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Hodge Polynomials of Singular Hypersurfaces

Anatoly Libgober & Laurentiu Maxim

1. Introduction and Statement of Results

LetX be an n-dimensional compact complex algebraic manifold and L a line bun-
dle on X. Let L ⊂ P(H 0(X, L)) be a line in the projectivization of the space
of sections of L (i.e., a pencil of hypersurfaces in X). Assume that the generic
element Lt in L is nonsingular and that L0 is a singular element of L. The pur-
pose of this paper is to relate the Hodge polynomials of the singular and (respec-
tively) generic member of the pencil—in other words, to understand the difference
χy(L0)− χy(Lt ) in terms of invariants of the singularities of L0. A special case
of this situation was considered by Parusiński and Pragacz in [PPr1], who studied
the topological Euler characteristic of pencils for which the generic element Lt of
the pencil L is transversal to the strata of a Whitney stratification of L0. This led
the authors of [PPr1] to a calculation of Parusiński’s generalized Milnor number
(see [P]) of a singular hypersurface and also to a characteristic class version of
this formula in [PPr2] for the Chern–Schwartz–MacPherson classes (see [Mac]).
In a different vein, the Hodge theory of 1-parameter degenerations was consid-
ered in [CLMSh2] (cf. [Di1] for the case when L0 has only isolated singularities)
by using Hodge-theoretical aspects of the nearby and vanishing cycles associated
to the degenerating family of hypersurfaces and extending similar Euler charac-
teristic calculations presented earlier in [Di2]. This paper adds an extra layer of
complexity by addressing the Hodge-theoretic situation in the context of a pencil
of hypersurfaces with nonempty base locus.

Let us first define the invariants to be investigated. A functorial χy-genus is de-
fined by the ring homomorphism

χy : K0(MHS)→ Z[y, y−1]; [V ] �→
∑
p

dimC GrpF (V ⊗Q C) · (−y)p, (1.1)

where K0(MHS) is the Grothendieck ring (with respect to the tensor product)
of the abelian category MHS of rational mixed Hodge structures [De1; De2] and
GrpF (V ⊗Q C) := Fp/Fp+1 (p ∈ Z) denotes the pth graded part of the (decreas-
ing) Hodge filtration F • corresponding to the mixed Hodge structure V ∈ MHS.
For K • ∈Db(MHS) a bounded complex of rational mixed Hodge structures, we
set [K •] := ∑

i(−1)i[Ki] ∈K0(MHS) and define
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χy([K •]) :=
∑
i

(−1)iχy([K
i]). (1.2)

Then, for X any complex algebraic variety, we let

χy(X) := χy([H ∗(X; Q)]) =
∑
j

(−1)j · χy([Hj(X; Q)]) (1.3)

be the Hodge polynomial of X. Similarly, we define χcy(X) by using instead the
canonical Deligne mixed Hodge structure in the cohomology with compact sup-
port H ∗

c (X; Q) of X. The specializations of polynomials χy(X) and χcy(X) for
y = −1 yield the topological Euler characteristic e(X). Also note that χcy is an
additive (motivic) invariant; that is, if Z is a Zariski closed subset of X then

χcy(X) = χcy(Z)+ χcy(X \ Z). (1.4)

Finally, we point out that the polynomials χy(X) and χcy(X) are extensions to the
singular setting of Hirzebruch’s χy-genus of a compact complex algebraic mani-
fold X (cf. [H]). This is a polynomial, defined in terms of the Hodge numbers of
X, that includes as special cases the topological Euler characteristic (at y = −1),
the arithmetic genus (at y = 0), and the signature (at y = 1).

Before formulating our main results, we need a few definitions and some nota-
tion. We begin by recalling standard facts about the incidence variety of a pencil,
which plays an essential role in our approach. Let I ⊂ X × L be the variety de-
fined by the incidence correspondence:

I = {(x, t) | t ∈ L , x ∈Lt }. (1.5)

We denote the projections of I on each factor by pX and pL, respectively; note
that both are surjective. Moreover, pX is one-to-one outside of the base locus of
L , and its fibers over any point in the latter are P1, which pL maps isomorphically
onto L.

If the intersection of the base locus with the singular locus of any element
of the pencil is empty, then I is a nonsingular variety; otherwise, it has singu-
larities. Indeed, under the empty intersection assumption, let f1 and f2 be two
generic elements of the pencil written in the local coordinates (x1, . . . , xn) of a
base point P of the pencil. Then the differentials df1 and df2 are independent be-
cause, if df1 + t0df2 = 0, then the element of the pencil given by f1 + t0f2 =
0 has a singularity at P. Now using the local coordinates at P in which f1 = x1

and f2 = x2, we can view the incidence correspondence as the hypersurface in
Cn × C given by the equation x1 + tx2 = 0, which is nonsingular.

We also note that the fibers of pL are isomorphic to the corresponding elements
of the pencil (and will be denoted by LI

t , or simply Lt if there is no danger of con-
fusion) and that pL is a locally trivial topological fibration outside a finite set of
points in L containing the point that corresponds to L0. We will restrict our at-
tention to fibers of pL near L0; in other words, we consider the restriction map
p := pL|p−1

L (Dε(0))
for ε small enough that this restriction is a locally trivial fibra-

tion outside the special fiber L0 = p−1
L (0). Note that p is a proper holomorphic
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map with compact complex algebraic fibers, the generic fiber being smooth. As re-
marked previously, the incidence set I may be singular but is, by definition, a com-
plete intersection of dimension equal to the dimension n ofX. Therefore, QI[n] is
a perverse sheaf (or, more generally, a mixed Hodge module on I, denoted QH

I [n];
see [Sa1; Sa2]). Let ψpQI ∈Db

c (L
I
0) denote the bounded constructible complex

of nearby cycles attached to p. Then ψpQI[n − 1] is also a perverse sheaf and
thus (by Saito’s theory) underlies a mixed Hodge module. We consider the shifted
complex

M(L0,pL) := ψHp QH
I [1], (1.6)

where QH
I denotes the “constant” Hodge sheaf and ψHp is the corresponding

nearby cycle functor on the level of Saito’s mixed Hodge modules (i.e., if rat:
Db(MHM(I )) → Db

c (I ) is the forgetful functor associating to a complex in the
bounded derived category of mixed Hodge modules the underlying rational con-
structible complex of sheaves, then rat�ψHp = ψp[−1]� rat). Hence M(L0,pL) is
a complex of mixed Hodge modules associated to the pair (L0, L), which, more-
over, is supported only on L0. We refer to [D2] (see also [Di2]) for the definition
of the nearby cycles complex and to [Sa1; Sa2] for the extension of this construc-
tion to the category of mixed Hodge modules.

The main result of this paper is the following statement (see also its reformula-
tion in Theorem 2.5).

Theorem 1.1. Let S be a Whitney stratification of L0 such that the base locus
of L (i.e., BL = L0 ∩ Lt) is a union of strata of S. Then to each stratum S ∈ S
one can associate a Hodge polynomial invariant χcy(S, L) such that

χy(Lt ) =
∑
S∈S

χcy(S, L). (1.7)

More precisely, χy(Lt ) is the total χy-genus of the complex M(L0,pL) associated
to the pair (L0, L) as in (1.6). In particular : if the monodromy of the restriction
of M(L0,pL) to each stratum is trivial (or, more generally, has finite order ) and
if the corresponding local system extends to the closure of the stratum, then

χy(Lt ) =
∑
S

χcy(S) · χy(MS). (1.8)

HereMS is the Milnor fiber (in the incidence variety I of the pencil ) correspond-
ing to a point in the stratum S of L0. The specialization of (1.8) for y = −1
that yields the equality for Euler characteristics is valid without any monodromy
assumption.

Remark 1.2. It will follow from the proof of Theorem 1.1 (see also [CLMSh2,
eq. (73)]) that each polynomial χcy(S, L) is actually an alternating sum of Hodge
polynomials of S with coefficients in admissible (at infinity) variations of mixed
Hodge structures. Such “twisted Hodge polynomials” can be computed by means
of Atiyah–Meyer-type formulas, as in [CLMSh1; CLMSh2], in terms of the
Deligne extension of the underlying local system on a “good” compactification
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of S. Of course, in the simple case where the monodromy along each stratum is
trivial, the underlying variations are constant and we have the multiplicative for-
mula of (1.8). However, we wish to emphasize that the same phenomenon persists
when the monodromy has finite order—provided the underlying local system ex-
tends to a (possibly singular) compactification of the stratum (e.g., the stratum
closure); see Lemma 2.3. Therefore, (1.7) provides a complete calculation for the
Hodge polynomial of Lt in terms of invariants of the singularities of L0.

An important consequence of the proof of Theorem1.1 is an identity comparing the
Hodge polynomials χy(L0) and χy(Lt ) (see Theorem 2.5 for the precise formu-
lation). For example, suppose that all strata of a stratification S as just described
are simply connected; then

χy(L0) = χy(Lt )−
∑
S

χcy(S) · χy([H̃ ∗(MS; Q)]), (1.9)

where the summation runs over only the singular strata of S (i.e., strata S satis-
fying dim(S) < dim(L0)). This result is in the spirit of the Parusiński–Pragacz
works [PPr1; PPr2] and should be regarded as a Hodge-theoretic extension to ar-
bitrary pencils of the formula from [PPr1]. As explained in Section 3, this formula
imposes strong restrictions on the type of singularities that the pencil’s singular
fiber can have.

Remark 1.3. A characteristic class version of the Parusiński–Pragacz formula
for the generalized Milnor number was obtained in [PPr2] (see also [S1; S2; Y])
by studying the Milnor class of a complex hypersurface—that is, the difference
between the Fulton–Johnson class [FJ] and the Chern–MacPherson class [Mac].
As in this paper, the key tools used in [PPr2] are the complexes of nearby and
vanishing cycles together with a specialization argument. That being said, the dif-
ference between the Hodge polynomials of the singular and the generic fiber of a
1-parameter family {Xt } of compact complex hypersurfaces can be expressed as
the degree of a certain Hodge-theoretic Milnor class, which is defined as the differ-
ence between the motivic Hirzebruch class ofX0 (cf. [BrSY]) and the Hirzebruch
class of its virtual tangent bundle in the ambient smooth variety. This generalized
Milnor class associated to a divisor in a complex algebraic manifold was studied
in [CMSSh], but it is not immediately clear how the results there can be adapted
to our setup of pencils with nonempty base locus. This problem will be addressed
elsewhere.

Let us elaborate on the computational aspects of Theorem 1.1. Note that the stalk
of the cohomology sheaf H•(rat(M(L0,pL))) at any point B ∈L0 is a graded al-
gebra, which we denote by H•(M(L0,pL))B. More explicitly, it follows by con-
struction that

H•(M(L0,pL))B = H •(MS; Q); (1.10)

here, as before, MS is the Milnor fiber in I corresponding to the stratum S of L0

(or of LI
0) containing the point B. As regards the last sentence of Theorem 1.1, we

note that the Euler characteristic ofMS can be computed via the following version
of A’Campo’s formula.
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Proposition 1.4. Let πI : Ĩ → I be the restriction to the proper preimage

of I of an embedded resolution X̃ × L → X × L of singularities of the triple
(X × L , I,L0). In other words, Ĩ is an embedded resolution of singularities of
I ⊂ X×L , and the componentsEĨ,k of the exceptional locus of πI are the inter-

sections of the components Ek of the exceptional locus of X̃ × L → X × L with
Ĩ; moreover, the proper transform L̃0 ⊂ Ĩ ofL0 and the componentsEĨ,k ⊂ Ĩ of
the exceptional locus EĨ = ⋃

EĨ,k of πI form a normal crossings divisor in Ĩ.
Let mEk be the multiplicity of the pullback of pL : X × L → L along Ek ⊂

X̃ × L. Let DB be a ball in a germ of a smooth subspace of X that is transver-
sal at B ∈X to the stratum of L0 containing B. Then the Euler characteristic of
H•(M(L0,pL))B is given by∑

e((EI,k − EI,k ∩ L̃0) ∩ π−1
I (DB)) ·mEI,k . (1.11)

Proof. The proof follows by standard arguments used in the proof of A’Campo’s
formula for the Euler characteristic of the monodromy of the generic fiber of a
base point free pencil. We apply such arguments to the restriction of the pullback

of pL to X̃ × L on an appropriate subspace of the latter. More precisely, letH be a
germ of a smooth submanifold inX containing B ∈L0, and letDB be a small ball
about B inH. Then the proper preimage ofDB in Ĩ is a resolution of its preimage
in I. (Indeed, a small neighborhood of B in X can be decomposed as DS ×DB ,
where DS is a neighborhood of B in the stratum S and where the map Ĩ → I is
a locally trivial fibration over DS with fiber the total preimage of DB in I; hence
this total preimage is also smooth.) Let t ∈ Dε(0) ⊂ L with ε sufficiently small
that the fibers Lt are transversal toDB for t �= 0 and yield a fibration of the preim-
age of DB in I with one degenerate fiber L0 ∩ DB. Now we apply A’Campo’s
formula to the morphism of the proper preimage D̃B ofDB in Ĩ that is the restric-
tion on the latter of the pullback of pL on Ĩ. The components of the exceptional
locus of πI |D̃B are the intersections of the components of the exceptional locus

of X̃ × L → X × L (i.e., EĨ,k. By transversality, the multiplicity of pL along

Ek and along its restriction on D̃B along EI,k are the same. Hence (1.11) follows
from A’Campo’s result [A] because, as pointed out earlier, the Euler characteris-
tic of H•(M(L0,pL))B coincides with the Euler characterisitc of the Milnor fiber
in the direction transversal to the stratum.

Remark 1.5. It follows from (1.10) and Saito’s theory (but see also [N1; N2])
that H•(M(L0,pL))B also carries canonical mixed Hodge structures. This prop-
erty will be needed in the proof of Theorem 1.1.

Let us now illustrate the identity (1.8) with a concrete example.

Example 1.6. LetX = P3
C and letL0 be the union of a nonsingular hypersurface

Vd−1 of degree d − 1 and a transversal hyperplane H = V1. Let L be the pencil
generated byVd and Vd−1∪H, and assume thatVd is transversal toVd−1∩H. Then
the stratification of the singular locus Vd−1 ∩H of Vd−1 ∪H consists of its inter-
section with the base point locus of the pencil containing Vd−1 ∪ H and Vd (i.e.,
Vd−1 ∩H ∩Vd) and the complement to this intersection in Vd−1 ∩H.
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For the reader’s convenience, we first recall the computation of Euler char-
acteristics (i.e., y = −1 in equation (1.8)). The contribution of the stratum
Vd−1 ∩ H −Vd−1 ∩ H ∩Vd is 0, the contribution of each point in Vd−1 ∩ H ∩Vd
is 1 (provided Vd is transversal to Vd−1 ∩ H ), and the contribution of each non-
singular point of Vd−1 ∪ H is 1. Since the Euler characteristic of a nonsingular
hypersurface of degree d in P3 is d 3 − 4d 2 + 6d, it follows that the Euler charac-
teristics of strataVn−1 − Vn−1 ∩H and H − Vd−1 ∩H are (d −1)3 − 4(d −1)2 +
6(d − 1)− 3(d − 1)+ (d − 1)2 and 3 − 3(d − 1)+ (d − 1)2, respectively. Then
the identity (1.8) for y = −1 verifies as

d 3 − 4d 2 + 6d = (d − 1)3 − 4(d − 1)2 + 6(d − 1)− 3(d − 1)

+ (d − 1)2 + 3 − 3(d − 1)+ (d − 1)2 + d(d − 1).

Let us next discuss the case of Hodge polynomials, assuming for simplicity that
d = 4. Following [H], we have

χy(V4) = 2 − 20y + 2y2, χy(V3) = 1 − 7y + y2,

χy(V1) = 1 − y + y2, χy(V3 ∩V1) = 0.

From the additivity of the χcy-polynomial we obtain

χcy(V3 − V3 ∩V1) = 1 − 7y + y2, χcy(V1 − V3 ∩V1) = 1 − y + y2,

χcy(V3 ∩V1 − V3 ∩V4 ∩V1) = −12.

Moreover, the contribution of the fibers of the nearby cycles over V3 ∩V1 − V3 ∩
V1∩V4 amounts to 1+y. This corresponds to the Hodge polynomial of the Milnor
fiber of a node singularity because the monodromy is trivial. (In local coordinates
near a base point, the pencil has the form xy + zt = 0 for xy = 0 and z = 0
the local equations of the reducible and irreducible fibers, respectively; the germ
of the stratum of the singular member of the pencil is given by x = y = 0 and
the monodromy around the base point x = y = z = 0 of the pencil is given by
z = exp(2πiθ), which is the same as the monodromy action on the cohomology
of the Milnor fiber xy = s.) Since the contribution of a point in the intersection
V3 ∩V1 ∩V4 is 1, the identity

χy(V4) = χcy(V3 − V3 ∩V1)+ χcy(V1 − V1 ∩V3)

+ χcy(V3 ∩V1 − V3 ∩V1 ∩ V4) · χy([(ψpQI)x∈V3∩V1−V3∩V1∩V4 ])

+ χcy(V3 ∩V1 ∩V4) · χy([(ψpQI)x∈V3∩V1∩V4 ])

becomes the following relation representing (1.8):

2 − 20y + 2y2 = (1 − 7y + y2)+ (1 − y + y2)+ (−12) · (1 + y)+ 12.

2. Proof of Theorem 1.1

Recall our setting: L0 is a singular hypersurface of the n-dimensional compact
complex algebraic manifold X, and we fix a Whitney stratification of L0; we as-
sume that L0 is the singular member of a pencil L of hypersurfaces with nonsin-
gular generic member Lt , and (if necessary) we refine the stratification of L0 so
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that the base locus of L (i.e., BL = L0 ∩ Lt) is a union of strata; call the new
stratification S. The idea of the proof is to lift all the computations at the level of
the incidence variety I of L. More precisely, by using the incidence variety I of
the pencil (see (1.5) for the definition) we construct a 1-parameter family, denoted
{LI

t }, of compact complex algebraic manifolds degenerating onto the singular va-
rietyLI

0 .We denote byp the projection map onto a disk( ⊂ C (soLI
0 = p−1(0)),

and we observe that the domain of p is locally a complete intersection of pure di-
mension n. Furthermore, we note (as in Section 1) that the fibers LI

t (resp., LI
0) of

this family are in fact isomorphic to the generic member Lt (resp., singular mem-
berL0) of the given pencil L. To simplify the exposition, in what follows we omit
the index I when working on the incidence variety.

Consider the nearby cycles ψpQI and the vanishing cycles φpQI associated to
the 1-parameter family, and note that the following identifications hold:

Hj(Mx; Q) = Hj(ψpQI)x , H̃j(Mx; Q) = Hj(φpQI)x. (2.1)

Here Mx denotes the Milnor fiber of p at x ∈ L0 in the incidence variety I of
the pencil, and H∗(·)x denotes the stalk cohomology at x (we assume that the
vanishing/nearby sheaf complex is constructible with respect to the chosen strat-
ification). In particular, these groups inherit canonical mixed Hodge structures
because the nearby and vanishing cycles lift to Saito’s category of mixed Hodge
modules (cf. [Sa2] or see [N1; N2]).

There is a long exact sequence of mixed Hodge structures (see e.g. [N1; N2]
or use that the nearby and vanishing cycles lift to the category of mixed Hodge
modules):

· · · → Hj(L0; Q)→ Hj(L0;ψpQ)→ Hj(L0;φpQ)→ · · · , (2.2)

with Hj(L0;ψpQ) carrying the limit mixed Hodge structure defined on the co-
homology of the canonical fiber L∞ of the 1-parameter degeneration p (see e.g.
[PeSt, Sec. 11.2]) and where H∗ denotes the hypercohomology groups of the cor-
responding complex of sheaves. The existence of the limit mixed Hodge structure
is also a consequence of Saito’s theory, since

Hj(L0;ψpQ) = rat(Hj(k∗ψHp QH
I [1])) (2.3)

for k : I → pt the constant map. Moreover, a consequence of the definition of
the limit mixed Hodge structure is that

dimC F
pHj(L∞; C) = dimC F

pHj(Lt ; C) (2.4)

(cf. [PeSt, Cor. 11.25]), where Lt is the generic fiber of the family (and of p).
Therefore,

χy(L∞) := χy([H •(L0;ψpQ)]) = χy(Lt ). (2.5)

The rest of the proof follows from Lemmas 2.1, 2.2, and 2.3.

Lemma 2.1 (Additivity of the χcy-polynomial). Let S be the set of components
of strata of an algebraic Whitney stratification of the complex algebraic variety
Z. Then, for any bounded complex of mixed Hodge modules M• ∈DbMHM(Z)
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such that the underlying rational complex rat(M•) is constructible with respect
to S, we have

χy([H •
c(Z; M•)]) =

∑
S∈S

χy([H •
c(S; M•)]). (2.6)

Proof. See, for example, [CLMSh2, Cor. 3].

Lemma 2.2 (Trivial monodromy). In the notation of Lemma 2.1, let F • denote
the rational constructible complex associated to M•. Assume, moreover, that the
local systems Hj(F •)|S are constant on S for each j ∈ Z (e.g., π1(S) = 0). Then

χy([H •
c(S; F •)]) = χcy(S) · χy([F •

x ]), (2.7)

where [F •
x ] := [i∗xF •] = [H•(F •)x] ∈K0(MHS) is the complex of mixed Hodge

structures induced by the pullback of M• over the point x ∈ S under the inclusion
ix : {x} ↪→ S.

Proof. See, for example, [CLMSh2, Prop. 3]. For the case of coefficients in geo-
metric variations, see [DiLe, Thm. 6.1].

If each local system Hj(F •)|S has a finite-order monodromy and is the restriction
of a local system defined on a compactification of the stratum, then by our next
lemma one has a similar multiplicative formula.

Lemma 2.3 (Finite order monodromy extending to a compactification). Let S
be a connected complex algebraic manifold of dimension n, and let V be a local
system on S underlying an admissible variation of mixed Hodge structures with
quasi-unipotent monodromy at infinity. Assume that the monodromy representa-
tion of V is of finite order and that V extends as a local system to some ( possibly
singular ) compactification S̄ of S. Then the twisted Hodge polynomial

χcy(S; V ) := χy([H ∗
c (S; V )])

is computed by the multiplicative formula

χcy(S; V ) = χcy(S) · χy([Vx]) (2.8)

for [Vx] ∈K0(MHS) the class of the fiber of V at some point x ∈ S.
Proof. We begin by remarking that an easy consequence of Saito’s theory of mixed
Hodge modules [Sa2] is that the groups H i

c(S; V ) carry canonical mixed Hodge
structures. LetW be a resolution of singularities of S̄, which is an isomorphism
over S, such that D := W \ S is a simple normal crossing divisor. Denote by V̄
the pullback toW of the extension of V on S̄.

Now observe that the local system V̄ underlies an admissible variation of mixed
Hodge structures onW. Indeed, since both S andW are smooth, if j : S ↪→ W

is the inclusion map then the intermediate extension (cf. [BBeD]) j!∗(V [n]) of V
from S toW is given by

j!∗(V [n]) = ICW(V ) � ICW(V̄ ) � ICW ⊗ V̄ � Q[n] ⊗ V̄ � V̄ [n], (2.9)
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where IC denotes an intersection cohomology sheaf complex. This yields the
identification

V̄ = j!∗V. (2.10)

In addition, for VH the smooth mixed Hodge module on S defined by V (cf.
[Sa2]), the isomorphisms in (2.9) can be lifted to the level of algebraic mixed
Hodge modules. Hence j!∗VH [n] is a smooth mixed Hodge module onW and so
V̄ = rat(j!∗VH ) underlies an admissible variation of mixed Hodge structures.

By the additivity of the χcy-polynomial, we clearly have

χcy(S; V ) = χy(W ; V̄ )− χy(D; V̄|D); (2.11)

here, by the inclusion–exclusion principle,

χy(D; V̄|D) =
∑

i0<···<ik
(−1)kχy(Di0 ∩ · · · ∩Dik ; V̄|Di0 ∩···∩Dik ) (2.12)

for Di the irreducible components of the divisor D. Of course, identities similar
to (2.11) and (2.12) hold for the usual Hodge polynomials with trivial coefficients
(corresponding to the constant variation Q). Since D is a simple normal crossing
divisor onW, it follows that the intersections of its components are algebraic sub-
manifolds. So, in order to prove (2.8), it suffices to show the following: If X is a
compact complex algebraic manifold and if V is an admissible variation of mixed
Hodge structure on X with finite order monodromy, then

χy(X; V ) = χy(X) · χy([Vx]). (2.13)

This claim can be proved by using theAtiyah–Meyer-type results from [CLMSh2].
Indeed, if

χy(V ) :=
∑
p

[GrpF (V ⊗Q OX)] · (−y)p ∈K 0(X)[y, y−1]

is theK-theory χy-characteristic of V (with F • the corresponding filtration on the
flat bundle V ⊗Q OX), then by [CLMSh2] we have

χy(X; V ) =
∫

[X]
ch∗(χy(V )) ∪ T̃ ∗

y (TX), (2.14)

where T̃ ∗
y (TX) is the unnormalized Hirzebruch class of (the tangent bundle of )X

that appears in the generalized Hirzebruch–Riemann–Roch theorem [H]. Recall
that in this case

χy(X) =
∫

[X]
T̃ ∗
y (TX).

The claim in (2.13) follows if we can show that the bundles GrpF (V ⊗Q OX), p ∈ Z ,
are flat. Because flatness is a local property, it is enough that we check for it on a
finite cover. For this we make use of the finite monodromy assumption. Indeed,
there is a finite cover p : X ′ → X on which the pullback of the local system V be-
comes constant. By rigidity, the pullback variation underlying this local system is
constant; hence the Hodge filtration (and its graded pieces) for the associated flat
bundle p∗V ⊗Q OX ′ is by trivial bundles. Since these are all pullbacks of the cor-
responding bundles from X, the claim follows.
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Remark 2.4. Our methods for proving Theorem 1.1 (e.g., our use of the limit
mixed Hodge structure and of Atiyah–Meyer-type formulas) cannot be used to
consider more general Hodge-theoretic invariants such as the Hodge–Deligne E-
polynomial, which also takes into account the weight filtrations.

An important reformulation of Theorem1.1 is the following generalization of some
results of [CLMSh2]. It explicitly compares the Hodge polynomials of the singu-
lar and the generic fiber in a pencil of hypersurfaces (cf. the Parusiński–Pragacz
formula [PPr1] in the case of Euler characteristics).

Theorem 2.5. With assumptions and notation as in Theorem 1.1, we obtain the
following relation between the Hodge polynomials of L0 and of Lt :

χy(L0) = χy(Lt )−
∑
S

χcy(S; M̃(L0,pL)) (2.15)

for M̃(L0,pL) := φHp QI[1] the complex of mixed Hodge modules corresponding
to Deligne’s constructible complex of vanishing cycles on the incidence variety I.
Here the summation runs over only singular strata—that is, over strata S ∈ S such
that dim(S) < dim(L0).

In particular : if for any S ∈ S the variations of mixed Hodge structures
Hi(M̃(L0,pL))|S , i ∈ Z , are constant (e.g., π1(S) = 0) or have finite-order
monodromy representations that extend to the closure S̄ of the stratum, then

χy(L0) = χy(Lt )−
∑
S

χcy(S) · χy(H̃ •(MS; Q)). (2.16)

The corresponding Euler characteristic formula (i.e., for y = −1) holds without
any restrictions on the monodromy along the singular strata of L0.

Proof. The underlying rational constructible complex of sheaves for M̃(L0,pL)

is the complex φpQ of the vanishing cycles associated with the 1-parameter fam-
ily {Lt } on the incidence variety. It is supported only on the singular locus of the
singular fiber L0.

The identity in (2.15) follows from the functoriality of the χy-genus, the fact
that the long exact sequence (2.2) is a sequence of mixed Hodge structures, and
the additivity of the χcy-genus of Lemma 2.1. Under the trivial (resp., finite-order)
monodromy assumption, Lemma 2.2 (resp., Lemma 2.3) and the identification in
(2.1) yield (2.16).

Remark 2.6. We wish to emphasize that formulas (1.8) and (2.16), which were
obtained in the case of simple monodromy situations at each stratum, admit re-
formulations expressed entirely in terms of the Hodge polynomials of closures of
strata in the singular fiber of the pencil. This makes it easier to identify each of
these formulas as the degree-0 part of a hypothetical corresponding characteristic
class formula for the motivic Hirzebruch classes of [BrSY]; similar considera-
tions were employed by Parusiński and Pragacz in [PPr1; PPr2]. Indeed, for a
given stratum S of a Whitney stratification as in Theorem 1.1, we may inductively
define
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χ̂y(S̄ ) := χy(S̄ )−
∑
P<S

χ̂y(P̄ ), (2.17)

where the summation is over (boundary) strata P ⊂ S̄ \ S. By the additivity of
the χcy-genus and since L0 is compact, it follows easily that we actually have

χ̂y(S̄ ) = χcy(S) = χy(S̄ )− χy(S̄ \ S). (2.18)

Hence (1.8), for example, can be now rewritten as

χy(Lt ) =
∑
S

χ̂y(S̄ ) · χy(MS), (2.19)

and similarly for (2.16).

3. Examples and Applications

We conclude this paper with another example and further remarks on the applica-
bility of our results.

3.1. Quadrics

Consider a quadricQ0 given by the equation

fr(x0, . . . , xn) = 0, (3.1)

where fr is a quadratic form of rank r. Then the singular locus Sing(Q0) is a linear
space of dimension n− r.

Perhaps the easiest way to calculate the Hodge polynomial χy(Q0) is to use the
fibration of its resolution Q̃0, which is the proper preimage ofQ0 in the blowup of
P n at Sing(Q0) ⊂ P n. More precisely, we have the following fibration with fiber
P n−r+1 and base a nonsingular quadricQr−2

ns of dimension r − 2:

Q̃0
P n−r+1−−−−→ Qr−2

ns . (3.2)

The exceptional locus of the resolution (3.2) is aQr−2
ns -fibration over P n−r. Hence:

χy(Q0) = χy(Qr−2
ns )(−1)n−r+1y n−r+1 + χy(P n−r )

=
( i=r−2∑

i=0

(−1)iy i + (1 + (−1)r )

2
(−y)r−2

)
(−1)n−r+1y n−r+1

+
i=n−r∑
i=0

(−1)iy i.

This calculation can also be performed using our results from Theorem 1.1 or
Theorem 2.5 with strata of the stratification that is suitable for applying Theo-
rem 1.1 to the pencil generated byQ0 and the generic quadricQ1 consisting of

S1 = Q0 − Sing(Q0)−Q1 ∩Q0,

S2 = Sing(Q0)− Sing(Q0) ∩Q1, (3.3)

S3 = Sing(Q0) ∩Q1.
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(Note that S3 is a generic quadric in P n−r.) We leave the details of this calculation
as an exercise for the interested reader.

3.2. Miscellanea

Similar calculations can be done for other singular hypersurfaces of low degree.
For example, using Theorem 2.5 and the classification of cubic surfaces with 1-
dimensional singular locus given in [BruW], one can obtain χy-polynomials of all
singular cubic surfaces in P3 with nonisolated singularities. The possibilities con-
sist of (i) irreducible surfaces that are cones over nodal and cuspidal plane cubics
and (ii) surfaces given by

F : x 2
0 x2 + x 2

1 x3, G : x 2
0 x2 + x0x1x3 + x3

1 . (3.4)

For a cubic in any dimension, the singular locus of codimension 1 is a linear
space becuase a transversal plane section is an irreducible cubic and so has only
one singularity. It is not difficult to solve explicit formulas for the χy-polynomials
in this case as well.

We remark that the images of generic projectionsXn → P n+1 provide an inter-
esting class of hypersurfaces with codimension-1 singular locus. The numerology
of singularities is given in [K]. Our Theorem 1.1 can be used to compute Hodge-
theoretical invariants of strata.

Finally, note that the relation between the Euler characteristic of a singular curve
in P2 and its smoothing places an important restriction on the number of singu-
lar points of a curve. Similarly, Theorem 1.1 yields restrictions on data of singular
strata in higher dimensions.
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