined as
My = f~1(t) where |[t| >> 0. Its topological type is independent of ¢, provided
|t| is sufficiently large. Moreover, its cohomology H" (M}, Z) is endowed with the
monodromy operator induced by the trivialization of the bundle ¥*(M;—,), where
M=, is the preimage under f of the circle S, = {t € C||t| = a,a € R} and
¥ :[0,1] = S, is given by s — ae?™ (cf. [19,20,30]). This notion coincides with
M1 00 in Definition 6.2(1).

In the above notations, we can now introduce motives associated to such topological
objects (compare with [27]).

Definition 6.4. The motivic Milnor fiber for the value zero (resp. for the value infinity)

€ KO(Varé) (resp. the class Sﬁ;‘n €

of a rational function L is the class S4
g P fﬁg»Eooav

fyng07v
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KO(Varé)), in the sense of Definition 3.5, with A indexing the collection of components
of Fy (resp. Fo) not contained in F.

Definition 6.5. The motivic Milnor fiber of a germ of rational function g at an indeter-
minacy point ¢, with f(¢) = g(c¢) = 0, for the value zero (resp. for the value infinity) is

Ale) 2 Alc) 7 .
the class S@?,H,EO,V € Ko(Varf) (resp. the class Sﬁ}‘,g,Ew,V € Ko(Varg)), in the sense
of Definition 3.5, with A(c) indexing the collection of components of Ey (resp. Ex)
not contained in F' and that map to the value ¢ under the resolution ¢ of the rational

map Ty, g.

Remark 6.6. If ¢ = 1 one obtains a notion of motivic Milnor fiber of f at infinity, compare
for example with work by Matsui-Takeuchi [22] and Raibaut [26]. Another definition of
motivic Milnor fibers for rational functions has been given by Raibaut in [27].

Finally, as in the case of Milnor fibers of germs of polynomials, motivic Milnor fibers
of rational functions have Betti realizations and there are generalizations of Corollary 5.3
in this setting.

Corollary 6.7. The Betti realization of the motivic Milnor fiber of a rational function f/g
for the value zero (resp. for the value infinity) coincides with the Betti invariant of the
monodromy T 40 (resp. of the monodromy Ty 4 o), i.€.

A gyig y
Xb(Sl?ﬂfl,ng.,V) = Z(_l) [Hc(Mf797')’TMf=9x’]7

where o stands for 0 (resp. 0o).

Corollary 6.8. The Betti realization of the motivic Milnor fiber for the value zero (resp.
for the value) infinity of a germ of a rational function f/g at an indeterminacy point
¢ coincides with the Betti invariant of the monodromy Ty 4.0 (resp. of the monodromy

Tf,g,,00); -

Alc 1 3 *
xe(S5. ) = D (V' [Hi(Mgca) Th, )

9 -
1

where o stands for 0 (resp. o).

Remark 6.9. My, and My 4o are members of a family of complex (in fact, quasi-
projective) manifolds. This can be used to associate a limit mixed Hodge structure, cf.
[29], whose motive is the Hodge realization of the above motivic Milnor fibers.
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