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Abstract. The present work is a user’s guide to the results of [7], where a descrip-
tion of the space of characters of a quasi-projective variety was given in terms of
global quotient orbifold pencils.

Below we consider the case of plane curve complements. In particular, an infi-
nite family of curves exhibiting characters of any torsion and depth 3 will be dis-
cussed. Also, in the context of line arrangements, it will be shown how geometric
tools, such as the existence of orbifold pencils, can replace the group theoretical
computations via fundamental groups when studying characters of finite order,
specially order two. Finally, we revisit an Alexander-equivalent Zariski pair con-
sidered in the literature and show how the existence of such pencils distinguishes
both curves.

1 Introduction

Let X be the complement of a reduced (possibly reducible) projective
curve D in the complex projective plane P2. The space of characters of
the fundamental group Char(X ) := Hom(π1(X ), C∗) has an interesting
stratification by subspaces, given by the cohomology of the rank one local
system associated with the character:

V̊k(X ) := {χ ∈ Char(X ) | dim H 1(X ,χ) = k}. (1.1)

The closures Vk(X ) of these jumping loci in Char(X ) were called in [23]
the characteristic varieties of X . More precisely, the characteristic va-
rieties associated to X were defined in [23] as the zero sets of Fitting
ideals of the C[π1/π

′
1]-module which is the complexification π ′

1/π
′′
1 ⊗ C

of the abelianized commutator of the fundamental group π1(X ) (cf. Sec-
tion 2 for more details). In particular the characteristic varieties (un-
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like the jumping sets of the cohomology dimension greater than one) de-
pend only on the fundamental group. Fox calculus provides an effective
method for calculating the characteristic varieties if a presentation of the
fundamental group by generators and relators is known.

For each character χ ∈ Char(X ) the depth was defined in [23] as

d(χ) := dim H 1(X ,χ) (1.2)

so that the strata (1.1) are the sets on which d(χ) is constant.
In [7], we describe a geometric interpretation of the depth by relating

it to the pencils on X i.e. holomorphic maps X → C, dimC = 1 having
multiple fibers. In fact the discussion in [7] is in a more general context
in which X is a smooth quasi-projective variety. 1 The viewpoint of [7]
(and [8]) is that such a pencil can be considered as a map in the category
of orbifolds. The orbifold structure of the curve C is matched by the
structure of multiple fibers of the pencil. The main result of [7] can be
stated as follows:

Theorem 1.1. Let X be a quasi-projective manifold and let χ be a char-
acter of π1(X ).

(1) Assume that there are n marked orbifold pencils i.e. maps fi : X →
C (i = 1, ...n) where C is a fixed orbicurve, ρ ∈ Charorb(C) and χ =
f ∗
i (ρ). If these pencils are strongly independent, then d(χ) ≥ nd(ρ).

(2) If χ is a character of order two and weight two, then there are ex-
actly d(χ) strongly independent orbifold pencils on X whose target is
the global Z2-orbifold C = C2,2. These pencils are marked with the
character ρ of πorb

1 (C2,2) characterized by the condition that ρ is non-
trivial on both standard generators of the latter orbifold fundamental
group.

We refer to Section 2 for all the required definitions, and in particular, the
definition of strongly independent pencils.

According to this result, the orbifold pencils on X whose targets have
an orbifold fundamental group with characters of positive depth, induce
characters in Char(X ) whose depth have the lower bound given in 1.1.
One can compare this statement with previous results on pencils on quasi-
projective manifolds. For example, consider a character χ which belongs

1 Much of the discussion in the first two sections below applies to general quasi-projective varieties
(cf. [7]), but in the present paper we will stay in the hypersurface complement context. As was
noted, the characteristic varieties only depend on the fundamental group, hence, by the Lefschetz-
type theorems it is enough to consider the curve complement class.
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to a positive dimensional component of the characteristic variety. Then
the results in [2] can be applied to such a component to obtain a pencil f :
X → C and a character ρ ∈ Char(C) such that χ = f ∗(ρ). Here C is the
complement in P1 to a finite set containing say d > 2 points. Moreover,
the number of independent pencils in the sense of Section 2 is equal to
one (cf. [7, Lemma 4.15]; note that the depth of ρ ∈ Char(C) is equal to
d − 2). Hence in this case, the inequality in Theorem 1.1 (1) is equivalent
to the shown in [2, Prop.1.7] inequality dimH 1(X ,χ) ≥ dimH 1(C, ρ).

The orbifold structure involved in Theorem 1.1 is essential since the
orbifold pencils described there and considered without the orbifold
structure, are just rational pencils whose target might have trivial funda-
mental group and thus the connection with the jumping loci disappears.

The part (2) asserts a partial converse for characters of order two i.e.
the characters of order two having positive depth are pull-backs of orb-
ifold characters on C2,2 by orbifold pencils. Note that, as shown in [6] for
characters of order 5 on an affine quintic, not all characters on comple-
ments of plane curves can be described as pull-backs of orbifold pencils.

The goal of this paper is to illustrate in detail both parts (1) and (2) of
Theorem 1.1 with examples in which orbifolds are unavoidable. We start
with a section reviewing mainly known results on the cohomology of lo-
cal systems, characteristic varieties, orbifolds, and Zariski pairs making
possible to read the rest of the paper unless one is interested in the proofs
of mentioned results. Then in Section 3, a family of curves is considered
for which the characteristic variety contains isolated characters having
torsion of arbitrary finite order and whose depth is 3. The calculations
illustrate the use of Fox calculus for finding an explicit description of the
characteristic varieties. Next, in the context of line arrangements, exam-
ples of Ceva and augmented Ceva arrangements are considered in Sec-
tion 4. Their characteristic varieties have been studied in the literature
via computer aided calculations based on fundamental group presenta-
tions and Fox calculus. Here we present an alternative way to study such
varieties independent of the fundamental group illustrating the geometric
approach of Theorem 1.1. Finally, in Section 5 we discuss a Zariski pair
of sextic curves whose Alexander polynomials coincide. We determine
this Zariski pair by the existence of orbifold pencils.
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2 Preliminaries
In this section the necessary definitions used in Theorem 1.1 will be re-
viewed together with material on the characteristic varieties and Zariski
pairs with the aim to keep the discussion of the upcoming sections in a
reasonably self-contained manner.

2.1 Characteristic varieties

Characteristic varieties appeared first in the literature in the context of
algebraic curves in [22]. They can be defined as follows.

Let D := D1 ∪ · · · ∪ Dr be the decomposition of a reduced curve D
into irreducible components and let di := degDi denote the degrees of
the components Di . Let τ := gcd(d1, . . . , dr ) and X = P2 \ D. Then
(cf. [23])

H1(X ; Z) =
〈

r⊕

i=1

γiZ
〉
/⟨d1γ1 + · · · + drγr ⟩ ≈ Zr−1 ⊕ Z/τZ, (2.1)

where γi is the homology class of a meridian of Di (i.e. the boundary of
small disk transversal to Di at a smooth point).

Let ab : G := π1(X ) → H1(X ; Z) be epimorphism of abelianiza-
tion. The kernel G ′ of ab, i.e. the commutator of G, defines the universal
Abelian covering of X , say Xab

π→ X , whose group of deck transforma-
tions is H1(X ; Z) = G/G ′. This group of deck transformations, since it
acts on Xab, also acts on H1(Xab; Z) = G ′/G ′′. 2 This allows to endow
MD,ab := H1(Xab; Z)⊗C (as well as M̃D,ab := H1(Xab,π

−1(∗); Z)⊗C)
with a structure of &D-module where

&D := C[G/G ′] ≈ C[t± 1
1 , . . . , t± 1

r ]/(td1
1 · . . . · tdr

r − 1). (2.2)

Note that Spec&D can be identified with the commutative affine alge-
braic group Char π1(X) having τ tori (C∗)r−1 as connected components.
Indeed, the elements of &D can be viewed as the functions on the group
of characters of G.

Since G is a finitely generated group, the module MD,ab (respectively
M̃D,ab) is a finitely generated &D-module: 3 in fact one can construct

2 This action corresponds to the action of G/G′ on G′/G′′ by conjugation.

3 In most interesting examples with non-cyclic G/G′ the group G′/G′′ is infinitely generated.
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a presentation of MD,ab (respectively M̃D,ab) with the number of &D-
generators at most

(n
2

)
(respectively n), where n is the number of gen-

erators of G. If G/G ′ is not cyclic (i.e. r > 2 or r ≥ 2 and τ > 1)
then &D is not a Principal Ideal Domain. One way to approach the &D-
module structure of both MD,ab and M̃D,ab is to study their Fitting ideals
(cf. [17]).

Let us briefly recall the relevant definitions. Let R be a commutative
Noetherian ring with unity and M a finitely generated R-module. Choose
a finite free presentation for M , say φ : Rm → Rn , where M = coker φ.
The homomorphism φ has an associated (n × m) matrix Aφ with coeffi-
cients in R such that φ(x) = Aφx (the vectors below are represented as
the column matrices).

Definition 2.1. The k-th Fitting ideal Fk(M) of M is defined as the ideal
generated by

⎧
⎪⎨

⎪⎩

0 if k ≤ max{0, n − m}
1 if k > n
minors of Aφ of order (n − k + 1) otherwise.

It will be denoted Fk if no ambiguity seems likely to arise.

Definition 2.2. [22] With the above notations the k-th characteristic va-
riety (k > 0) of X = P2 \ D can be defined as the zero-set of the ideal
Fk(MD,ab)

Vk(X ) := Z(Fk(MD,ab)) ⊂ Spec &D = Char(P2 \ D).

Then V̊k(X ) is the set of characters in Vk(X ) which do not belong to
Vj (X ) for j > k. If a character χ belongs to V̊k(X ) then k is called the
depth of χ and denoted by d(χ) (cf. [23]).

An alternative notation for V̊k(P2 \ D) (respectively Vk(P2 \ D)) is
V̊k,P(D) (respectively Vk,P(D)).

Remark 2.3. Essentially without loss of generality one can consider
only the cases when the quotient by an ideal in the definition of the ring
&D in (2.2) is absent i.e. consider only the modules of the ring of Laurent
polynomials. Indeed, consider a line L not contained in D and in general
position (i.e. which does not contain singularities of D and is transver-
sal to it). Then &L∪C is isomorphic to C[t± 1

1 , . . . , t± 1
r ]. Moreover, since

we assume transversality L ! D, then the &L∪D-module ML∪D,ab does
not depend on L (see for instance [9, Proposition 1.16]). The charac-
teristic variety Vk,P(L ∪ D) determines Vk,P(D) (cf. [9, 23]). By abuse
of language it is called the k-th affine characteristic variety and denoted
simply by Vk(D).
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One can also use the module M̃D,ab to obtain the characteristic varieties
of D. One has the following connection

Vk(X ) \ 1 = Z(Fk+1(M̃D,ab)) \ 1,

where 1 denotes the trivial character.
Remark 2.4. The depth of a character appears in explicit formulas for
the first Betti number of cyclic and abelian unbranched and branched
covering spaces (cf. [20, 22, 27])
Remark 2.5. One can also define the k-th characteristic variety Vk(G) of
any finitely generated group G (such that the abelianization G/G ′ ̸= 0
or, more generally, for a surjection G → A where A is an abelian
group) as the k-th characteristic variety of the &G = C[G/G ′]-module
MG = H1(XG,ab) obtained by considering the CW-complex XG associ-
ated with a presentation of G and its universal abelian covering space
XG,ab (respectively considering the covering space of XG associated with
the kernel of the map to A). Such invariant is independent of the finite
presentation of G (respectively depends only on G → A). This con-
struction will be applied below to the orbifold fundamental groups of one
dimensional orbifolds.
Remark 2.6. Note that one has:

• Vk(D) = Supp&D ∧i (H1(Xab; C)),
• Spec &L∪D = Tr = (C∗)r , for the affine case, and
• Spec &D = TD = {ωi }τ−1

i=0 × (C∗)r−1 = V (td1
1 · . . . · tdr

r − 1) ⊂ Tr ,
where ω is a τ -th primitive root of unity for the curves in projective
plane.

Note also that in the case of a finitely presented group G such that G/G ′=
Zr ⊕ Z/τ1Z ⊕ · · · ⊕ Z/τsZ one has

Spec &G =TG ={(ωi1
1 , . . . ,ωis

s )|ik =0, . . . , τk − 1, k =1, . . . , s}× (C∗)r,
(2.3)

where as above &G = C[G/G ′] and ωi is a τi -th primitive root of unity.
Let X be a smooth quasi-projective variety such that for its smooth

compactification X one has H 1(X , C) = 0. This of course includes the
cases X = P2 \ D. The structure of Vk(X ) is given by the following
fundamental result.

Theorem 2.7 ([2]). Each Vk(X ) is a finite union of cosets of subgroups
of Char(X ). Moreover, for each irreducible component W of Vk(X ) hav-
ing a positive dimension there is a pencil f : X → C, where C is a
P1 with deleted points, and a torsion character χ ∈ Vk(X ) such that
W = χ f ∗H 1(C, C∗).
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2.2 Essential coordinate components

Let D′ ! D be curve whose components form a subset of the set of
components of D. There is a natural epimorphism π1(P2 \D) " π1(P2 \
D′) induced by the inclusion. This surjection induces a natural inclusion
Spec &D′ ⊂ Spec &D. With identification of the generators of &D with
components of D as above, this embedding is obtained by assigning 1
to the coordinates corresponding to those irreducible components of D
which are not in D′ (cf. [23]).

The embedding Spec &D′ ⊂Spec &D induces the inclusion Char(D′)⊂
Char(D) (cf. [23]); any irreducible component of Vk(D′) is the intersec-
tion of an irreducible component of Vk(D) with &D′ .

Definition 2.8. Irreducible components of Vk(D) contained in &D′ for
some curve D′ ⊂ D are called coordinate components of Vk(D). If an
irreducible coordinate component V of Vk(D′) is also an irreducible com-
ponent of Vk(D), then V is called a non-essential coordinate component,
otherwise it is called an essential coordinate component.

See [4] for examples. A detailed discussion of more examples is done
in Sections 3, 4, and 5.

As shown in [23, Lemma 1.4.3] (see also [15, Proposition 3.12]), es-
sential coordinate components must be zero dimensional.

2.3 Alexander invariant

In Section 2.1 the characteristic varieties of a finitely presented group G
are defined as the zeroes of the Fitting ideals of the module M := G ′/G ′′

over G/G ′. This module is referred to in the literature as the Alexander
invariant of G. Note, however, that this is not the module represented by
the matrix of Fox derivatives called the Alexander module of G.

Our purpose in this section is to briefly describe the Alexander invari-
ant for fundamental groups of complements of plane curves and give a
method to obtain a presentation of such a module from a presentation of
G. In order to do so, consider G := π1(P2 \ D) the fundamental group
of the curve D. Without loss of generality one might assume that

(Z1) G/G ′is a free group of rank r generated by meridians γ1, γ2, ..., γr ,

then one has the following

Lemma 2.9 ([5, Proposition 2.3]). Any group G as above satisfying
(Z1) admits a presentation

⟨x1, ..., xr , y1, ..., ys : R1(x, y) = ... = Rm(x, y) = 1⟩ , (2.4)
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where x := {x1, ..., xr } and y := {y1, ..., ys} satisfying:

(Z2) ab(xi)=γi , ab(y j )=0, and Rk can be written in terms of y and

xk[xi , x j ]x−1
k , where [xi , x j ] is the commutator of xi and x j .

A presentation satisfying (Z2) is called a Zariski presentation of G.
From now on we will assume G admits a Zariski presentation as in

(2.4). In order to describe elements of the module M it is sometimes con-
venient to see Z[G/G ′] as the ring of Laurent polynomials in r variables
Z[t± 1

1 , ..., t± 1
r ], where ti represents the action induced by γi on M as a

multiplicative action, that is,

ti g
M= xi gx−1

i (2.5)

for any g ∈ G ′.

Remark 2.10.

1. One of course needs to convince oneself that action (2.5) is inde-
pendent, up to an element of G ′′, of the representative xi as long as
ab(xi) = γi . This is an easy exercise.

2. We denote by “M=” equalities that are valid in M .

Example 2.11. Note that

[xy, z] M= [x, z] + tx [y, z], (2.6)

where x , y, and z are elements of G and tx denotes ab(x) in the multi-
plicative group. This is a consequence of the following

[xy, z]= xyzy−1x−1z−1 = x(yzy−1z−1)x−1xzx−1z−1 M= tx [y, z]+[x, z].

As a useful application of (2.6) one can check that

[x y, z] M= [x, z] + (tz − 1)[y, x], (2.7)

where x y := yxy−1.

Note that xi j := [xi , x j ], 1 ≤ i < j ≤ r and yk , k = 1, ..., s are
elements in G ′, since ab(xi j ) = ab(yk) = 0. Therefore

xk[xi , x j ]x−1
k

M= tk xi, j (2.8)

(see (2.5) and (Z2)). Moreover,

Proposition 2.12. For a group G as above, the module M is generated
by xi, j := {xi j }1≤i< j≤r and y := {yk}k=1,...,s .
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Example 2.13. The module M is not freely generated by the set men-
tioned above, for instance, note that according to (Z2) and (2.8) any re-
lation in G, say Ri(x, y) = 1 (as in (2.4)) can be written (in M) in terms
of {xi j } and y as Ri(xi j , y). In other words, Ri(xi j , y) = 0 is a relation
in M .
Example 2.14. Even if G were to be the free group Fr , M would not be
freely generated by {xi j } and y. In fact,

J (x, y, z) := (tx − 1)[y, z] + (ty − 1)[z, x] + (tz − 1)[x, y] M= 0 (2.9)

for any x , y, z in G. Using Example 2.11 repeatedly, one can check the
following

[xy, z] =

⎧
⎪⎨

⎪⎩

M= [x, z] + tx [y, z]
= [yx−1

x, z] M= [yx−1
, z] + ty[x, z]

M= [y, z] − (tz − 1)[x, y] + ty[x, z],
(2.10)

where ab = bab−1. The difference between both equalities results in
J (x, y, z) = 0. Such relations will be referred to as Jacobian relations
of M .

A combination of Examples 2.13 and 2.14 gives in fact a presentation
of M .

Proposition 2.15 ([9, Proposition 2.39]). The set of relations R1,...,Rm

as described in Example 2.13 and J (i, j, k) = J (xi , x j , xk) as described
in Example 2.14 is a complete system of relations for M.

Example 2.16. Let G = Fr be the free group in r generators, for in-
stance, the fundamental group of the complement to the union of r + 1
concurrent lines. According to Propositions 2.12 and 2.15, M has a pre-
sentation matrix Ar of size

(r
3

)
×
(r

2

)
whose columns correspond to the

generators xi j = [xi , x j ] and whose rows correspond to the coefficients
of the Jacobian relations J (i, j, k), 1 ≤ i < j < k ≤ r . For instance, if
r = 4

A4 :=

⎡

⎢⎢⎣

(t3 − 1) −(t2 − 1) 0 (t1 − 1) 0 0
(t4 − 1) 0 −(t2 − 1) 0 (t1 − 1) 0

0 (t4 − 1) −(t3 − 1) 0 0 (t1 − 1)
0 0 0 (t4 − 1) −(t3 − 1) (t2 − 1)

⎤

⎥⎥⎦ .

Such matrices have rank
(r−1

2

)
if ti ̸= 1 for all i = 1, ..., r , and hence

the depth of a non-coordinate character is r − 1. On the other hand, for
the trivial character 1, the matrix An has rank 0 and hence 1 has depth(r

2

)
(see Definitions 2.1 and 2.2 for details on the connection between the

rank of An and the depth of a character).
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2.4 Orbicurves

As a general reference for orbifolds and orbifold fundamental groups one
can use [1], see also [19, 28]. A brief description of what will be used
here follows.

Definition 2.17. An orbicurve is a complex orbifold of dimension equal
to one. An orbicurve C is called a global quotient if there exists a finite
group G acting effectively on a Riemann surface C such that C is the
quotient of C by G with the orbifold structure given by the stabilizers of
the G-action on C .

We may think of C as a Riemann surface with a finite number of points
R := {P1, ..., Ps} ⊂ C labeled with positive integers {m(P1), ..., m(Ps)}
(for global quotients those are the orders of stabilizers of action of G on
C). A neighborhood of a point P ∈ C with m(P) > 0 is the quotient of
a disk (centered at P) by an action of the cyclic group of order m(P) (a
rotation).

A small loop around P is considered to be trivial in C if its lifting
in the above quotient map bounds a disk. Following this idea, orbifold
fundamental groups can be defined as follows.

Definition 2.18. (cf. [1,19,28]) Consider an orbifold C as above, then the
orbifold fundamental group of C is

π orb
1 (C) := π1(C \ {P1, . . . , Ps})/⟨µm j

j = 1⟩

where µ j is a meridian of Pj and m j := m(Pj ).

According to Remark 2.5 the Definition 2.2 can be applied to the case
of finitely generated groups. In particular one defines the k-th character-
istic variety V orb

k (C) of an orbicurve C as Vk(π
orb
1 (C)). Therefore also the

concepts of a character χ on C and its depth are well defined.

Example 2.19. Let us denote by P1
m1,...,ms ,k∞ an orbicurve for which the

underlying Riemann surface is P1 with k points removed and s labeled
points with labels m1, ..., ms . If k ≥1 (respectively k ≥2) we also use the
notation Cm1,...,ms ,(k−1)∞ (respectively C∗

m1,...,ms ,(k−2)∞) for P1
m1,...,ms ,k∞.

We suppress specification of actual points on P1. Note that

πorb
1 (P1

m1,...,ms ,k∞) =
{

Zm1(µ1) ∗ ... ∗ Zms (µs) ∗ Z ∗ k−1. . . ∗ Z if k > 0
Zm1(µ1) ∗ ... ∗ Zms (µs)/

∏
µi if k = 0

(here Zm(µ) denotes a cyclic group of order m with a generator µ). Note
that a global quotient orbifold of P1 \ {nk points} by the cyclic action of
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order n on P1 that fixes two points, that is, [x : y] 3→ [ξnx : y] (which
fixes [0 : 1] and [1 : 0]) is P1

n,n,k∞.
Interesting examples of elliptic global quotients occur for P1

2,3,6,k∞,
P1

3,3,3,k∞, and P1
2,4,4,k∞, which are global orbifolds of elliptic curves E \

{6k points}, E \ {3k points}, and E \ {4k points} respectively, see [11]
for a study of the relationship between these orbifolds (k = 0) and the
depth of characters of fundamental groups of the complements to plane
singular curves.

Definition 2.20. A marking on an orbicurve C (respectively a quasipro-
jective variety X ) is a non-trivial character of its orbifold fundamental
group (respectively its fundamental group) of positive depth k, that is, an
element of Charorb(C) := Hom(πorb

1 (C), C∗) (respectively Char(X ) :=
Hom(π1(X ), C∗)) which is in V orb

k (C) (respectively Vk(X )).
A marked orbicurve is a pair (C, ρ), where C is an orbicurve and ρ

is a marking on C. Analogously, one defines a marked quasi-projective
manifold as a pair (X ,χ) consisting of a quasi-projective manifold X
and a marking on it.

A marked orbicurve (C, ρ) is a global quotient if C is a global quo-
tient of C , where C is a branched cover of C associated with the un-
branched cover of C \ {P1, ..., Ps} corresponding to the kernel of π1(C \
{P1, ..., Ps}) → πorb

1 (C)
ρ→ C∗. In other words, the covering space in

Definition 2.17 corresponds to the kernel of ρ.

2.5 Orbifold pencils on quasi-projective manifolds

Definition 2.21. Let X be a quasi-projective variety, C be a quasi-
projective curve, and C an orbicurve which is a global quotient of C .
A global quotient orbifold pencil is a map φ : X → C such that there
exists * : XG → C where XG is a quasi-projective manifold endowed
with an action of the group G making the following diagram commute:

XG
*→ C

↓ ↓
X φ→ C

(2.11)

The vertical arrows in (2.11) are the quotients by the action of G.
If, in addition, (X ,χ) and (C, ρ) are marked, then the global quotient

orbifold pencil φ : X → C called marked if χ = φ∗(ρ). We will refer
to the map of pairs φ : (X ,χ) → (C, ρ) as a marked global quotient
orbifold pencil on (X ,χ) with target (C, ρ).

Definition 2.22. Global quotient orbifold pencils φi : (X ,χ) → (C, ρ),
i = 1, ..., n are called independent if the induced maps *i : XG → C



92 Enrique Artal Bartolo, Jose Ignacio Cogolludo-Agustín and Anatoly Libgober

define Z[G]-independent morphisms of modules

*i ∗ : H1(XG, Z) → H1(C, Z), (2.12)

that is, independent elements of the Z[G]-module HomZ[G](H1(XG, Z),
H1(C, Z)).

In addition, if
⊕

*i ∗ : H1(XG, Z) → H1(C, Z)n is surjective we say
that the pencils φi are strongly independent.

Remark 2.23. Note that if either n = 1 or H1(C, Z) = Z[G], then inde-
pendence is equivalent to strong independence (this is the case for Corol-
lary 2.26(2) and Theorem 1.1(2)).

2.6 Structure of characteristic varieties (revisited)

The following are relevant improvements or additions to Theorem 2.7:

Theorem 2.24 ([8, 24]). The isolated zero-dimensional characters of
Vk(D) are torsion characters of Char(D).

In [15, Theorem 3.9] (see also [16]) there is a description of one-
dimensional components χ f ∗H 1(C, C∗) ⊂ Vk(X ) mentioned in The-
orem 2.7 and most importantly, of the order of χ in terms of multiple
fibers of the rational pencil f .

In [23], an algebraic method is described to detect the irregularity of
abelian covers of P2 ramified along D. This method is very useful to
compute non-coordinate components of Vk(D) independently of a pre-
sentation of the fundamental group of the complement X of D.

Theorem 1.1 (see [7]) has [15, Theorem 3.9] as a consequence, but
uses the point of view of orbifold pencils. Using this result also the zero-
dimensional components can be detected (in particular essential coordi-
nate components) and in some cases characterized (see Section 4).

Another improvement of Theorem 2.7 was given in [8] were the point
of view of orbifolds was first introduced as follows:

Theorem 2.25 ([8]). Let X be a smooth quasi-projective variety. Let V
be an irreducible component of Vk(X ). Then one of the two following
statements holds:

(1) There exists an orbicurve C, a surjective orbifold morphism ρ : X →
C and an irreducible component W of V orb

k (C) such that V = ρ∗(W ).
(2) V is an isolated torsion point not of type (1).

One has the following consequences from 1.1 (2) that allows us to char-
acterize certain elements of Vk(D):



93 Characters of fundamental groups

Corollary 2.26. Let (X ,χ) be a marked complement of D. Then possi-
ble targets for marked orbifold pencils are (C, ρ) with C = P1

m1,...,ms ,k∞
(see Example 2.19). Assume that there are n strongly independent marked
orbifold pencils with such a fixed target (C, ρ). Then,

(1) In case C has no orbifold points, that is s = 0, the character χ be-
longs to a positive dimensional component V of Char(X ) containing
the trivial character. In this case, d(χ) = dim V − 1 = n − 2.

(2) In case χ is a character of order two, there is a unique marking on
C = C2,2 and d(χ) is the maximal number of strongly independent
orbifold pencils with target C.

(3) In case χ has torsion 3,4, or 6, there is a unique marking on C =
P1

3,3,3, C = P1
2,4,4, or C = P1

2,3,6 respectively and d(χ) is the maximal
number of strongly independent orbifold pencils with target C.

Part (1) is a direct consequence of Theorem 2.7 and part (3) had already
appeared in the context of Alexander polynomials in [11].

In Section 4 we will describe in detail examples of Corollary 2.26 (2)
for line arrangements.

2.7 Zariski pairs

We will give a very brief introduction to Zariski pairs. For more details
we refer to [9] and the bibliography therein.

Definition 2.27 ([3]). Two plane algebraic curves D and D′ form a Zari-
ski pair if there are homeomorphic tubular neighborhoods of D and D′,
but the pairs (P2,D) and (P2,D) are not homeomorphic.

The first example of a Zariski pair was given by Zariski [33], who
showed that the fundamental group of the complement to an irreducible
sextic (a curve of degree six) with six cusps on a conic is isomorphic
to Z2 ∗ Z3 whereas the fundamental group of any other sextic with six
cusps is Z6. This paved the way for intensive research aimed to under-
stand the connection between the topology of (P2,D) and the position of
the singularities of D (whether algebraically, geometrically, combinatori-
ally...). This research has been often in the direction of a search for finer
invariants of (P2,D).

Characteristic varieties (described above) and the Alexander polyno-
mials (i.e. the one variable version of the characteristic varieties), twisted
polynomials [13], generalized Alexander polynomials [11, 26], dihedral
covers of D ( [32]) among many others are examples of such invariants.

Definition 2.28. If the Alexander polynomials +D(t) and +D′(t) coin-
cide, then we say D and D′ form an Alexander-equivalent Zariski pair.
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In Section 5 we will use Theorem 1.1 to give an alternative proof that
the curves in [4] Alexander-equivalent Zariski pair, without computing
the fundamental group.

3 Examples of characters of depth 3: Fermat Curves

Consider the following family of plane curves:

Fn := { fn := xn
1 + xn

2 − xn
0 = 0},

L1 := {ℓ1 := xn
0 − xn

2 = 0},
L2 := {ℓ2 := xn

0 − xn
2 = 0}.

We will study the characteristic varieties of the quasi-projective mani-
folds Xn := P2 \ Dn , where Dn := Fn ∪ L1 ∪ L2, in light of the results
given in the previous sections, in particular the essential torsion charac-
ters will be considered and their depth will be exhibited as the number of
strictly independent orbifold pencils.

3.1 Fundamental group

Note that Dn is nothing but the preimage by the Kummer cover [x0 :
x1 : x2] κn3→ [xn

0 : xn
1 : xn

2 ] of the following arrangement of three lines in
general position given by the equation

(x0 − x1)(x0 − x2)(x0 − x1 − x2) = 0.

Such a map ramifies along B := {x0x1x2 = 0}. We will compute the
fundamental group of Xn as a quotient of the subgroup Kn of π1(P2 \ L)
associated with the Kummer cover, where

L := {x0x1x2(x0 − x2)(x0 − x1)(x0 − x1 − x2) = 0} (3.1)

is a Ceva arrangement. More precisely, the quotient is obtained as a factor
of Kn by the normal subgroup generated by the meridians of the ramifi-
cation locus κ−1

n (B) in Xn .
The fundamental group of the complement to the Ceva arrangement L

is given by the following presentation of G.

⟨e0,..., e5 : [e1,e2]=[e3,e5,e1]=[e3,e4]=[e5,e2,e4]=e4e3e5e2e1e0 =1⟩
(3.2)

where ei is a meridian of the component appearing in the (i + 1)-th place
in (3.1), [α,β] denotes the commutator αβα−1β−1, and [α,β, δ] denotes
the triple of commutators [αβδ,α], [αβδ,β], and [αβδ, δ] leading to a
triple of relations in (3.2).
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In other to obtain (3.2) one can use the non-generic Zariski-Van Kam-
pen method on Figure 3.1 (see [9, Section 1.4]). The dotted line ℓ rep-
resents a generic line where the meridians e0, ..., e5 are placed (note
that the last relation on (3.2) is the relation in the fundamental group
of ℓ \ (L∩ ℓ) ≈ P1

6∞). The first two relations on (3.2) appear when mov-
ing the generic line around ℓ1. The third and fourth relations come from
moving the generic line around ℓ4.

Figure 3.1. Ceva arrangement.

The fundamental group of the complement to Dn∪B is equal to the kernel
Kn of the epimorphism

G
α→ Zn × Zn

e0 3→ (1, 1)
e1 3→ (1, 0)
e2 3→ (0, 1)
e3 3→ (0, 0)
e4 3→ (0, 0)
e5 3→ (0, 0)

(3.3)

since it is the fundamental group of the abelian cover with covering trans-
formations Zn × Zn . Therefore a presentation of the fundamental group
of the complement to Dn can be obtained by taking a factor of Kn by
the normal subgroup generated by en

0 , en
1 , and en

2 (which are the meridi-
ans to the preimages of the lines x0, x1, and x2 respectively). Using the
Reidemeister-Schreier method (cf. [21]) combined with the triviality of
en

0 , en
1 , and en

2 one obtains the following presentation for Gn := π1(Xn):

Gn = ⟨ e3,i, j , e4,i, j , e5,i, j :

(R1) e3,i+1, j = e−1
5,i, j e3,i, j e5,i, j ,

(R2) e4,i, j+1 = e−1
5,i, j e4,i, j e5,i, j ,

(R3) e5,i+1, j = e−1
5,i, j e

−1
3,i, j e5,i, j e3,i, j e5,i, j ,

(R4) e5,i, j+1 = e−1
5,i, j e

−1
4,i, j e5,i, j e4,i, j e5,i, j ,

(R5) [e3,i, j , e4,i, j ] = 1,

(R6)
∏n−1

k=0 e4,k,ke3,k,ke5,k,k = 1

⟩

(3.4)
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where i, j ∈ Zn and

ek,i, j := ei
1e j

2eke− j
2 e−i

1 , k = 3, 4, 5.

As a brief description of the Reidemeister-Schreier method, we recall
that the generators of Gn are obtained from a set-theoretical section of
α in (3.3) (in our case s : Zn × Zn → G is given by (i, j) 3→ ei

1e j
2) as

follows
s(i, j) ek (α(ek)s(i, j))−1.

Thus the set {ek,i, j } above forms a set of generators of Gn . Finally a
complete set of relations can be obtained by rewriting the relations of G
in (3.2) (and their conjugates by s(i, j)) in terms of the generators of the
subgroup Gn .
Example 3.1. In order to illustrate the rewriting method we will proceed
with the second relation of G in (3.2).

s(i, j)[e1, e2]s(i, j)−1 = ei
1e j

2(e3e4e−1
3 e−1

4 )e− j
2 e−i

1

= (ei
1e j

2e3e− j
2 e−i

1 ) (ei
1e j

2e4e− j
2 e−i

1 ) (ei
1e j

2e−1
3 e− j

2 e−i
1 ) (ei

1e j
2e−1

4 e− j
2 e−i

1 )

= [e3,i, j , e4,i, j ]

3.2 Essential coordinate characteristic varieties

Now we will discuss a presentation of G ′
n/G ′′

n as a module over Gn/G ′
n ,

which will be referred to as MDn ,ab. For details we refer to Section 2.3.
Note that Gn/G ′

n is isomorphic to Z2n and is generated by the cycles γ5,
γ3, j , γ4,i , (i, j ∈ Zn) where γ5 = ab(e5,i, j ), γ3, j = ab(e3,i, j ), and γ4,i =
ab(e4,i, j ) satisfying nγ5 +∑

j γ3, j +∑
i γ4,i = 04. Let t5 (respectively

t3, j , t4,i ) be the generators of Gn/G ′
n viewed as a multiplicative group

corresponding to the additive generators γ5 (respectively γ3, j , γ4,i ). The
characteristic varieties of Gn are contained in

(C∗)2n = Spec C[t± 1
5 , t± 1

3,i , t± 1
4, j ]
/(

tn
5

∏

j

t3, j

∏

i

t4,i − 1
)
.

As generators of MDn ,ab we select commutators of the generators of Gn

as given in (3.2). In order to do so, note that using relations (R1) − (R4)
in (3.4), a presentation of Gn can be given in terms the 2n + 1 generators
e5 := e5,0,0, e3, j := e3,0, j , and e4,i := e4,i,0. Hence, by Proposition 2.12,
MDn ,ab is generated by the

(2n+1
2

)
commutators

{[e5, e3, j ], [e5, e4,i ], [e4,i , e3, j ], [e4,i1, e4,i2], [e3, j1, e3, j2]}i∗, j∗∈Zn , (3.5)

4 Recall that ab is the morphism of abelianization.
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as a C[Z[t± 1
1 , ..., t± 1

4 , t± 1
5 ]]-module. Also, according to Proposition 2.15,

a complete set of relations of MDn ,ab is given by rewriting the following
relations

(M1) [∏n−1
i=0 e5,i, j , e3, j ] = 0

(M2) [∏n−1
i=0 e5,i, j , e4,i ] = 0

(M3) [e5,i, j+1, e3,i, j+1e5,i, j+1]e−1
5,i, j+1 =[e5,i+1, j , e4,i+1, j e5,i+1, j ]e−1

5,i+1, j

(M4)
∏n−1

i=0 e4,i,i e3,i,i e5,i,i = 0
(3.6)

in terms of commutators (3.5) and by the Jacobian relations:

(t3, j − 1)[e5, e4,i ] + (t4,i − 1)[e3, j , e5] + (t5 − 1)[e4,i , e3, j ] = 0,
(t3, j1 − 1)[e5, e3, j2] + (t3, j2 − 1)[e3, j1, e5] + (t5 − 1)[e3, j2, e3, j1] = 0,
(t4,i1 − 1)[e5, e4,i2] + (t4,i2 − 1)[e4,i1, e5] + (t5 − 1)[e4,i2, e4,i1] = 0,
...

(3.7)
In order to rewrite relations (M1) − (M4) one needs to use (3.5) repeat-
edly. In what follows, we will concentrate on the characters of Char(Dn)
contained in the coordinate axes t3, j = t4,i = 1. Computations for the
general case can also be performed, but are more technical and tedious.

Since we are assuming t3, j = t4,i = 1, and t5 ̸= 1, relations in (3.7)
become [e4,i , e3, j ] = [e3, j2, e3, j1] = [e4,i2, e4,i1] = 0 and hence (R5)
in (3.4) become redundant. A straightforward computation gives the fol-
lowing matrix where each line is a relation from (3.6) written in terms of
the commutators {[e5, e3,i ], [e5, e4,i ]}i∈Zn .

An :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φn 0 0 ... 0 0 0 0 0 ... 0 0
0 φn 0 ... 0 0 0 0 0 ... 0 0

.

.

.
.
.
.

0 0 0 ... 0 φn 0 0 0 ... 0 0
0 0 0 ... 0 0 φn 0 0 ... 0 0
0 0 0 ... 0 0 0 φn 0 ... 0 0

.

.

.
.
.
.

0 0 0 ... 0 0 0 0 0 ... 0 φn

1 −1 0 ... 0 0 1 −1 0 ... 0 0
1 −1 0 ... 0 0 0 t −t ... 0 0

.

.

.
.
.
.

1 −1 0 ... 0 0 0 0 0 ... tn−2 −tn−2

1 −1 0 ... 0 0 −tn−1 0 0 ... 0 tn−1

.

.

.
.
.
.

0 0 0 ... tn−2 −tn−2 1 −1 0 ... 0 0
0 0 0 ... tn−2 −tn−2 0 t −t ... 0 0

.

.

.
.
.
.

0 0 0 ... tn−2 −tn−2 0 0 0 ... tn−2 −tn−2

0 0 0 ... tn−2 −tn−2 −tn−1 0 0 ... 0 tn−1

1 t t2 ... tn−2 tn−1 1 t t2 ... tn−2 tn−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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More precisely, the first (respectively second) block of An corresponds to
the n relations given in (M1) (respectively (M2)) of (3.6), φn := tn−1

t−1 ,
and t = t5. The following n blocks of An (between double horizontal
lines) correspond to the n2 relations given in (M3) of (3.6). Note that the
last row of each of these blocks is a consequence of the remaining n − 1
rows. The last block corresponds to the relation given in (M4) of (3.6).

Example 3.2. In order to illustrate An we will show how to rewrite the
first relation for n = 3, that is,

[e5,0, j e5,1, j e5,2, j , e3, j ] M= φn[e5, e3, j ].

Using (2.6) one has

[e5,0, j e5,1, j e5,2, j , e3, j ] M= [e5,0, j , e3, j ] + t[e5,1, j , e3, j ] + t2[e5,0, j , e3, j ].

Therefore, it is enough to show that [e5,i, j , e3, j ] = [e5, e3, j ]. Note that
e5,i, j is a conjugate of e5 (using (R3) and (R4)), hence, by (2.7) one
obtains [e5,i, j , e3, j ] = [e5, e3, j ] (since we are assuming t3, j = 1).

Also note that, performing row operations, one can obtain the follow-
ing equivalent matrix

Bn :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φn 0 0 ... 0 0 0 0 0 ... 0 0
0 φn 0 ... 0 0 0 0 0 ... 0 0

.

.

.
.
.
.

0 0 0 ... 0 φn 0 0 0 ... 0 0
0 0 0 ... 0 0 φn 0 0 ... 0 0
0 0 0 ... 0 0 0 φn 0 ... 0 0

.

.

.
.
.
.

0 0 0 ... 0 0 0 0 0 ... 0 φn
1 −1 0 ... 0 0 1 −1 0 ... 0 0
1 −1 0 ... 0 0 0 t −t ... 0 0

.

.

.
.
.
.

1 −1 0 ... 0 0 0 0 0 ... tn−2 −tn−2

0 t −t ... 0 0 0 0 0 ... tn−2 −tn−2

.

.

.
.
.
.

0 0 0 ... tn−2 −tn−2 0 0 0 ... tn−2 −tn−2

1 t t2 ... tn−2 tn−1 1 t t2 ... tn−2 tn−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Finally, one can write the presentation matrix Bn in terms of the basis

{
[e5,e3,i ] − [e5,e3,i+1], [e5,e3,n−1], [e5,e4,i ]

− [e5,e4,i+1], [e5,e4,n−1]
}

i=0,...,n−2
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resulting in ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φn φn 0 ... 0 0 0 0 0 ... 0 0
0 φn φn ... 0 0 0 0 0 ... 0 0

.

.

.
.
.
.

0 0 0 ... φn φn 0 0 0 ... 0 0
0 0 0 ... 0 φn 0 0 0 ... 0 0
0 0 0 ... 0 0 φn φn 0 ... 0 0
0 0 0 ... 0 0 0 φn φn ... 0 0

.

.

.
.
.
.

0 0 0 ... 0 0 0 0 0 ... φn φn
0 0 0 ... 0 0 0 0 0 ... 0 φn
1 0 0 ... 0 0 1 0 0 ... 0 0
1 0 0 ... 0 0 0 t 0 ... 0 0
1 0 0 ... 0 0 0 0 t2 ... 0 0

.

.

.
.
.
.

1 0 0 ... 0 0 0 0 0 ... tn−2 0
0 t 0 ... 0 0 0 0 0 ... tn−2 0
0 0 t2 ... 0 0 0 0 0 ... tn−2 0

.

.

.
.
.
.

0 0 0 ... tn−2 0 0 0 0 ... tn−2 0
φ1 φ2 φ3 ... φn−1 φn φ1 φ2 φ3 ... φn−1 φn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

One can use the units in the third block to eliminate columns, leaving the
equivalent matrix

⎡

⎢⎢⎢⎢⎢⎣

φn 0 0 ... 0 0 0 0 0 ... 0 0
0 0 0 ... 0 0 0 0 0 ... −φn 0
0 0 0 ... 0 φn 0 0 0 ... 0 0
0 0 0 ... 0 0 0 0 0 ... 0 φn
1 0 0 ... 0 0 1 0 0 ... 0 0
1 0 0 ... 0 0 0 0 0 ... tn−2 0

⎤

⎥⎥⎥⎥⎥⎦
∼=

⎡

⎢⎢⎢⎣

0 −φn 0 0
0 0 −φn 0
φn 0 0 0
0 0 0 φn
0 −1 tn−2 0

⎤

⎥⎥⎥⎦
.

Finally, a last combination of row operations using the units to eliminate
columns results in

⎡

⎢⎢⎢⎢⎣

0 0 −φntn−2 0
0 0 −φn 0
φn 0 0 0
0 0 0 φn
0 −1 tn−2 0

⎤

⎥⎥⎥⎥⎦
∼=

⎡

⎢⎢⎣

0 −φntn−2 0
0 −φn 0
φn 0 0
0 0 φn

⎤

⎥⎥⎦ ∼=

⎡

⎣
0 φn 0
φn 0 0
0 0 φn

⎤

⎦ .

Hence the n − 1 non-trivial torsion characters χ i
n := (ξ i

n, 1, ..., 1), i =
1, ..., n belong to Char(Dn) and have depth 3, that is, χ i

n ∈ V3(Dn).

3.3 Marked orbifold pencils

By Theorem 1.1 (1) we know there are at most three strongly independent
marked orbifold pencils from the marked variety (Xn,χn). Our purpose is
to explicitly show such three strongly independent pencils. Note that

jk : P2 \ (Fn ∪ Lk) → C∗
n = P1

(n,[1:0]),(∞,[0:1]),(∞,[1:1])
[x : y : z] 3→ [ fn : xn

k ], (3.8)
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for j = 1, 2 are two natural orbifold pencils coming from the n-ordinary
points of Fn coming form the triple points of the Ceva arrangement L
which are in B. Consider the marked orbicurve (Cn,n, ρn), where ρn =
(ξn, 1), the first coordinate corresponds to the image of a meridian µ1

around [0 : 1] ∈ P1
(n,[0:1]),(n,[1:0]),(∞,[1:1]) and the second coordinate corre-

sponds to the image of a meridian µ2 around [1 :0] (note that πorb
1 (Cn,n)=

Zn(µ1) ∗ Zn(µ2)).
In order to obtain marked orbifold pencils with target (Cn,n, ρn) one

simply considers the following composition, where ik and jk are inclu-
sions

ψk : Xn
ik

↪→ P2 \ (Fn ∪ Lk)
jk→ P1

(n,[1:0]),(∞,[0:1]),(∞,[1:1])
i

↪→ P1
(n,[0:1]),(n,[1:0]),(∞,[1:1]).

Such pencils are clearly marked global quotient orbifold pencils from
(Xn,χn) to (Cn,n, ρn), where (Cn,n, ρn) is the marked quotient of Cn :=
P1 \ {[ξ j

n : 1]} j∈Zn by the cyclic action [x : y] 3→ [ξnx : y]. The resulting
commutative diagrams are given by

Xn
3k→ Cn

[x0 : x1 : x2 : w] 3→ [w : xk]
↓ π ↓
Xn

ψk→ Cn,n

[x0 : x1 : x2] 3→ [ fn : xn
k ],

(3.9)

k = 1, 2, where Xn is the smooth open surface given by {[x0 : x1 : x2 :
w] ∈ P3 | wn = fn} \ { fnℓ1ℓ2 = 0}.

Note that there is a third quasitoric relation involving all components
of Dn , namely,

fnxn
0 + ℓ1ℓ2 = xn

1 xn
2 (3.10)

and hence a global quotient marked orbifold map

ψ3 : Xn → Cn,n = P1
(n,[0:1]),(n,[1:0]),(∞,[1:1])

[x : y : z] 3→ [− fnxn
0 : xn

1 xn
2 ], (3.11)

which gives rise to the following diagram

Xn
33→ Cn

[x0 : x1 : x2 : w] 3→ [−wx0 : x1x2]
↓ πn ↓
Xn

ψk→ Cn,n

[x0 : x1 : x2] 3→ [− fnxn
0 : xn

1 xn
2 ].

(3.12)
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Note that, when extending πn to a branched covering, the preimage of
each line {ℓk,i = 0} ⊂ Lk (k = 1, 2) in Dn (ℓk,i := x0−ξ i

nxk) decomposes
into n irreducible components

⋃
j∈Zn

ℓk,i, j and thus allows to consider
γk,i, j (k = 1, 2, i, j ∈ Zn) meridians around each component of {ℓk,i, j =
0}. Also consider a meridian γ0 around the preimage of Fn .

Theorem 3.3. The marked orbifold pencils ψ1, ψ2, and ψ3 described
above are strongly independent and hence they form a maximal set of
strongly independent pencils.

Proof. Consider 3ε,∗ : H1(Xn; Z) → H1(Cn; Z) = Z[ξn], ε = 1, 2, 3
the three equivariant morphisms described above. Using the commutative
diagrams (3.9) and (3.12) one can easily see that

3ε,∗(γk,i, j ) =

⎧
⎪⎨

⎪⎩

ξ
j

n if ε = k ∈ {1, 2}
ξ

i+ j
n if k = 3

0 otherwise
(3.13)

and
3ε,∗(γ0) = 0

and therefore 3ε,∗ are surjective Z[ξn]-module morphisms. Also note that
[γk,i, j ] = µ

j
n[γk,i,0] ∈ H1(Xn; Z). Consequently according to (3.13) one

has
(
31,∗ ⊕ 32,∗ ⊕ 33,∗

)
(γk,i,0) =

{
(1, 0, ξ i

n) if k = 1
(0, 1, ξ i

n) if k = 2

which implies that 31,∗⊕32,∗⊕33,∗ is surjective. After the discussion of
Section 3.2, since the depth of ξ i

n is three, the set of strongly independent
pencils is indeed maximal.

4 Order two characters: augmented Ceva
From Theorem 1.1(2), for any order two character χ of depth k in the
characteristic variety of the complement of a curve there exist k indepen-
dent pencils associated with χ whose target is a global quotient orbifold
of type C2,2.

Interesting examples for k > 1 of this scenario are the augmented
Ceva arrangements CEVA(2, s), s = 1, 2, 3 (or erweiterte Ceva cf. [10,
Section 2.3.J, page 81]). Consider the following set of lines:

ℓ1 := x
ℓ2 := y
ℓ3 := z

ℓ4 := (y − z)
ℓ5 := (x − z)
ℓ6 := (x − y)

ℓ7 := (x − y − z)
ℓ8 := (y − z − x)
ℓ9 := (z − x − y).

(4.1)
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The curve C6 :=
{∏6

i=1 ℓi = 0
}

is a realization of the Ceva arrange-
ment CEVA(2) (a.k.a. braid arrangement or B3-reflection arrangement).
Note that this realization is different from the one used in Section 3.
The curve C7 :=

{∏7
i=1 ℓi = 0

}
is the augmented Ceva arrangement

CEVA(2, 1) (a.k.a. a realization of the non-Fano plane). The curve
C8 :=

{∏8
i=1 ℓi = 0

}
is the augmented Ceva arrangement CEVA(2, 2)

(a.k.a. a deleted B3-arrangement). Finally, C9 :=
{∏9

i=1 ℓi = 0
}

is the
augmented Ceva arrangement CEVA(2, 3).

The characteristic varieties of such arrangements of lines are well
known (cf. [15, 30, 31]). Such computations are done via a presenta-
tion of the fundamental group and using Fox derivatives. In most cases
(except for the simplest ones) the need of computer support is basically
unavoidable. In [15, Example 3.11] there is an alternative calculation of
the positive dimensional components of depth 1 via pencils.

Here we will give an interpretation via orbifold pencils of the charac-
ters of depth 2, which will account for the appearance of these compo-
nents of the characteristic varieties independently of computation of the
fundamental group.

4.1 Ceva pencils and augmented Ceva pencils

Note that x(y − z) − y(x − z) + z(x − y) = 0 and hence

fC : P2 → P1

[x : y : z] 3→ [ℓ1ℓ4 : ℓ2ℓ5]
is a pencil of conics such that ( f ∗

C ([0 : 1]) = ℓ1ℓ4, f ∗
C ([1 : 0]) =

ℓ2ℓ5, f −1
C ([1 : 1]) = ℓ3ℓ6) (we will refer to it as the Ceva pencil). Anal-

ogously

x(y − z)(x − y − z)2 − y(x − z)(y − z − x)2 + z(x − y)(z − x − y)2 = 0

and hence
fSC : P2 → P1

[x : y : z] 3→ [ℓ1ℓ4ℓ
2
7 : ℓ2ℓ5ℓ

2
8]

is a pencil of quartics such that ( f ∗
SC([0 : 1]) = ℓ1ℓ4ℓ

2
7, f ∗

SC([1 : 0]) =
ℓ2ℓ5ℓ

2
8, f ∗

SC([1 : 1]) = ℓ3ℓ6ℓ
2
9) (we will refer to it as the augmented Ceva

pencil).

4.2 Characteristic varieties of Ci , i = 6, 7, 8, 9

We include the structure of the characteristic varieties of these curves for
the reader’s convenience. As reference for such computations see [14,18,
23, 25, 30, 31].
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We will denote by X∗ the complement of the curve C∗ in P2, for ∗ =
6, 7, 8, 9.

4.2.1 Arrangement C6. The characteristic variety Char(C6) consists of
four non-essential coordinate components associated with the four triple
points of C6 (see Remark 2.26 (1))5 and one essential component of di-
mension 2 and depth 1 given by the Ceva pencil

ψ6 := fC |X6 : X6 → P1 \ {[0 : 1], [1 : 0], [1 : 1]}.

4.2.2 Arrangement C7. The characteristic variety Char(C7) consists of
six (respectively four) non-essential coordinate components associated
with the six triple points of C7 (respectively four C6-subarrangements) of
dimension 2 and depth 1. In addition, there is one extra character of order
two, namely,

χ7 := (1,−1,−1, 1,−1,−1, 1)

of depth 2.6 In order to check the value of the depth, one needs to find
all marked orbifold pencils in (X7,χ7) of target (C2,2, ρ) where ρ :=
(−1,−1) is the only possible non-trivial character of C2,2. Two such
independent pencils are the following,

ψ7,1 := fC |X7 : X7 →P1\{[0 : 1], [1 : 0], [1 : 1]}→P1
(2,[1:0]),(2,[1:1]),(∞[0:1])

and
ψ7,2 := fSC |X7 : X7 → P1

(2,[1:0]),(2,[1:1]),(∞[0:1]).

This is the maximal number of independent pencils by Theorem 1.1.

4.2.3 Arrangement C8. The characteristic variety Char(C8) consists of
six (respectively five) non-essential coordinate components associated
with the six triple points of C8 (respectively four C6-subarrangements)
of dimension 2 and depth 1. In addition, there is one 3-dimensional non-
essential coordinate component of depth 2 associated with its quadruple
point (see Corollary 2.26(2)).

Consider the following augmented Ceva pencil

ψ8,1 := fSC |X8 : X8 → P1
(2,[1:1]),(∞[0:1]),(∞[1:0]).

5 a.k.a. local components.

6 The subscript 7 refers to the arrangement C7. Similar notation will be used in the examples that
follow. A second subscript (when necessary) will be used to index the characters considered.
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Computation of the induced map on the variety of characters shows that
this map yields the only non-coordinate translated component of dimen-
sion 1 and depth 1 observed in the references above. Finally, there are
two characters of order two, namely,

χ8,1 := (1,−1,−1, 1,−1,−1, 1, 1) and
χ8,2 := (−1, 1,−1,−1, 1,−1, 1, 1)

of depth 2. In order to check the value of the depth, one needs to find two
marked orbifold pencils on (X8,χ8,1) with target (C2,2, ρ), where

C2,2 := P1
(2,[1:0]),(2,[1:1]),(∞[0:1])

and ρ := (−1,−1, 1) is the only non-trivial character of C2,2. Two such
independent pencils can, for example, be given as follows

ψ8,2 := fC |X8 : X8 →P1\{[0 : 1], [1 : 0], [1 : 1]}→P1
(2,[1:0]),(2,[1:1]),(∞[0:1])

and

ψ8,3 := fSC |X8 : X8 →P1
(2,[1:1])\{[1 : 0], [0 : 1]}→P1

(2,[1:0]),(2,[1:1]),(∞[0:1]).

4.2.4 Arrangement C9. The characteristic variety Char(C9) consists of
four (respectively eleven) non-essential coordinate components associ-
ated with the four triple points of C9 (respectively eleven C6-subarrange-
ments), which have dimension 2 and depth 1. In addition, there are three
3-dimensional non-essential coordinate components of depth 2 associ-
ated with the quadruple points of C9. Consider the following augmented
Ceva pencil

ψ9,1 := fSC |X9 : X9 → P1 \ {[1 : 0], [0 : 1], [1 : 1]}.

Computations of the induced map on the variety of characters show that
this pencil yields the only non-coordinate translated component of di-
mension 2 and depth 1 observed in the references above.

Finally, there are also three characters of order two

χ9,1 := (−1,−1, 1,−1,−1, 1, 1, 1, 1),
χ9,2 := (−1, 1,−1,−1, 1,−1, 1, 1, 1), and
χ9,3 := (1,−1,−1, 1,−1,−1, 1, 1, 1)

of depth 2. In order to check the value of the depth, one needs to find two
independent marked orbifold pencils on (X9,χ9,1) with target (C2,2, ρ)
where C2,2 := P1

(2,[0:1]),(2,[1:0]),(∞[1:1]) and ρ := (−1,−1, 1) is the only
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non-trivial character on C2,2. Two such independent pencils can be given,
for example, as follows

ψ9,2 := fC |X9 : X9 →P1 \ {[0 : 1], [1 : 0], [1 : 1]}→P1
(2,[0:1]),(2,[1:0]),(∞[1:1])

and

ψ9,3 := fSC |X9 : X9 →P1 \ {[0 :1], [1 :0], [1 :1]}→P1
(2,[0:1]),(2,[1:0]),(∞[1:1]).

Remark 4.1. Note that the depth 2 characters in Char(C8) and Char(C9)
lie in the intersection of positive dimensional components and this fact
forces them to have depth greater than 1, see [8, Proposition 5.9].

4.3 Comments on independence of pencils

• Depth conditions on the target: First of all note that the condition on
the target (C, ρ) to have d(ρ) > 0 is essential in the discussion above,
i.e. pencils with target satisfying d(ρ) = 0 may not contribute to the
characteristic varieties. For instance, the space X6 also admits sev-
eral global quotient pencils coming from the augmented Ceva pencil,
namely

ψ ′
6 := fSC |X6 : X6 → P1

(2,[0:1]),(2,[1:0]),(2,[1:1]) → P1
(2,[0:1]),(2,[1:0]).

However, the orbifold P2,2 is a global quotient orbifold whose orbifold
fundamental group is abelian, so no non-trivial characters belong to its
characteristic variety.

• Independence of pencils. Here is an explicit argument for indepen-
dence of pencils for one of the cases discussed in last section. Con-
sider the pencils ψ9,2 and ψ9,3 described above as marked pencils from
(X9,χ9,1) having (C2,2, ρ) as target. The marking produces the fol-
lowing commutative diagrams:

X9,2
39,2→ C2

[x : y : z : w] 3→ [ℓ1ℓ4 : w]
↓ π ↓ π̃

X9
ψ9,2→ C2,2

[x : y : z] 3→ [ℓ1ℓ4 : ℓ2ℓ5],

and
X9,2

39,3→ C2

[x : y : z : w] 3→ [ℓ1ℓ4ℓ7 : wℓ8]
↓ π ↓ π̃

X9
ψ9,3→ C2,2

[x : y : z] 3→ [ℓ1ℓ4ℓ
2
7 : ℓ2ℓ5ℓ

2
8],
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where X9,2 is contained in {[x : y : z : w] | w2 = ℓ1ℓ4ℓ2ℓ5}, C2 :=
P1 \ {[1 : 1], [1 : −1]} and π̃ is given by [u : v] 3→ [u2 : v2].
Consider γi,k , i = 3, 6, 7, 8, 9, k = 1, 2 the lifting of meridians around
ℓi in X9,2. Also denote by Z[Z2] the ring of deck transformations of
π̃ as before, where Z2 acts by multiplication by ξ2 = (−1). Note
that, as before 39,2(γ3,k) = 39,2(γ3,k) = (−1)k and 39,3(γ4,k) =
39,3(γ4,k) = (−1)k+1. However, 39,2(γ9,k) = 0 and 39,3(γ9,k) =
(−1)k . Therefore ψ9,2 and ψ9,3 are independent pencils of (X9,χ9,1)
with target (C2,2, ρ).

5 Curve arrangements
Consider the space M of sextics with the following combinatorics:

1. C is a union of a smooth conic C2 and a quartic C4;
2. Sing(C4) = {P, S} where S is a cusp of type A4 and P is a node of

type A1;
3. C2 ∩ C4 = {S, R} where S is a D7 on C and R is a A11 on C.

In [4] it is shown that M has two connected components, say M(1) and
M(2). The following are equations for curves in each connected compo-
nent:

f (1)
6 = f (1)

2 f (1)
4 :=

(
(y + 3x) z + 3y2

2

)

(
x2z2−

(
xy2+ 15

2 x2 y + 9
2 x3

)
z−3x y3− 9x2 y2

4 + y4

4

)

for C(1)
6 ∈ M(1) and

f (2)
6 = f (2)

2 f (2)
4 :=

((
y + x

3

)
z − y2

6

)

(
xz2 −

(
xy2 + 9x2 y

2 + 3x3

2

)
z + y4

4 + 3x2 y2

4

)

for C(2)
6 ∈ M(2).

The curves C(1)
6 and C(2)

6 form a Zariski pair since their fundamental
groups are not isomorphic. This cannot be detected by Alexander poly-
nomials since both are trivial. In [4] the existence of an essential coordi-
nate character of order two in the characteristic variety of C(2)

6 was shown
enough to distinguish both fundamental groups, since the characteristic
variety of C(1)

6 is trivial.
By Theorem 1.1 (2) this fact can also be obtained by looking at pos-

sible orbifold pencils. Note that there exists a conic Q := {q = 0}
passing through S and R such that (Q, C(1)

4 )S = 4, (Q, C(2)
4 )S = 5, and
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(Q, C(2)
2 )R = 3, (Q, C(2)

2 )R = 3. Consider L := {ℓ = 0} the tangent line
to Q at S. One has the following list of multiplicities of intersection:

(Q,C(2)
2 + 2L)S = (Q,C(2)

4 )S = 5 (Q,C(2)
2 + 2L)R = (Q,C(2)

4 )R = 3

(C(2)
4 , 2Q)S = (C(2)

4 ,C(2)
2 + 2L)S = 10 (C(2)

4 , 2Q)R = (C(2)
4 ,C(2)

2 + 2L)R = 6

(C(2)
2 ,C(2)

4 )S = (C(2)
2 , 2Q)S = 2 (C(2)

2 ,C(2)
4 )R = (C(2)

2 , 2Q)R = 6

(L ,C(2)
4 )S = (L , 2Q)S = 4 (L ,C(2)

4 )R = (L , 2Q)R = 0.

By [12], this implies that (C(2)
2 + 2L , C(2)

2 , 2Q) are members of a pencil
of quartics. In other words, there is a marked orbifold pencil from C :=
P2 \ C(2)

6 marked with χ := (−1, 1) to P1
(2,[0,1]),(2,[1:0]),(∞[1:1]) given by

[x : y : z] 3→ [ f (2)
2 ℓ2 : q2] whose target mark is the character ρ :=

(−1,−1, 1).
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of cohomology support loci for quasi-projective varieties via orb-
ifold pencils, J. Reine Angew. Math., to appear, also available at
arXiv:1008.2018 [math.AG].

[8] E. ARTAL, J. I. COGOLLUDO-AGUSTÍN and D. MATEI, Char-
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figurationen und Algebraische Flächen”, Friedr. Vieweg & Sohn,
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