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Abstract

This is an introduction to the topology of the complement to plane curves
and hypersurfaces in the projective space and based on the lectures given in
Lumini in February and in ICTP (Trieste) in August of 2005. We discuss key
problems concerning the families of singular curves, the one variable Alexan-
der polynomials and the orders of the homotopy groups of the complements
to hypersurfaces with isolated singularities. We also discuss multivariable
generalizations of these invariants and the Hodge theory of infinite abelian
covers used in calculations of multivariable invariants. A historical overview
is included as the opening section

1 Introduction

Study of the topology of plane algebraic curves is a very old subject. In fact,
its problems come up naturally after the very first definitions in a basic course
on algebraic curves. And yet, the answers obtained so far, are often elusive and
incomplete. If C is an algebraic curve in a complex projective plane P2, what is
the fundamental group of P2 − C? Which properties of C affect complexity of this
group? For which groups G there exist C such the G is the fundamental groups of
the complement to C? When two curves are isotopic is appropriate sense, so that
complements stay unchanged during such isotopies? What are the invariants of such
isotopies? These are obvious questions and a lot is known about them but complete
or even satisfactory answers still are out of reach. Below I want to describe some
recent developments and I hope that this can serve as an introduction to these ideas
and methods.

Perhaps the real beginning of this subject should be credited to Enriques, though
some important work on construction of interesting singular curves and the numerol-
ogy i.e. calculations of the number of singular points of a given type etc. started
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much earlier. For example in early 19 century Plücker discovered important formu-
las related the degree, the number of nodes and cusps of a curve to similar invariants
of the dual curve, people from Newton to Puiseaux and beyond developed methods
for analyzing the singular points of plane curves and already Newton classified types
of singular cubics. Lefschetz ([39]) used Plücker’s work to obtain first non trivial
information on how many nodes and cusps a plane curve of a given degree can have
(problem which still remains largely unresolved).

In the end of 19th century, undoubtedly influenced by Picard and Severi works on
the topology of complex surfaces, Enriques initiated a program to extend Riemann
and Hurwitz results on multivalued functions, or in a more modern terminology
covering spaces of Riemann surfaces, to higher dimensions (cf. [23]). According to
Riemann, a multivalued function in one variable, (e.g w =

√
z or more generally a

solution to the equation wn + a1(z)wn−1 + ... + an(z) where ai(z) are single valued
holomorphic functions of z) is specified by the following data. Firstly, the collection
of its ramification points B ⊂ C ⊂ P1, secondly the number d of values of the
multivalued function and finally the monodromy representation π1(P1 − B) → Σd

of the fundamental group into the symmetric group on d letters. What makes Rie-
mann’s approach very effective for the description of multivalued functions is the
fact that the fundamental group in question is always a free group since the ramifi-
cation locus is just a collection of points in P1, and therefore the whole multivalued
function is specified by ramification locus B and assignment of arbitrary permu-
tations σ1, ..., σCard(B) in the symmetric group Σd on d letters to the generators of
π1(P1 −B) with the only restriction σ1 · · · σCard(B) = id.

It was realized by Enriques (and others; a rather complete account of the work
before mid 1930’s is given by Zariski in his seminal book [84]) that similar descrip-
tion of multivalued functions of several variables is still valid but also that in higher
dimensions such a result is much less efficient since σ1, ..., σCard(B) must satisfy addi-
tional relations. For example, any algebraic curve in P2 can be a branching curve of
a multivalued function but one cannot assign arbitrary elements of Σd to generators
of π1(P2−B) since this group is almost never free. Rather, the permutations should
satisfy certain compatibility conditions (one should note that the very idea of the
fundamental group did not completely crystallized around the time of the work of
Enriques and therefore his statements are much less straightforward than presented
here). Enriques described this conditions very explicitly and this, in modern terms,
amounts to calculation of the quotient of the fundamental group by the intersection
of subgroups of finite index in terms of geometric generators (those discussed in
section 3; note that it is still unknown that this intersection trivial i.e. the fun-
damental group is residually finite; cf. section 2.2). For example, if the branching
curve has degree d and is non singular, the fundamental group of the complement
is cyclic of order d, but, at the same time, the number of geometric generators is
d (cf. section 2.3). Therefore, firstly, one can assign to one geometric generator
only a permutation of order d in Σd and, secondly, the assignment to the rest of
the generators is determined by the first choice. O.Zariski (after arrival to US and
visiting Princeton where Lefschetz and Alexander were working at the time) realized
that the fundamental group of the complement is the central object in this theory
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and introduced many new at that time ideas even in context of similar problems
in the knot theory. He showed how subtle the question of the fundamental group
can be: not that is does depend on degree of the branching curve, as is the case
for multivalued functions in one variable, but even knowing the number of nodes
and cusps is not sufficient. He proved that a curve with 6 cusps can have as the
fundamental group the cyclic group Z6 or the free product Z2 ∗ Z3 = PSL2(Z).
He also showed that such sextics can be distinguished by a geometric condition: in
the first case the cusps must be in general position i.e. not to belong to a curve of
degree 2 and in the second case they must belong to a conic. Zariski also used many
technical ideas just appearing at the time in topology e.g. studying the homology
of cyclic covers (which in knot theory can be traced to Alexander and Reidemeister
[2], [69]). Systematic study of the branched coverings using the theory of adjoints
(cf. section 5.2) allowed him to relate the homology of branched covers to the su-
perabundances of linear systems defined by the cusps (cf [81]). He found a close
relationship between the fundamental groups of the complements and braid groups
by considering the dual curves for nodal rational and elliptic curves. One of the
tools was his celebrated theorem on fundamental groups of hyperplane sections ex-
tending Lefschetz homological results. In the context of branched covering Zariski
even obtained expressions close to Alexander polynomial (cf. [82]) as was noticed
by D.Mumford (cf. [84]) and which was the basis of his questions about the role of
Alexander polynomial in algebraic geometry (*).

After 1937 Zariski abruptly changed the scope of his interests and turned to
ambitious project of reconstructing algebraic geometry on firm foundations of com-
mutative algebra. Some of his students, however, continue to develop this subject,
cf. [77], [40]; much later, but in a similar spirit, M.Oka ([67]) generalized Zariski
calculation of the fundamental group of the complement to sextic with six cusps on
conic by proving that for the curve C given by the equation (xp +yp)q +(yq +zq)p =
0, gcd(p, q) = 1 one has π1(P2 − C) = Zp ∗ Zq. The study of the topology did
continue mostly in the works of O.Chisini and his students ([12]) who initiated use
of braids for the study of the fundamental groups and covering spaces. Abhyankar
(cf. [1]), who studied with Zariski in Harvard in the 50s, was investigating the
fundamental groups, and in particular obtained important results of the fundamen-
tal groups of the complements, but the main focus was on algebraization of the
fundamental groups.

One of the driving problem in the study of the fundamental groups in the 60s and
70s was the problem of commutativity for fundamental groups of the complements
to curves with nodes only. Severi ([75]) outlined an argument which, as later was
realized, is incomplete. It was based on an assertion that the variety of plane
curves of fixed degree with a fixed number of nodes is irreducible. Zariski repeat
Severi’s argument in [84] but return to this issue much later (cf. [86]). Severi’s
statement eventually was confirmed by J.Harris ([29]). A direct algebraic proof of
commutativity was found by W.Fulton (cf [28]) using Abhyankar’s work and shortly

∗These questions were answered later in author’s papers [41] [42] and further extended in [48],
[52] [56] (see references to other related works in these papers).
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after that a topological argument was given by P.Deligne.(cf. [16]) . A little bit
later, M.Nori (cf. [66]) clarified these results further by obtaining conditions for
commutativity of the fundamental group of the complement to curves on arbitrary
surfaces, in this respect continuing the work of Abhyankar (cf. [66])

In the 70’s the problems about fundamental groups of the complements were
mentioned infrequently. Mumford in already quoted appendix to [84] also raised
the problem of investigating of the quotient G′/G′′ for the fundamental groups of
the complements. In introduction to the volume III of collected papers by Zariski,
containing the papers on the topology of the complements, Artin and Mazur, after
discussing Zariksi’s study of cyclic multiple planes, note:

”Also, as far as the editors are aware, there has been no further progress in the
delicate study of cyclic multiple planes for general d. There are many tantalizing
questions here-there are even a number of less delicate topological issues to sort out.
For example, for irreducible plane curve C with arbitrary singularities can one give
some reasonable sufficient conditions for regularity of Hd in terms of zeros of ”local
Alexander polynomials”- that is, the Alexander polynomials of the knots associated
with singularities of C?”

The answers to these questions were obtained in author’s papers [41] and [42]
which depend on Milnor’s work on the Alexander polynomials and the infinite cyclic
covers (cf. [62]). If G = π1(C2 − C) one has G/G′ = H1(C2 − C) = Zr where r
is the number of irreducible components (cf. 2.2.1). If C is irreducible one has the
exact sequence:

0→ G′/G′′ → G/G′′ → Z→ 0

This sequence defines the action of Z on G′/G′′ which after Hurewicz identifica-
tion of G′/G′′ with the homology of infinite cyclic cover coincides with the action
induced by the action of the group Z of covering transformations on the universal
cyclic cover. The advantage of replacing projective curve by affine is that in affine
case one has infinite tower of covering spaces while in projective case the degree of
the cover must divide the degree of the curve. On the other hand, if the line at
infinity is transversal to a projective curve, the group of affine curve is just a central
extension of the projective one (in non-transversal case the relation is much more
subtle). It is shown in [41] that G′/G′′ ⊗Q, as a module over the group ring of Z

i.e. the ring Q[t, t−1], is a torsion module and hence the order of the latter ∆C(t)
is well defined (up to a unit of Q[t, t−1]). This is a global invariant of the curve in
C2. On the other hand, with each singular point of C is associated the link i.e. the
intersection of C with the boundary of a small ball about this singular point. As
result one obtains a set of local Alexander polynomials ∆P of all singularities P of
the curve C (as was suggested by Artin and Masur). One need, however, another
important ingredient: in [41] was introduced the Alexander polynomial at infinity
∆∞ which is the Alexander polynomial of the link which is the intersection of C
with the ball in C2 of a sufficiently large radius. The answer to the question of
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Artin and Mazur in the above quote is given by the following divisibility theorem
from [41] for these Alexander polynomials associated with the curve:

∆(C) | ΠP∈Sing(C)∆P (C)

∆(C) | ∆∞(C) (1)

and the theorem which expresses the homology of cyclic covers in terms of Alexander
polynomials (cf. [41] and theorem 2.8 below). For example, for sextic curves with
6 cusps, which Zariski was considering in [80], the Alexander polynomial ∆C(t) is
equal to t2 − t + 1 or 1 depending on wether six cusps are or are not on conic and
both divide (t2−t+1)6 and (t6−1)4(t−1) (which are the product of local Alexander
polynomials and the Alexander polynomial at infinity respectively). The divisibility
relation [41] also contains restrictions on the fundamental groups: G′/G′′ ⊗ Q is
trivial if ∆∞ and ΠP∈Sing(C)∆P (C) are relatively prime. For example if cusps are
the only singularities, then G′/G′′ ⊗Q = 0 unless the degree is divisible by 6. The
regularity condition, which were mentioned by Artin-Masur is the following: if none
of the roots of local Alexander polynomial is a root of unity of degree d the degree
n then the cyclic cover Hn or degree n is regular (cf. [41]).

The work [41] is topological and many of the results were extended to differential
category (cf. [43]). Dependence of Alexander polynomial on position of singularities,
containing generalization of several Zariski’s calculation, was shown in [42]. As in
[81], the irregularity of cyclic multiple plane is obtained in terms of superabundances
of certain linear systems associated with the cusps but for singularities more compli-
cated than cusps the systems are specified by more subtle geometric conditions: the
local equations of the linear systems responsible for irregularity of cyclic branched
covers must belong to certain ideals called in the ideals of quasiadjunction. Later,
these ideals appeared many other contexts and often are called multiplier ideals (cf.
[38]). Other important numerical invariants of plane singularities introduced in [42]
were identified in [58] with the part of the spectrum introduced in 70’s by Arnold
and Steenbrink (cf [70]). The work [24] also related the irregularity of multiple
planes to the position of singularities and these ideas rely on vanishing theorems
which later lead to much better understanding of those (cf. [25]): a key development
in algebraic geometry in 90s.

In early 80s, about the time when described above work on Alexander polyno-
mials appeared, there was another important development in the study of plane
singular curves. B.Moishezon initiated program for describing the topology of alge-
braic surfaces in terms of branching curve in P2. This is a special class of curves and
these curves belong to the class of curves having nodes and cusps as singularities.
If one starts with a projective surface, considers a pluricanonial embedding using
a fixed multiplicity of the canonical class, and then uses a generic projection the
branching curve in P2 becomes an invariant of the deformation type of the surface
(the fact that one does not need the monodromy representation into symmetric
group was conjectured by Chisini and subsequently proven in ([37]). Moishezon’s
first calculations deal with the branching curves of generic projections of non sin-
gular surfaces in P3. If the degree d of a surface is 3, one obtains as the branching
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curve Zariski’s sextic given by the equation f 3
2 + f 2

3 = 0. For surfaces of arbitrary d
Moishezon obtains, as the fundamental groups of the complements to the branching
curves, the quotients of the Artin’s braid groups by the centers (which for d = 3 gives
PSL2(Z)). Moishezon’s important idea was that the primary invariant is not the
fundamental group but rather the braid monodromy which implicitly is present in
van Kampen’s method of calculation of the fundamental group (Moishezon was un-
aware of Chisini’s work [12] until he completed [63]). In this vein, the author showed
that the braid monodromy defines not just the fundamental group but also the ho-
motopy type (cf. [45], and further works by M.Teicher cf. [76] ) Later Moishezon
continued this work jointly with M.Teicher. Methods of braid monodromy recently
found applications in symplectic geometry (cf. [4]). More recently Teicher and her
students continued systematics study of the braid monodromy and the fundamen-
tal groups of the complements to the branching curves of generic projections and
arrangements of lines.

In the late 80’s the work started on a generalization of the the theory of com-
plements to singular curves to higher dimensions. The case of hypersurfaces with
isolated singularities it turns out remarkably similar to the case of curves. In [48],
the author showed that for n > 1 the role of Alexander polynomial plays the order of
the homotopy group πn(Cn+1−V ) considered as the module over π1(Cn+1−V ) = Z.
The point is that this homotopy group can be canonically identified with the ho-
mology Hn( ˜Cn+1 − V ,Z) of the infinite cyclic cover of the complement. The di-
visibility relations (1) extends to the order of the homotopy groups and examples
of hypersurfaces with non trivial homotopy appears as a natural generalizations of
Zariski’s sextics. For example π2(C3 − V ) =≠ 0 for V given in P3 by the equation:
f 2

21 + f 3
14 + f 7

5 = 0 (fn generic form of degree n in four variables). Analytic theory
developed by the author in [42] also was extended to higher dimension in [51] by in-
troducing the mixed Hodge structure on the homotopy group and by relating one of
the Hodge components of the homotopy group to the superabundance of the linear
systems defined by the singularities of hypersurface.

In the 90’s were obtained the first results on a multivariable generalization of
the Alexander invariants (cf. [47]). The theory of the multivariable Alexander
polynomials of links, due to R.Fox, depends on a very special feature of the link
groups: the first Fitting ideal of the Alexander module is “almost” principal. The
fundamental groups of the complement to reducible algebraic curves in C2 are similar
to the link groups in the sense that both have surjections on Zr(r > 1). However for
algebraic curves the first Fitting ideal of the Alexander module is far from principal
and as result one cannot define a multivariable Alexander polynomial in a meaningful
way. The puzzle of existence of multivariable invariants of algebraic curves got
resolved by introducing set of zeros of the polynomials in the Fitting ideals of the
Alexander modules in author’s paper [47]. In the case of one variable Alexander
polynomials no information get lost by replacement the Alexander polynomial by its
set of zeros (at least for curves in P2 for which the Alexander module is semisimple)
but for reducible curves zero sets provide a non trivial and very interesting invariant.

Applications followed shortly. In [32] the characteristic varieties of a group were
related to the cohomology of local systems which followed the study of polynomial
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periodicity of Betti numbers of branched covering spaces (cf. [31]). For the curves
for which all components have degree 1 i.e. arrangements of lines the components of
characteristic varieties were related to the cohomology algebra of the complement (cf.
[13]). The calculation of the homology of abelian covers constructed by Hirzebruch
and which have universal covers biholomorphic to the ball did fall naturally in the
general scheme valid for arbitrary arrangements and covers (cf. [52]). Analytic
(rather than topological) theory was developed in [52] and characteristic varieties
were expressed in terms of superabundances of the linear systems. Essential in
this calculation were the results in [6], on the structure of the jumping loci for
the cohomology of local systems. They represent an extension to quasiprojective
varieties of the results of Green-Lazarsfeld, Beauville, Catanese, Simpson, Deligne
and others and which asserts that the jumping loci for the cohomology of local
systems are cosets of certain subgroups of the group of characters of the fundamental
group.

During late 90’s, the study of the topology of plane algebraic curves became much
more active area of research. Many new examples of Zariski pairs due to E.Artal-
Bartolo and collaborators and M.Oka showed how common is the phenomenon of
curves having different equisingular isotopy type with the same local data. Many
new calculations were carried out of the fundamental groups of the complements by
M.Teicher’s school which finally led to a general conjecture on the structure of the
fundamental groups of the branching curves of generic projections (cf. [76]). In-
teractions with combinatorics of arrangements were important and lead to at least
conjectural description of the characteristic varieties and much stronger vanishing
for the cohomology of local systems than were available earlier (cf.[53],[52],[13]).
Connections with symplectic topology should be noted (cf. [4]). There was further
progress in the study of the complements in higher dimensions on generalizations of
Zariski-van Kampen’s theorem (cf. [48],[11],[26],[78]). Nevertheless, despite tremen-
dous progress, since the first works by Enriques, Zariski and van Kampen, many
problems still remains open and complete understanding of the topology of the
complements to curves and hypersurfaces still out of reach.

In the text below we outlined some of the problems which resolution may clarify
substantially the situation. Exposition is very elementary in the beginning describ-
ing motivation for the study in the following sections. In the later parts a reader
will need more and more rely on material covered in standard courses in algebraic
geometry. Moreover, some familiarity with the mixed Hodge theory is needed in the
last sections. Textbook [18] also is a good reference to the background and other
material discussed below. Most of the material appeared already in the literature
some time ago but some results appear to be new.

I want to thank J.P. Brasselet, D.Cheniot, J.Damon, M.Oka, A.Pichon D.Trotman,
N.Dutertre and C. Murolo who organized the conferences in Lumini and Trieste and
the opportunity to present this beautiful area of mathematics. I am also want to
thank L.Kauffman for a discussion of the history of polynomial invariants in the
knot theory.
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2 Fundamental groups of the complement

2.1 Problem of classification up to isotopy.

2.1.1 Stratification of the discriminant

Classically, many problems in the topology of plane curves and hypersurfaces were
rooted in the study of families of curves and attempts of some kind of classification
of curves and hypersurfaces (cf. [80]). We shall start by discussion in what kind
classification and in which sense one may expect.

Hypersurfaces of a fixed degree d in Pn are parameterized by P(n+d
d )−1 by assign-

ing to a defining equation the collection of coefficients of its monomials (in some fixed

order). The discriminant Disc(n, d) is the hypersurface in P(n+d
d )−1 consisting of the

points corresponding to singular hypersurfaces. It has singularities in codimension
one. An interesting problem is to understand the stratification of the discriminant
hypersurfaces Disc(n, d). By this we mean to describe the singular locus of the dis-

criminant hypersurface having codimension one in P(n+d
d )−1, then the singular locus

of singular locus (having codimension 2) and so on. More precisely, we consider the

universal hypersurface of degree d i.e. V ⊂ Pn×P(n+d
d )−1 consisting of pairs (P, V )

such that P ∈ V . Disc(n, d) is the image of the critical set of the projection on
the second factor and its preimage in V is the universal singular hypersurface. The
critical set of the projection on the second factor is the singular set Sing(n, d) of the
universal singular hypersurface. Then we consider the critical set of the restriction
of the projection on the non singular part of Sing(n, d). On a codimension one sub-
set, the rank of projection on Disc(n, d) drops and so on. With such a definition,
Thom’s isotopy theorem yields that the hypersurfaces belonging to each stratum
are equisingular so the strata represent equisingular families of hypersurfaces. Note

that the subset in P(n+d
d )−1 parameterizing equisingular hypersurfaces is singular in

general (cf.[79]).
The case n = 1 is already very interesting and non trivial. The discriminant con-

sist of homogeneous polynomials
∏

i(αiu−βiv) in two variables u, v having multiple

roots, i.e factors such that (αi, βi) and (αj , βj) satisfy det|αi βi

αi βi
| = 0. The strata

correspond to partitions of d, i.e. the conjugacy classes of the symmetric group
Σd. A lot is known about the geometry of these strata, for example the degrees of
their closures as well as other algebro-geometric information. Cases with n > 1 are
much more complicated. Many pieces of information are known. For example, in
the case n = 2 the degrees of the stratum corresponding to rational nodal curves
have the interpretation as Gromov-Witten invariants of a projective plane and as
such satisfy beautiful recurrence relations (cf. [36]). Indeed, the dimension of this
stratum is 3d − 1 where d is the degree of the curves (i.e. (d+1)(d+2)

2 − (d−1)(d−2)
2 )

so the degree of the corresponding stratum is the number of nodal curves of degree
d passing through generic 3d − 1-points. The degrees of strata of nodal curves are
subject to a conjecture of Göttsche discussed, for example, in [34].
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2.1.2 Classification of quadrics and cubics. Local type.

Another class of discriminants which is well understood is case d = 2. Each stratum
correspond to the quadrics of fixed rank. In particular each stratum is a determi-
nantal variety.

Classification of plane cubics goes back to Newton. Codimension one stratum
consists of cubic curves with one node. It has the degree equal to 12. There are
two strata having codimension 2. One consists of curves with one cusp and another
formed by the reducible curves having as the components a nonsingular quadric and
a non tangent to it line. The rest of the strata correspond to reducible curves and
each is determined by strata of curves of lower degree and the mutual position. The
strata of codimension three are: unions of a non singular quadric and a tangent
line (in the closure of both strata of codimension 2) and the union of three lines in
general position. Note that each of these strata is described by the local type of
singularities: the number of nodes, cusps, tacnodes etc. A definition of the local
type is the following:

Definition 2.1 Two reduced curves C and C ′ (of the same degree) have the same
local type if there is a one to one correspondence between their singular points such
the each pair of corresponding singular points P and P ′ have neighborhoods Bϵ and
B′
ϵ′ and homeomorphisms φP : Bϵ → B′

ϵ′ such that φP (C ∩Bϵ) = C ′ ∩B′
ϵ′.

Two possibly non reduced curves have the same local type if:
(a) corresponding reduced curves have the same local type
(b) there are one to one correspondences between the components and singular points
such that corresponding components have the same degrees and multiplicities and
corresponding singular points belong to the corresponding components.

2.1.3 Examples with disconnected strata.

The classification of strata of curves of degree 4 provides the first example when the
local type of singularities (in the sense of the first part of the definition 2.1) yields
the strata with several connected components. The quartics with three nodes have
two types: firstly the irreducible ones and quartics which are the unions of a non
singular cubic and a generic line. The strata are distinguished by a global property.

For each degree there are finitely many irreducible families of plane curves having
the same local type.

Problem 2.2 Find discrete invariants of families of curves having the same local
type.

This problem is similar to the problem of classification of knots in S3. Thom’s iso-
topy theorem implies that the curves (or hypersurfaces) in a connected equisingular
family are isotopic and hence have diffeomorphic complements. The main tool in
the study of knots is the fundamental group of the complement which is one of the
reasons suggesting to look at π1(P2−C) or also into πk(Pn − V ) with k > 1 in the
case of hypersurfaces of higher dimensions.
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2.2 Fundamental groups of the complements

Though the classification problem of the strata of the discriminant leads to the fun-
damental groups of the complements as potentially an important invariant there are
many other reasons for looking at the fundamental groups. One is that the funda-
mental groups of the complements to hypersurfaces controls the covers of projective
space and any projective algebraic variety having the dimension n is a branched
covering space of Pn.

Linear representations of the fundamental groups appear as the monodromy
representations of differential equations and this correspondence is a subject of the
Riemann-Hilbert problem. For example monodromy representation of KZ equation
yields an interesting representation of the pure braid group closely related to the
discriminant D(1, d).

Each of these “applications” lead to concrete problems about the fundamental
groups. For example, the use for a study of the coverings suggests the following. In
the above presentation of algebraic varieties as the covering spaces the degree of a
cover is always finite. So the coverings are determined already by the quotient by
the intersection of all subgroups of finite index. The problem is if this intersection is
the identity group or in other words if the fundamental group of the complement to
an algebraic hypersurface is residually finite. Alternatively this the the question on
whether the map π1 → πalg

1 into the algebraic fundamental group is injective. Note
that the fundamental group of an algebraic variety does not have to be residually
finite (D.Toledo). In general the problem of finding the properties of the fundamental
groups of the complements or characterizing the algebraic structure of these groups
is one of the central and the most difficult problems in algebraic geometry.

2.2.1 Homology of the complements.

An easily available information about the fundamental groups π1(Pn+1− V ) comes
from calculation of the homology H1(Pn+1−V ) which, by Hurewicz theorem, is the
quotient of the fundamental group by its commutator. Here is an answer:

Proposition 2.3 Let V is the union of irreducible components V1, .., Vr having the
degrees d1, ..., dr. Then H1(Pn+1 − V,Z) = Zr/(d1, .., dr).

For example, if g.c.d.(d1, ..., dr) = 1 then the homology group is torsion free.
This is the case when one of components has the degree equal to 1 or in other words
for the complements to affine hypersurfaces.

2.2.2 Examples of calculations of the fundamental groups.

In the last twenty years quite a few calculations of the fundamental groups were
made. For example, as mentioned in introduction, Moishezon-Teicher calculated the
fundamental groups to the branching curves of generic projections of many algebraic
surfaces (cf. [76]). Oka calculated the fundamental groups of the complements to
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many curves having low degree, in particular to various classes of curves of degree
6 (cf. [68]). Many calculations were carried out by Artal-Carmona-Cogolludo (cf.
[3]). These techniques I will discuss in a later chapter, but here I want to explain
some short and elegant calculations made by Zariski 80 years back.

Proposition 2.4 Let Ĉd be a curve dual to the rational nodal curve Cd having the
degree d (the degree of Ĉd is equal to 2(d−1), it has 3d−6 cusps and 2(d−2)(d−3)
nodes). The group π1(P2 − Ĉd) is isomorphic to the braid group of sphere on d
strings. In particular the fundamental group of the complement to the quartic with
3 cusps is a non abelian group having order 12.

Indeed, Cd is a generic projection on P2 of a rational normal curve C in Pd

and dual to Cd curve is a plane section of the hypersurface Ĉ in Pd dual to C
by a plane H . The complement to this hypersurface consists of hyperplanes in Pd

intersecting C in d distinct points which can be chosen arbitrary. Hence the space
of based loops in this complement is identified with the braids of P1(C) = S2.
Finally the isomorphism π1(P2 − Cd) = Bd(S2) follows from Lefschetz hyperplane
section theorem applied to embedding of the complement in H into the complement
in Pd. In the case d = 3, the pure braid group of sphere can be identified with
π1(PGL1(C)) = Z2 and hence one has the exact sequence: 1 → Z2 → B(S2) →
S3 → 1.

2.2.3 Alexander invariants of the fundamental groups.

Since the problem of characterization and understanding the fundamental group is
very complicated it is reasonable to try to rather understand some invariants of
the fundamental groups. An accessible and interesting invariant is the Alexander
invariant of a group.

Let G be arbitrary group together with a surjective homomorphism φ : G→ Zr.
Let Kerφ = K and let K ′ = [K, K] be the commutator. If φ is the abelianization
G→ G/G′ then K = G′, K ′ = G′′ = [G′, G′]. We have:

0→ K/K ′ → G/K ′ → Zr → 0 (2)

In particular K/K ′ receives the action of Zr and hence K/K ′ becomes the module
over the group ring of Zr. This module is called the Alexander invariant of the pair
(G,φ). In the case when φ is the abelianization one obtains an invariant depending
on the group G only. It is denoted below as A(G,φ) or if φ is the abelianization as
A(G).

This definition can be interpreted geometrically. If XG is a CW-complex having
G as its fundamental group then the homomorphism φ defines a covering space X̃G,φ.
One has π1(X̃G,φ) = K and K/K ′ = H1(X̃G,φ,Z). The action of Z corresponds to
the action of the group Z of deck transformations on X̃G,φ.

For perfect groups, i.e. such that G = G′, this invariant is trivial (since r = 0
is the only possibility), but since the fundamental groups of the complements in
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Pn+1 are perfect only if the hypersurface is the hyperplane (cf. 2.3) for them the
Alexander invariant is always interesting.

There is an algorithmic procedure for calculation of the Alexander modules due
to R.Fox (”Fox calculus”) (cf. [27]).

Let G be a finitely generated, finitely presented group i.e. one has a surjective
map Φ : Fs → G of the free group Fs on s generators, x1, ...xs with the kernel being
the normal closure of a finite set of elements given by the words R1, ...RN in Fs.
Consider the maps of the group rings: ∂

∂xj
: Z[Fs]→ Z[Fs] uniquely specified by the

conditions:
∂(uv)

∂xj
=

∂u

∂xj
a(v) + u

∂u

∂xj
;

∂xi

∂xj
= δi,j (3)

where a : Z[Fs] → Z is the augmentation surjection. Using operators ∂
∂xj

one can

define the map of free Z[Zr]-modules given by the Jacobi matrix:

(φ∗ ◦ Φ∗
∂Ri

∂xj
) : Z[Zr]

N → Z[Zr]
r (4)

which entries are obtained by applying homomorphisms Φ∗ : Z[Fs] → Z[G] and
φ∗ : Z[G] → Z[Zr] of group rings induced by Φ and φ respectively. The geomet-
ric meaning of this map is the following. With a presentation Φ one can associate
the 2-complex XG with single 0-cell, r 1-cells forming wedge S1 ∨ ... ∨ S1 of circles
corresponding to the generators of G and N 2-cells attached so that the boundary
of each is represented by the word Ri (i = 1, ..., N) in S1 ∨ ... ∨ S1. The covering
space X̃G,φ corresponding to the homomorphism of the fundamental group has a
canonical cell structure given by the preimages of cells in the above cell decom-
position of X: each cell in XG is replaced by cells of the same dimension corre-
sponding to the elements of the covering group. Hence we obtain the isomorphisms
C2(X̃G,φ) = Z[Zr]N , C1(X̃G,φ) = Z[Zr]s. Moreover, after this identification, the
boundary operator ∂2 : C2(X̃G,φ)→ C1(X̃G,φ) becomes identified with the operator
given by (4). Since H0(X̃G,φ,Z) = Z and C0(X̃G,φ,Z) = Z[Z] we have the isomor-
phism Im∂1 = KerC0(X̃G,φ,Z) → Z = IZ[Zr] where IZ[Zr] is the augmentation ideal
of the group ring. Hence, (4) determines the presentation of the module very closely
related to H1(X̃G,φ). More precisely, if Ĥ(XG,φ) is the module having presentation
(4) then we have:

0→ H1(XG,φ)→ Ĥ(XG,φ)→ IZ[Zr] → 0 (5)

For example for (affine portions of ) the curves in proposition 2.4, for the Alexan-
der module A(G) coinciding with H1(XG,φ) one has (in these examples φ : π1 →
H1 = Z is the canonical homomorphism):

A(π1(P
2 − Cd)) = Z[t, t−1]/(t2 − t + 1) (d = 4), A(π1(P

2 − Cd)) = 0 (d ≥ 5) (6)

For the links of algebraic singularities, which all belong to the class of iterated
torus link, the Alexander polynomial, i.e. the order of A(G) ⊗ Q as a Q[t, t−1]-
module, can be found using the data of iterations and the values of Alexander
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polynomial of for the torus knot: for the link of singularity xp = yq g.c.d.(p, q) = 1
one has the following.

∆(t) =
(tpq − 1)(t− 1)

(tp − 1)(tq − 1)
(7)

Another way to calculate the Alexander polynomial is to use A’Campo formula
for the zeta-function of the monodromy in terms of a resolution of the singularity
(cf. [22]):

ζ(t) = Π(1− tmi)χ(E◦
i ) (8)

where Ei are the exceptional curves of the resolution, E◦
i is set of points in Ei which

are non-singular points of the exceptional divisor, mi is the order along Ei of the
pullback of the equation of the singularity and χ denotes the Euler characteristic.
The ζ(t) determines the Alexander polynomial of a curve singularity via: ζ(t) =
(t−1)
∆(t) .

2.2.4 Alexander polynomials of plane algebraic curves: divisibility the-

orems.

There are two types of general results concerning the Alexander invariants of the fun-
damental groups π1(C2−C). Firstly, the Alexander polynomials of plane algebraic
curves are restricted by the degree of the curve, by the local type of singularities and
by position of the curve relative to the line at infinity. These restrictions sometimes
yield triviality of the Alexander polynomial. On the other hand, the Alexander poly-
nomial is completely determined by the local type and superabundances of certain
linear systems given by the data depending on the singularities.

We shall start, with discussion of the first group of results. Let C be projective
curve and L be the line at infinity. One has the linking number homomorphism:
lk : C2 − C → Z associating to a loop γ in C2 − C the (oriented) number of
intersection points of C and an immersed disk with boundary γ. In the case when
C is irreducible this homomorphism H1(C2−C)→ Z already was used above. This
defines the Alexander module and the Alexander polynomial ∆C(t) and we shall
omit mentioning the linking homomorphism used in its definition.

To each singular point P ∈ C ∈ P2 we associate the local Alexander polynomial
which is the Alexander polynomial of the link defined as follows. In the case when
P /∈ L,the link is the intersection of C with a sufficiently small ball about P (so that
the link type is independent of the radius). If this link has several components (i.e.
P has several branches) the Alexander polynomial again is calculated relating to the
total linking number homomorphism. In the case when P ∈ L, i.e. the curve has
singularities at infinity, the local Alexander polynomial is defined as above but P
considered as the singular point of P ∈ C∪L. Note that, as follows from definitions,
the local Alexander polynomials can be calculated as the characteristic polynomials
of the monodromy operators (cf. [22], [60] for examples and algorithms).

On the other hand, one can define the Alexander polynomial at infinity ∆∞,C

as the Alexander polynomial of the link which is the intersection of C with the
boundary of a sufficiently small tubular neighborhood of L in P2 (or alternatively
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the sphere of a sufficiently large radius in C2 = P2 − L). For example, is C is a
union of d lines passing through a point in P2 outside of L then the link at infinity
is the Hopf link with d components and hence its Alexander polynomial is:

∆∞,C = (td − 1)d−2(t− 1) (9)

The same equality holds for a curve which is transversal to the line at infinity
since there is a deformation of such a curve to a union of d lines as above, such that
transversality holds for all curves appearing during the deformation.

With these definitions we have the following:

Theorem 2.5

∆C(t) | ΠP∈SingC∆P (t)

∆C(t) | ∆∞,C(t)

Consider, for example and irreducible curve in P2 having ordinary cusps (i.e.
having x2 = y3 as the local equation) and nodes (local equation: x2 = y2) as the
only singularities. Then, as follows from (7), the local Alexander polynomials for
each singularity is t2− t+1 (cusp) or t− 1 (node). Moreover, it is not hard to show
that the multiplicity of the factor (t−1) is r−1 where r is the number of irreducible
component of C (cf. [41]). Hence we obtain:

Corollary 2.6 Let C be an irreducible curve in P2 having cusps and nodes as the
only singularities. Then:

∆C(t) = (t2 − t + 1)s

for some integer s ≥ 0.

Combining this corollary, the divisibility and the formula (9) we obtain:

Corollary 2.7 Let C be an irreducible curve in P2 having cusps and nodes as the
only singularities. Then ∆C(t) = 1 unless d is divisible by 6.

We leave as an exercise for a reader to work out that pq |̸d is a sufficient condition
for triviality of the Alexander polynomial for an irreducible curve of degree D with
singularities locally given by xp = yq.

Since the curves discussed in Proposition 2.4 (and also the branching curves of
generic projections of non-singular surfaces in P3 cf. [63]) have the degree d(d− 1)
it follows that the Alexander polynomial is trivial if d ≡ 2(mod3) which explains
with no calculation one third of equation 6 (at least after tensoring with Q). Many
additional examples of calculations of the Alexander polynomials can be found in
[68]. Note, finally that it is also beneficial to consider the Alexander polynomials
over finite fields Fp, rather than over Q i.e. H1(XG,φ,Fp) (cf. [43]).
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2.2.5 Alexander polynomials of plane algebraic curves: position of sin-

gularities.

Now we shall discuss the dependence of the Alexander polynomial of the positions
of singularities of the curve. To this end we shall associate the following invariants
of the singularities of plane curves: rational numbers, called the constants of quasi-
adjunction: κP

1 , ..., κP
n(P ) corresponding to each point P in the set SingC ⊂ P2 of

singular points of C. Moreover, to each κ ∈ Q, which is a constant of quasiadjunc-
tion of a point P ∈ SingC and each Q ∈ SingC, we associate the ideal Jκ ⊂ OQ

in the local ring of Q ∈ P2. (P and Q may be distinct). This data of constants of
quasiadjunction and the ideals in the local rings of singular points determines the
global Alexander polynomial ∆C(t) completely (cf. [42] and theorem (2.11) below).

The idea of calculation is based on the relation between the Alexander poly-
nomial and the homology of cyclic covers on one side and the classical method of
adjoints to describe holomorphic 2-forms on hypersurfaces in projective space (cf.
[84]).

The relationship between the Alexander polynomial and the homology of cyclic
branched covering is the following:

Theorem 2.8 Let f(x, y) = 0 be the equation of a curve C ∈ C2. Let Ṽn be
a desingularization of a compactification of the surface zn = f(x, y) in C3. If
A(π1(C2−C))⊗Q = ⊕Q[t, t−1]/(δi(t)) is the cyclic decomposition of the Alexander
module of C (i.e. ∆C(t) = Πiδi(t)) then rkH1(Vn,Q) is equal to the sum over i of
the number of common roots of tn−1 and δi(t). If the line at infinity is transversal to
C then the Alexander module is semisimple and the dimension of the ωn-eigenspace
of a generator of the Galois group Zn acting on H1(Vn,C) (ωn is a root of unity of
degree n) is equal to the multiplicity of ωn as a root of the Alexander polynomial.

Note that the first Betti number of a non-singular projective algebraic surface is
a birational invariant and hence the first Betti number of a resolution of a compacti-
fication is a well defined invariant of an affine surface zn = f(x, y). Therefore it also
an invariant of affine curve C. Similar result is valid for branched covering of S3

branched over a link: the idea of using covering spaces to derive invariants of knots
goes back to Alexander and Reidemister (cf [2], [69], [82], [84]). A consequence of
this theorem is that the homology of cyclic covers, in the case when line at infinity
is transversal to C determine the Alexander polynomial. Another consequence, is
periodicity of the homology of cyclic covers. In the abelian case the growth of the
homology is polynomial periodic (cf. [31])

The calculation of the homology of cyclic covers using theory of adjoints was
carried out in [81] (the case when C has cusps and nodes), [40] (the case when C has
singularities of the form xk = yk or xk = yk+1) and, much later, for the curves with
arbitrary singularities, in [42]. The proofs for a generalization to situation including
hypersurfaces having arbitrary dimension is given in [49]. In fact all these proofs
yields the irregularity q = dimH1(Ṽn,OṼn

) = dimH0(Ṽn, Ω1
Ṽn

) = 1
2dimH1(Ṽn,C)

(and in [49] the Hodge number hn,0 for cyclic coverings of Pn+1).
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For details of the using this method we shall refer to [49] and section 5.2, but
here we shall only remark that the adjoint ideal of a germ (W, P ) ∈ (C3, P ) of
isolated singularity at P consists of germs in OP which restriction to W belongs to
Φ∗(Ω2

W̃
) where Φ : W̃ →W is a resolution of singularities of W . If W is given by an

equation F = 0, then the 2-forms on W − P are residues of 3-forms ψ(x,y,z)dx∧dy∧dz
F (x,y,z)

on C3 having pole of order one along W i.e. restrictions of 2-forms:

ψ(x, y, z)dx ∧ dy
∂F (x,y,z)

∂z

(10)

on W − P .
On the other hand the 2-forms on a resolution can be described as the 2-forms

on W − P which can be extended over the exceptional locus of Φ. Hence a germ
ψ(x, y, z) is in the adjoint ideal of W if the pull back of the form (10) on resolution
W̃ extends over the exceptional set. Such interpretation of 2-forms on resolutions
allows to relate the dimensions of space 1-forms on Ṽn (which is isomorphic to
H1(Ω2

Ṽn
)) to H1 of certain sheaf of ideals on P2 which we are going to describe.

Let φ(x, y) be a germ of a holomorphic function. Let us consider the function
Ξφ(n) which assigns to a n the minimal k such that zkφ(x, y) belongs to the adjoint
ideal of the singularity zn = f(x, y).

Lemma 2.9 There exist κφ ∈ Q (also depending on singularity f(x, y)) such that
for Ξψ(n) = [κφn] ([..] denotes the integer part)

The adjoint ideal of a function F (x, y, z), which is generic for its Newton poly-
tope, can be described as follows: a monomial xαyβzγ is in the adjoint ideal of
F (x, y, z) if and only if the point (α+1, β+1, γ+1) is inside the Newton polytope of
F (x, y, z) (cf. [61]). Hence if f(x, y) = xa+yb and φ(x, y) = xiyj then zkxiyj is in the
adjoint ideal of zn = f(x, y) = xa+yb if and only if (i+1)bn+(j+1)an+(k+1)ab >
abn or k + 1 > n(1− (i + 1) 1

a − (j + 1)1
b ). Therefore:

Ξxiyj (n) = max([n(1− (i + 1)
1

a
− (j + 1)

1

b
)], 0) (11)

This construction can be used to associate to a constant κ ∈ Q the following
ideal in the local ring of the singular point of germ f(x, y):

Definition 2.10 Let κ ∈ Q. The corresponding ideal of quasiadjunction is defined
as follows:

Jκ = {φ(x, y)|κ > κφ}

For example if f(x, y) = x2 + y3 then:

κxiyj (n) =
{

[n
6 ], (i,j)=0

0, i + j ≥ 1
(12)

and hence there is only one constant of quasiadjunction κ = 1
6 . Moreover, J 1

6
is

generated by monomials such that i + j ≥ 1 i.e. is the maximal ideal.
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Loeser and Vaquié showed that the constants of quasiadjuction are precisely the
elements of Arnold-Steenbrink spectrum of singularity f(x, y) which are belong to
the interval (0, 1). In particular exp(2πiκφ) are the eigenvalues of the monodromy
of f(x, y) = 0 and hence are the roots of the Alexander polynomial of the link
of f(x, y). After introduction of multiplier ideals it was soon realized that the
ideals of quasiadjunction are closely related to multiplier ideals (cf. section 5.4
below). J.Kollar noticed the connection between the log-canonical threshold and
the constants of quasiadjunction (cf. [35] and section 5.4).

Using the ideals Jκ in the local rings of points in P2, which are the singular
points of a curve C ∈ P2, one defines the ideal sheaf

Jκ = KerOP2 → ⊕P∈SingCOP /Jκ,P (13)

where Jκ,P is the ideal corresponding to the singularity of C at P and the constant
κ. Using this we can calculate the Alexander polynomial as follows:

Theorem 2.11 Let C be a curve in P2 having degree d and let κ1, ...., κN be the
collection of all constants of quasiadjunction of all singular points of C. Then the
Alexander polynomial ∆C(t) is given by:

Πi,dκi∈Z[(t− exp(2π
√
−1κi)(t− exp(2π

√
−1κi)]

dimH1(P2,Jκi(d−3−dκi))

Note that the exponent can be written as follows:

dimH1(P2,Jκi
(d− 3− dκi)) = dimH0(P2,Jκi

(d− 3− dκi))− χ(Jκi
) (14)

(since H2(P2,Jκi
(d − 3 − dκ) = 0). In other words the exponent is the difference

between the actual and “expected” dimensions of the linear system of curves of
degree d − 3 − dκi which local equations belong to the ideals of quasiadjunction
corresponding to the constant κ. Therefore, (14) is what is classically called the
superabundance of this linear system.

As an example, let us consider the sextics with six ordinary cusps. Since only
one type of singularities is present and (12) shows that there is only one constant
quasiadjunction κ = 1

6 , the Alexander polynomial has the form

[(t− exp(
2πi

6
))(t− exp(−2πi

6
))]s = (t2 − t + 1)s

Now the linear system in question consists on the curves having degree 6−3− 6
6 = 2

with local equations belonging to the maximal ideals of the singular points. Since the
dimension of the space of quadrics in 6, the expected dimension of our linear system
is 0 and if a quadric containg all six cusps does exist then the actual dimension is
1 (one can show that this is the maximal possible value). Hence s = 1 and the
Alexander polynomial is t2 − t + 1.

For a sextic Ĉ3 with nine cusps, which is dual to a non singular cubic, one has
dimH0(P2,Jκi

(d− 3− dκi)) = 0 and χ(Jκi
) = −3 and hence:
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∆Ĉ3
(t) = (t2 − t + 1)3 (15)

For the curve from [77] given by the equation: f 2
3n +f 3

2n = 0 where fn is a generic
form of degree n, which has only ordinary cusps at 6n2 points forming a complete
intersection of curves of degrees 2n and 3n the exponent of t2 − t + 1 in theorem
2.11 is the superabundance of the curve of degree 6n− 3− 6n

6 passing through this
complete intersection. By a theorem of Cayley-Bacharach this superabundance is 1
and hence the Alexander polynomial is t2 − t + 1.

2.3 Commutative fundamental groups

2.3.1 Commutativity in terms of local type of singularities. Nori’s the-

orem.

Historically, much of the work on the fundamental groups of the complements, was
focused on the cases when the fundamental group is abelian. In this case Prop.
2.3 yields the complete calculation of π1. For example, as was pointed out in the
introduction, F.Severi was claiming that the fundamental group of the complement
to a curve having nodes as the only singularities is abelian. More precisely he
claimed the irreducibility of the stratum of nodal curves (this was proven by much
later by J.Harris in [29]). The irreducibility of this stratum yields that each nodal
curve can be degenerated into a union of lines in general position and for such union
(these days called a generic arrangement of lines) a direct calculation shows that the
fundamental group of the complement is free abelian. More generally than in the
case of nodal curves, one expects, speaking very vaguely, that if a curve has not too
many singularities or if the singularities are sufficiently mild then the fundamental
groups of the complement will be abelian. A precise result in this direction follow
from a theorem of M.Nori:

Theorem 2.12 Let D and E be a curves on a non singular surface X. Assume
that D has nodes as the only singularities, that D and E intersects transversally
and that for an irreducible component C of D one has C2 > 2r(C) where r(C) is
the number of nodes on C. Then N = Kerπ1(X −D−E)→ π1(X −E) is abelian.

For plane curves one obtains the following which extends earlier commutativity
results of S.Abhyankar.

Theorem 2.13 For a germ φ of a curve singularity in C2 let us define the invariant
e(φ) as follows. Let Φ : S → C2 be a resolution of the singularity and Φ∗(φ) = F +G
where F is the proper transform of φ = 0, G is the exceptional set and F and Gred

meet transversally. Let e(φ) = G(G + 2F ) and let F (C), for a curve C on a non
singular projective surface, be the sum of invariants e(φ) for all singularities of C.
If C2 > F (C) then the extension π1(X − C)→ π1(X) is central.

Proof. Apply Nori’s theorem the proper transform C ′ of a resolution of singulari-
ties of C. Then if G is the exceptional set then C2 = (C ′+G)2 = C ′2+2(C ′, G)+G2 =
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C ′2 + F (C). Hence the assumed inequality translates into C ′2 > 0. Hence Nori’s
theorem yields the conclusion. Note that for node we have G = 2E where E is the
exceptional line and C ′ = L1+L2. Hence G2+2(G, C ′) = 4E2+2·2E(L1+L+2) = 4.
For a cusp F (φ) = 6. In particular on a simply-connected surface the fundamen-
tal group of the complement to a curve with δ nodese and κ cusps is abelian if
C2 > 6κ+ 4δ.

The following question is still open:

Question 2.14 Let N be a normal subgroup of π1(X) generated by the images of
the fundamental groups of non singular models of components. Does N has a finite
index in π1(X)

If so, then the fundamental group of a surface, containing a rational curve with
positive self-intersection, must be finite.

2.3.2 On a proof of Nori’s theorem.

Let us consider a special case when E = ∅, and C is an irreducible nonsingular
curve on X. Let U be a tubular neighborhood of C. Then U − C → C is a circle
fibration and the fiber δ is the element of π1(U − C) belonging to the center of
the latter group. Since in this case the assumption of the theorem is C2 > 0, the
theorem of Nakai and Moishezon (cf. [30]) yields that C is ample and hence a small
deformation D of nC, which we may assume belongs to U , is very ample and also
smooth. By usual Lefschetz theorem π1(D − C) → π1(X − C) is surjective and
hence π1(U − C) → π1(X − C) is surjective as well. Therefore the image if the
class of γ in π1(X − C) belongs to its center. On the other hand, any element in
N = Kerπ1(X −D)→ π1(X) is product of elements conjugated to γ. Indeed, take
such element δ and consider 2-disk ∆ which it bounds in X. We can assume that
∆ ∩ C consists of finitely many transversal intersections. Therefore δ = Πδi where
δi = αiγiα−1 with γi being a fiber of U − C → C and αi is a path going from the
base point to a point on the boundary of U . In particular δi is conjugate to γ in
π1(X − C) and hence is equal to γ. Hence δ is a power of γ i.e. N is cyclic.

Crutial in the proof of Nori’s theorem in the case of nodal C is the following
Nori’s weak Lefschetz theorem which is very interesting by itself.

Theorem 2.15 Let i : H → U be an embedding of connected compact complex
analytic subspace (possibly non reduced) into a connected complex manifold U in
which H is defined by a locally principal sheaf of ideals. Assume that OU(H)|H is
ample and that dimU > 2. Let q : U → X be holomorphic local isomorphism with
the target being a smooth projective variety and h = q ◦ i. Let R be an arbitrary
Zariski closed subset and G = Imπ1(U−q−1(R))→ π1(X−R).Then G is a subgroup
of finite index.

2.4 Higher homotopy groups

Another natural invariants of the homotopy type of the complement are the higher
homotopy groups of the complement. However for curves, the higher homotopy
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groups, unlike the fundamental groups, it seems, do not have an algebro-geometric
significance. Moreover, in most cases the higher homotopy groups, considered as
abelian groups are infinitely generated. A more useful way to consider them is by
using the action of π1 on πk i.e. consider πk as a module over π1. However unless
π1 is abelian, understanding modules over π1 involves a subtle non commutative
algebra. For curves however, as will be explained in the next section, the homotopy
type of the complement is determined by another invariant of the pair (P2, C) i.e.
the braid monodromy. On the other hand for hypersurfaces in Pn+1 with n > 1 the
homotopy groups in dimensions up to n have interesting algebro-geometric meaning
which we shall proceed to discuss.

2.4.1 Action of the fundamental group on higher homotopy groups

Let us start with the example which shows why the homotopy groups of simplest
topological spaces are infinitely generated.

Example 2.16 Let us consider π2(S1 ∨ S2). Clearly π1(S1 ∨ S2) = Z. On the
other hand π2(S1 ∨ S2) can be identified with π2 of the universal cover of S1 ∨ S2.
Viewing the universal covering map of the circle as the the quotient of R by the
subgroup of integers makes it natural to view the universal cover of S1 ∨ S2 as the
real line with S2’s attached at the integer points. Hence the universal cover has
H2, and by Hurewicz theorem π2, isomorphic to Z∞. On the other hand, since
the deck transformation of the universal cover acts transitively on S2’s attached to
R, both H2 and π2 are cyclic modules over the group of deck transformations i.e
π2( ˜S1 ∨ S2) = Z[t, t−1] (X̃ denotes the universal cover).

In general, the homotopy groups can be given the structure of a module over
the fundamental group using the Whitehead product: πn × πm → πn+m−1. In
the case when πi(X) = 0 for 2 ≤ i ≤ n − 1, if X̃ is the universal cover then
πn(X) = πn(X̃) = Hn(X̃) and the action of π1(X) is just the action of the deck
transformations on the homology.

Such X come up naturally:

Theorem 2.17 Let V be a hypersurface in Pn+1 having only isolated singularities.
Let H be a generic hyperplane. Then π1(Pn+1−V ∩H) = Z and πi(Pn+1−V ∩H) = 0
for 2 ≤ i ≤ n− 1. Moreover, πn(Pn+1 − V ∩H)⊗Q is a Q[t, t−1]-torsion module.

More generally, the Lefschetz hyperplane section theorem yields that the conclu-
sion of the theorem holds for arbitrary hypersurfaces in PN for which the singular
locus has codimension n + 1. To see this (and also the first part of theorem 2.17)
recall it:

Theorem 2.18 (Lefschetz hyperplane section theorem)
(a) Let X be a projective subvariety having dimension n and let L be a codi-

mension d linear subspace such that X is a local complete intersection outside of L.
Then

πi(X ∩ L)→ πi(X)
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is isomorphism for 0 ≤ i < n− d and surjective for i = n− d.
(b)Let X be a quasiprojective. The conclusion of (a) take place for generic L.

Vanishing statement in theorem 2.17 follows from this and calculation of the
homotopy groups of the complement to non singular hypersurfaces.

Recently, L.Maxim ([59]) showed that the homology of infinite cyclic covers of
the complement to an affine hypersurface, generic relative to hyperplane at infinity,
are torsion modules in all dimensions except the top one.

2.4.2 Orders of the homotopy groups

It follows from the theorem 2.17 and the classification of modules over PIDs that

πn(Pn+1 − V ∩H)⊗Q = ⊕Q[t, t−1]/∆i(t)

for some polynomials ∆i(t) defines up to a unit in Q[t, t−1]. We call ∆(t) = Πi∆i(t)
the order of the group πn. Though ∆(t) cannot be calculated in terms of a local
data of singularities there is the following divisibility relation, which generalizes the
divisibility relation for the Alexander polynomials:

Theorem 2.19 (Divisibility theorem I) The order of πn(Cn+1 − V ) divides the
product of characteristic polynomials of the monodromy operators of singularities of
V :

∆(Cn+1 − V )|ΠPi∈Sing(V )∆Pi
(t)

Note that as it stated, one should assume that V it transversal to the hyperplane
at infinity. However one can define correction factors corresponding to the singular-
ities at infinity so that, if one multiplies by these correction factors the right side in
2.19, the divisibility relation will hold.

Theorem 2.20 (Divisibility theorem II) Let V be a hypersurface transversal to
the hyperplane at infinity H∞. Let S∞ be the boundary of a small tubular neighbor-
hood of H∞ and let L∞ = V ∩ S∞. Then the homology of the infinite cyclic cover
of S∞ − L∞ is a torsion C[t, t−1]-module and ∆∞ and ∆(Cn+1 − V )|∆∞.

(see [48] for a statement in the case with a weaker than transversality to H∞ as-
sumption)

3 Homotopy groups via pencils.

3.1 Van Kampen theorem and braid monodromy

Now let us consider how one actualy can calculate the fundamental group of a
complement in the case of curves and how to calculate the first non trivial homotopy
group of the complement in the case of hypersurfaces. In this section we shall deal
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with the curves (cf. also [26] where the case of possibly singular quasiprojective
varieties is discussed).

Let C be a curve on a projective surface X for which we want to describe
π1(X−C). Consider a line bundle L on X such that dimH0(X,L)) ≥ 2 and select a
2-dimensional linear system L ⊆ H0(X,L). Let B be the base locus of L (it contains
at most c1(L)2 points). We shall assume for simplicity that B∩C = ∅. The classical
case is X = P2, L = O(1) and L ⊂ H0(P2,O(1)) consists of sections with the
zerosets containing a fixed point. We have a regular map onto the projectivization
of L:

p : X − B → P(L) = P1 (16)

with generic fiber Lt0 − Lt0 ∩B, t0 ∈ P1 being non singular by Bertini’s (or Sard’s)
theorem. Though generic element of L may be singular at points of B, we shall
make additional assumtion that Lt0 is non singular at any p ∈ B ∩ C. The curve
Lt0 is ample and hence π1(Lt0 − Lt0 ∩ C) → π1(X − C) is surjective by Lefschetz
theorem. We want to describe the kernel of this map. Let Sing ⊂ P1 be the (finite)
subset of points t1, ..., tN corresponding to singular members of the pencil. Each
fiber of the pencil (16) is a punctured curve (which, if Lt0 is non singular at the
points of B, has genus g(Lt0) = c1(L)(KX+c1(L))

2 + 1).
For each d one can define the braid group Bd(Lt0 − B) which is the group of

isotopy classes of orientation preserving diffeomorphisms of Lt0 which are constant
in a neighborhood of B in Lt0 . In the case Lt0 − B ∩ Lt0 = C one obtains the
classical Artin’s braid group with generators σi, i = 1, ..., d− 1 and relations

σiσj = σjσi |i− j| ≥ 2, σiσi+1σi = σi+1σiσi+1 i = 1, .., d− 2 (17)

(for presentations of braid groups similar to Bd(Lt0−B) by generators and relations
and extending this one, see [73])

We want to construct a homomorphism π1(P1 − Sing, t0)→ Bd(Lt0 −B) called
braid monodromy and use it to describe π1(X − C). We shall start by defining
“good” systems of generators of π1(C − Sing), which we shall use to give a finite
presentation for this fundamental group.

Definition 3.1 Let Sing = {t1, ..., tN}. A system of generators γi ∈ π1(C−
⋃

i ti, t0)
is called good if each of the loops γi : S1 → C − ⋃

i ti extends to a map of the disk
D2 → C with non-intersecting images for distinct i’s.

One way to construct a good system of generators is the follwoing. Select a
system of small disks ∆i about each point ti i = 1, ..., N , and choose a system of
N non-intersecting paths δi connecting the base point t0 with a point of ∂∆i. Then
γi = δ−1◦∂∆i◦δi is a good system of generators (with, say, the counterclockwise ori-
entation of ∂∆i). We shall need also good systems of generators of the fundamental
groups of the complements to a finite set of N points on a compact Riemann surface
having genus g ≥ 0. Those are the systems of generators γ′1, ..., γ

′
2g, consisting of the

images 2g sides of a 4g-gon for some presentation of the surface as a 4g-gon with
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identified sides and a good system of generators γ1, ..., γN of the complement to N
points in this 4g-gon in the above sense. We have the only relation

R : Πγ1 · ... · γN = Π[γ′i, γ
′
i+1] (18)

In the case g = 0 this relation becomes Πγ1 · ... · γN = 1.
Now let us define the braid monodromy corresponding to an element γ ∈ π1(P1−

Sing). Let γ ∈ P1 − Sing be the image of an embedding of S1 taking the base
point to t0. We can view γ as the image of the map ι : I → P1 − Sing (I is
the unit interval) such that ι(0) = ι(1) = t0. Then (X − B − C) ×P1−Sing I is
a locally trivial fibration over I and hence is a trivial fibration. This means that
there is a map Φ : Lt0 − Lt0 ∩ C × I → X − B such that Φ(t)|Lt0−Lt0∩C×t is a
homeomorphism onto Lt − Lt ∩ C. Note that though Φ is not unique any two
choices are isotopic via isotopies commuting with projections on I. Hence we obtain
the map Φ(1) : Lt0 − Lt0 ∩ C → Lt0 − Lt0 ∩ C and the isotopy class of this map is
well defined. We can assume that this map keeps B fixed. One checks immediately
that dependence on ι yields homotopic maps Φ(1) and a homotopy of γ extends to
a homotopy of Φ(1) (but B may not be possible to preserve). Hence we obtain the
braid monodromy homomorphism:

π1(P
1 − Sing)→ π0(Diff(Lt0)) = Bd(Lt0) (19)

(where d = (C, Lt) and the last group is the braid group of Riemann surface Lt0 .
There is a useful way to encode algebraically the homomorphism (19) using the

choice of a good system of generators of π1(P1 − Sing). Let us fix a fiber Lt∞ of
the pencil which we shall call the fiber at infinity. Then we can select monodromy
transformations all fixing a neighborhood of B for all γi i.e. we obtain ordered
system of braids: β(γi) = Φγi

(1) ∈ Bd(Lt0−Lt0∩C−B) with the order given by the
order of the good systems of generators. The latter is given by the counterclickwise
ordering of loops about the point t0. Moreover, the product is a fixed word in
Bd(Lt0) independend of C. For example we obtain in the case of curves in C2:

Πβ(γi) = ∆2 (20)

where ∆2 is the generators of the center of the Artin’s braid group Bd (cf. [46]).
We have the following calculation in terms of the braid monodromy originated

by Zariski-van Kampen:

Theorem 3.2 Let b ∈ ∂T (B) ∩ Lt0 where T (B) is a neighborhood of B in X and
let αj be a good system of generators of π1(Lt0 − Lt0 ∩ C, b). Let R be the relation
among αj. Then

π1(X − C − Lt∞) = π1(Lt0 − Lt0 − B, b)/(β(γi)(αi)α
−1
i )

(quotient by the normal subgroup generated by specified elements). The group π1(X−
C) can be obtained by adding to the above the relation R.
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In the case of plane curves we have just the homomorphism into Artin’s braid
group which by itself is an interesting invariant of plane curves containing more
information than the fundamental group. For example the braid monodromy deter-
mines the homotopy type of the complement C2−C (cf. [45]). Many calculations are
done for curves C which are the branching curves of generic projections of surfaces
(cf. [76]). Recently braid monodromy found applications in symplectic geometry
(cf. [4]).

3.2 Homotopy groups via pencils

Now let V be a hypersurface in Cn+1 transversal to the hyperplane at infinity and
having only isolated singularities. We want to describe calculation of the first non
trivial homotopy group πn(Cn+1−V ) in terms of pencils generalizing the Zariski-van
Kampen procedure described above.

We start with a high dimensional analog of the braid group and a linear rep-
resentation generalizing the Burau representation of the braid group. In higher
dimensions we have several candidates for such a generalization.

Let us consider a sphere S2n−1 in Cn of a sufficiently large radius. Let ∂∞V =
V ∩ S2n−1 and let Emb(V,Cn) be the space of submanifolds of Cn with the follow-
ing property: each is diffeomorphic to V and, moreover, is isotopic to the chosen
embedding of V . In addition we require that for any V ′ ∈ Emb(V,Cn) one has
V ′(V ) ∪ S2n−1 = ∂∞V . We shall use the topology with the basis consisting of sets
U(V, ϵ) of submanifolds V ′ ⊂ Cn which belong to the tubular neighborhood of V
having radius ϵ and which are isotopic to V .

Let us describe a linear representation

π1(Emb(V,Cn))→ Autπn(Cn − V ) (21)

After a choice of a basis in the π1(Cn−V )-module πn(Cn−V ) this homomorphism
becomes the homomorphism into GLr(Z[t, t−1]) where r is the rank of H̃n(Cn−V,Z)
(the reduced homology of the complement). It is given in terms of the representation
of another group which also is a candidate for the high-dimensional braid group.

Let Diff(Cn, S2n−1) be the group of diffeomorphisms of Cn acting as the identity
outside S2n−1. This group can be identified with the group Diff(S2n, D2n) of the
diffeomorphisms of the sphere fixing a disk. Let Diff(Cn, V ) be the subgroup of
Diff(Cn, S2n−1) of the diffeomorphisms which take V into itself.

The group Diff(Cn, S2n−1) acts transitively on Emb(V,Cn) with the stabilizer
Diff(Cn, V ). Therefore we have the following exact sequence:

π1(Diff(S2n+2, D2n+2))→ π1(Emb(Cn, V ))→ π0(Diff(Cn, V )) (22)

→ π0(Diff(S2n+2, D2n+2))→

Any element in Diff(Cn, V ) induces the self map of Cn − V and also the self map
of the universal (in the case n = 1 universal cyclic) cover of this space. Hence it
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induces an automorphism of Hn( ˜Cn − V,Z) = πn(Cn − V ), n > 1. This gives the
representation:

π0(Diff(Cn, V ))→ Autπn(Cn − V ) (23)

The composition of the boundary homomorphism in (22) with the map (23)
results in representation (21). The groups π1(Emb(Cn, V )) and π0(Diff(Cn, V ))
are high-dimensional analogs of the braid groups and their algebraic study was not
carried out so far. However some high-dimensional analogs of the mapping class
groups were studied in (cf. [33]).

In the case n = 1, V is just a collection of points in C, π1(Emb(C, V )) =
π0(Diff(C, V )) is Artin’s braid group, and this construction gives the homomor-
phism of the braid group into AutH1( ˜C− V,Z) which, after a choice of the basis
in H1( ˜C− V ) corresponding to the choice of the generators of the braid group,
gives the reduced Burau representation. In higher dimensions the isomorphism
π1(Emb(V,Cn)) = π0(Diff(Cn, V )) fails.

Problem 3.3 Calculate the groups π1(Emb(V,Cn)) and π0(Diff(Cn, V ))

Now we can define the relevant monodromy operator corresponding to a loop
in the parameter space of a linear pencil of hyperplane sections. By our assump-
tions, the projective closure of V is a hypersurface in Pn+1 which has only isolated
singularities. Let H be the hyperplane at infinity (which is transversal to V ). Let
Lt, t ∈ C, be a pencil of hyperplanes the projective closure of which has as the
base locus a hyperplane M in H such that M also is transversal to V . Let t1, ..., tN
denote those t for which V ∩Lt has a singularity. We shall assume that for any i the
singularity of V ∩ Lti is outside of H . The pencil Lt over C−⋃

i ti defines a locally
trivial fibration τ of Cn+1 − V with a non-singular hypersurface in Cn transversal
to the hyperplane at infinity as a fiber. The restriction of this fibration on the com-
plement to a sufficiently large ball is trivial, as follows from the assumptions on the
singularities at infinity. Let γ : [0, 1] → C − ⋃

i ti (i = 1, ..., N) be a loop with the
base point t0. A choice of a trivialization of the pull back of the fibration τ on [0, 1]
using γ, defines a loop eγ in Emb(Lt0 , V ∩ Lt0). Different trivializations produce
homotopic loops in this space.

Definition 3.4 The monodromy operator corresponding γ is the element in
Aut(πn(Lt0 − Lt0 ∩ V )) corresponding in (21) to eγ

Next we will need to associate the following homomorphism with a singular fiber
Lti and a loop γ with the base point t0 in the parameter space of the pencil where
γ bounds a disk ∆ti not containing other singular points of the pencil :

πn−1(Lti − Lti ∩ V )→ πn(Lt0 − Lt0 ∩ V )/Im(Γ− I). (24)

Here Γ is the monodromy operator corresponding to γ.
To construct (24) let us note that the π1-module on the right in (24) is isomorphic

to the homology Hn( ˜τ−1(∂∆ti),Z) of the infinite cyclic cover of the restriction of
the fibration τ on the boundary of ∆ti . This follows immediately from the Wang
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sequence of a fibration over a circle and the vanishing of the homotopy of Lt0−Lt0∩V
in dimensions below n. Let Bi be a polydisk in Cn+1 such that Bi = ∆i × B for a
certain polydisk B in Lt0 . Then ˜τ−1(∆i)− Bi is a trivial fibration over ∆i with the
infinite cyclic cover ˜Lti − Lti ∩ V as a fiber. In particular, one obtains the map:

πn−1(Lt0 − Lt0 ∩ V ) = Hn−1( ˜Lt0 − Lt0 ∩ V ,Z)→ Hn( ˜τ−1(∆i)− Bi,Z) =

Hn−1( ˜Lt0 − Lt0 ∩ V ,Z)⊕Hn( ˜Lt0 − Lt0 ∩ V ,Z) (25)

Definition 3.5 The degeneration operator is the map (24) given by composition of

the map (25) with the map Hn(
˜τ−1(∆i)−Bi,Z)→ Hn(

˜τ−1(∆i),Z) = πn(Lt0−Lt0 ∩
V ) induced by inclusion.

The following is a high-dimensional analog of the van Kampen theorem.

Theorem 3.6 Let V be a hypersurface in Pn+1 having only isolated singularities
and transversal to the hyperplane H at infinity. Consider a pencil of hyperplanes in
Pn+1 the base locus M of which belongs to H and is transversal in H to V ∩H. Let
Cn

t (t ∈ Ω) be the pencil of hyperplanes in Cn+1 = Pn+1 −H defined by Lt (where
Ω = C is the set parameterizing all elements of the pencil Lt excluding H). Denote
by t1, ..., tN the collection of those t for which V ∩ Lt has a singularity. We shall
assume that the pencil was chosen so that Lt ∩ H has at most one singular point
outside of H. Let t0 be different from either of ti (i = 1, ..., N). Let γi (i = 1, ..., N)
be a good collection, in the sense described in definition (3.1), of paths in Ω based
in t0 and forming a basis of π1(Ω−

⋃
i ti, t0) and let Γi ∈ Aut(πn(Cn

t − V ∩Cn
t )) be

the monodromy automorphism corresponding to γi. Let σi : πn−1(Cn
ti − V ∩Cn

ti)→
πn(Cn

t0 −V ∩Cn
t0)

Γi be the degeneration operator of the homotopy group of a special
element of the pencil into the corresponding quotient of covariants constructed above.
Then

πn(Cn+1 − V ∩Cn+1) = πn(Cn − V ∩Cn)/(Im(Γ1 − I), Imσ1, ..., Im(ΓN − I), σN)

We refer for a proof to the paper [48]. There is another way to describe this
homotopy group replacing the degeneration operator by a variation operators on
the homotopy groups which we shall describe now.

3.3 Variation operators

Variation operators classically defined in homology (or cohomology). The idea of
defining homotopy variation operator comes from the fact that the homotopy groups
on question are the homology groups of covering spaces. A description of the ho-
motopy groups using variation operators was carried out in [11].

We shall continue to use the notations from previous section but in addition let us
select e ∈M−M ∩V which we shall use as the base point for the homotopy groups.
The homotopy variation operator is a certain homomorphism of Z[t, t−1]-modules:

Vi: πn(Lt0 − Lt0 ∩ V, M −M ∩ V, e) −→ πn(Lt0 − Lt0 ∩ V, e) (26)
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associated with each γi for 1 ≤ i ≤ N .
As in definition (3.5) of degeneration operators we shall go to the d fold cover

and use the homological variation operators. Let W ⊂ Pn+2 be the d-fold cyclic
branched over V cover of Pn+1, j : V →W the embedding and Lt be the pull back
of the pencil Lt on W . By abuse of notations we shall denote by the same letter the
hyperplane in Pn+2 cutting the corresponding divisor on W . Lt0 ∩W is the d-fold
cover of Lt0 branched over V ∩ Lt0 . We shall consider the homological variation
operators:

Vi: Hn(Lt0 ∩ (W − j(V )),M ∩ (W − j(V ))) −→ Hn(Lt0 ∩ (W − j(V ))) (27)

associated, for 1 ≤ i ≤ N , with the homotopy classes γi.
The definition and the properties of operators Vi are discussed in [9]. For a

relative n-cycle Ξ on Lt0 ∩ (W − j(V )) with boundary in M ∩ (W − j(V )), one
defines ([·] denotes the class of a cycle):

Vi([Ξ](Lt0∩(W−j(V )),M∩(W−j(V )))) = [Hi∗(Ξ)− Ξ]Lt0∩(W−j(V )) (28)

where Hi is the geometric monodromy corresponding to γi. Since Hi leaves the
points of M∩(W−j(V )) fixed the chain Hi∗(Ξ)−Ξ is actually an absolute cycle and
the correspondence Ξ 5→ Hi∗(Ξ) − Ξ induces a homomorphism Vi at the homology
level ([9, Lemmas 4.6 and 4.8]). This homomorphism depends only on the homotopy
class γi ([9, Lemma 4.8]).

Now, if n ≥ 2 then for 1 ≤ i ≤ N , using the isomorphism αt0 and the homo-
morphism ᾱt0 , Vi yields the homotopical variation operator Vi by requiring that the
following diagram will be commutative:

Hn(Lt0 ∩ (W − j(V )),M ∩ (W − j(V )))
Vi−→ Hn(Lt0 ∩ (W − j(V )))

↑ ᾱt0 ↑ αt0

πn(Lt0 − Lt0 ∩ V, M −M ∩ V, e)
Vi−→ πn(Lt0 − Lt0 ∩ V, e).

(29)

As Vi depends only on the homotopy class γi so do the operators Vi.
With these definitions we have the following (cf. [11]):

Theorem 3.7 Let V be a hypersurface in Pn+1 with n ≥ 2 having only isolated
singularities. Consider a pencil (Lt)t∈P1 of hyperplanes in Pn+1 with the base locus
M transversal to V . Denote by t1, . . . , tN the collection of those t for which Lt ∩V
has singularities. Let t0 be different from either of t1, . . . , tN . Let γi be a good
collection of paths in P1 based in t0. Let e ∈ M − M ∩ V be a base point. Let
Vi be the variation operator corresponding to γi. Then the inclusion induces an
isomorphism:

πn(Pn+1 − V, e)←− πn(Lt0 − Lt0 ∩ V, e)
/ N∑

i=1

Vi (30)

There is affine version of this theorem equivalent to this one since πn(Pn+1−V ) =
πn(Cn+1 − V ) in the case when H is transversal to V .

Recently, Cheniot and Eyral proposed definition of homotopy variation operator
in general showed that the map as in the above theorem is surjective (cf. [10]; see
also [78] for another discussion of variation operators).
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4 Local multivariable Alexander invariants: topo-

logical theory

Now we want to develop an abelian version of the cyclic theory presented so far.
Though our goal at this point, as in the link theory, is to study abelian covers, what
will follow deviates from the link-theoretical point of view at several points. The
most important one is that the Alexander type invariants are not polynomials. The
substitute for the orders of the modules over PID which were discussed before are
the subvarieties of commutative algebraic groups called the characteristic varieties.

4.1 Characteristic varieties of groups.

4.1.1 Definitions.

Let us start with a classical construction of commutative algebra. Let R be a
Noetherian commutative ring with a unit and let M be a finitely generated R-
module. Let the homomorphism Φ : Rm → Rn be such that M = CokerΦ. The
k-th Fitting ideal of M is the ideal Fk(M) generated by (n− k + 1)× (n − k + 1)
minors of the matrix of Φ. Fk(M) depends only on M rather than on Φ. The k-th
characteristic variety M is the reduced sub-scheme of SpecR defined by Fk(M).

If R = C[H ] where H is an abelian group then SpecR is a torus having the
dimension equal to the rank of H . If H is free then after a choice of generators of
H , R can be identified with the ring of Laurent polynomials and SpecR = (C∗)rkH

is a complex torus. In particular each k-th characteristic variety of an R-module is
a subvariety Vk(M) of (C∗)rkH . If H has a torsion then the number of connection
components of SpecC[H ] is the order of the torsion and the connected component
of the unit can be identified with SpecC[H/Tor(H)].

A more functorial description is the following (cf. [8]):

Vk(M) = Suppred(∧kM) = Suppred(R/Fk(M)) (31)

We shall apply this construction to the modules A(G,φ) defined in section 2.2.3.
for pairs (G,φ) where φ : G→ Zr. Prime examples which we shall consider are the
following:

Example 4.1 (i) Links in S3. In this case H1(S3 − L,Z) = Zr where L is such a
link and r is the number of its components.
(ii) Algebraic curves in C2 having r irreducible components (cf. section 2.2.1)

We shall denote the corresponding characteristic varieties as Vk(G,φ) omitting
φ when no confusion is possible.

Definition 4.2 (cf. [52]) The depth of a component V of a characteristic variety
Vk(G) is the integer i = max{j|V ⊂ Vj(G)}.
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In the case r = 1 and G is one of the groups as above, V1(G) is the zero set of
the Alexander polynomial and Vk(G) is determined by the zero sets of elementary
divisors of the Alexander module. Vice versa, the zero sets of Fitting ideals deter-
mine the zero sets of elementary divisors of a module over PID. Since the orders of
Q[t, t−1]-modules in a cyclic decomposition are determined up to a unit of the ring
of Laurent polynomials the depth of each root of the Alexander polynomial, given
in terms of Vk’s, determines the Alexander module completely.

If codimV1(G,φ) in SpecC[G/G′] is equal to one then the information carried
by V1 is equivalent to the multivariable Alexander polynomial up to the exponent
of each factor (this is the case when φ is the abelianization of a link group). On
the other hand if the codimension is bigger than one then for the pair (G,φ) the
Alexander polynomial is not defined (or is trivial depending on convention) but
V1(G) can be very interesting.

Now, as the first example, let us calculate the characteristic varieties of a free
group. If G = Fr is a free group on r-generators then G′/G′′ = H1(

∨̃
r S1,Z), where

∨̃
r S1 is the universal abelian cover of the wedge of r circles. It fits into the exact

sequence:

0→ H1(
∨̃

r

S1,C)→ C[Zr]r → I → 0

with I denoting the augmentation ideal of the group ring of Zr: I = KerC[Zr]→ C

where the homomorphism sends each generator to 1 ∈ C. Indeed, as an universal
abelian cover of

∨̃
r S1 one can take the subset of Rr of points having at least r− 1

integer coordinates with the action of Zr given by translations; unit vectors of the
standard basis provide identification of 1-chains with C[Zr]r while the module of
0-chains is identified with C[Zr]. The boundary map sends each generator ei, i =
1, ..., r of C[Zr]r to (ti − 1) ∈ C[Zr]. This is the map which also appears in the
Koszul complex (cf. [74]) in which we put R = C[Z]:

∧iRr −→ ∧i−1Rr −→ ....→ Rr → R (32)

where ∂i(ej1∧ ...∧eji
) =

∑
(−1)k(tk−1)ej1 ∧ ...∧ êjk

∧ ...∧eji
. Since (t1−1, ..., tr−1)

is a system of parameters the complex (32) is exact. Therefore

H1(
∨̃

r

S1,C) = CokerΛ(r
3)C[Zr]r → Λ(r

2)C[Zr]r (33)

in the Koszul resolution corresponding to the (t1− 1), ..., (tr− 1). This implies that
Vi(Fr) = C∗r for 0 < i ≤ r − 1 and Vi(Fr) = (1, ..., 1) for r ≤ i ≤

(
r
2

)
i.e. C∗r is

component having depth r − 1, and 1 ∈ C∗r has depth
(

r
2

)
.

For arbitrary group G, as was pointed out in earlier sections, the Fox calculus
provides presentation for the extension of the homology of universal abelian cover
by the augmentation ideal of the group ring of the covering group. This is sufficient
to determine the characteristic varieties outside of the identity character.
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4.1.2 Unbranched covering

The homology of a cyclic unbranched covering Xn of a CW-complex X with π1(X) =

G corresponding to the homomorphism G
φ→ Z→ Z/nZ can be found using Milnor’s

exact sequence (cf. [62]) i.e. the homology sequence corresponding to the exact
sequence of chain complexes

0→ C∗(X̃)
tn−1−→ C∗(X̃)→ C∗(Xn)→ 0 (34)

The induced homology sequence:

→ H1(X̃,C)
tn−1−→ H1(X̃,C)→ H1(Xn,C)→ C→ 0 (35)

shows that rkH1(Xn,C) = rkCoker(tn − 1)|H1(X̃,C) + 1. In abelian case, to find the

homology of the covering Xn1,...,nr corresponding to the homomorphism G
φ→ Zr →

⊕i=r
i=1Z/niZ the Milnor’s sequence (35) should be replaced by the five term exact

sequence corresponding to the spectral sequence of the covering group H = KerZr →
⊕iZ/niZ acting on the covering space X̃ corresponding to the homomorphism φ:

Hp(Z
r, Hq(X̃,C))⇒ Hp+q(Xn1,...,nr,C) (36)

This exact sequence is

H2(Xn1,...,nr,C)→ H2(H,C)→ H1(X̃)H → H1(Xn1,...,nr,C)→ H1(H,C)→ 0
(37)

where for a H-module M , MH = M/I(H)M is the module of covariants (I(H), as
above, is the augmentation ideal of the group ring of H). This yields the following
formula for the first Betti number of abelian covers:

Proposition 4.3 Let Xn1,...,nr be the finite unbranched abelian cover of a CW-
complex X as above which is the quotient of the infinite abelian cover corresponding
to φ : G → Zr. Let Vi(G,φ) be the characteristic varieties of (G,φ). For P ∈ C∗r

let f(P, G,φ) = {max i|P ∈ Vi(G,φ)}. Then

rkH1(Xn1,...,nr) = r + Σω
ni
i =1,(ωn1

,...,ωnr)≠(1,...,1)f((ωn1
, ..,ωnr), (G,φ))

4.1.3 Homology of local systems

Homology of rank one local systems also can be described in terms of the characteris-
tic varieties. Such a local system is a homomorphism χ : G→ C∗ i.e. a character of
the fundamental group. There is a natural identification: SpecC[G/G′] and CharG.
Moreover, SpecC[G/Kerφ] can be identified with the subgroup of CharG of charac-
ters which can be factored through φ. We shall denote as X̃G/G′ is the infinite cover
corresponding to the subgroup G′. The homology H1(X,χ) of the local system χ
where χ ∈ Charπ1(X) is defined as the homology of the chain complex:

→ Ci(X̃G/G′)⊗C[G/G′] Cχ → Ci(X̃G/G′)⊗C[G/G′] Cχ (38)
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where the chains Ci(X̃G/G′) of the universal abelian covers are given the structure
of C[G/G′]-module and Cχ is C with the module structure given by the character
χ.

One has the following:

Proposition 4.4 (cf. [32],[52]) If χ ≠ 1 then

H1(X,χ) = H1(X̃G/G′,C)⊗C[H1(X,Z)] Cχ

In particular, χ ∈ CharG,χ ≠ 1 belongs to Vk(G) if and only if H1(X,χ) ≥ k.

4.2 Links of plane curves and multivariable Alexander poly-

nomial

For a link in S3 with r components the characteristic varieties are just affine subva-
rieties of the torus. An interesting problem is the following:

Problem 4.5 Which sequence of subvarieties can occur as Vi(G) where G = π1(S3−
L) for some link in S3.

For the multivariable Alexander polynomial one has:

∆(t−1
1 , ..., t−1

r ) = ∆(t1, ..., tr) (39)

(up to a unit of the ring Z[Zr] i.e. a factor ±ta1

1 ...tar
r where ai ∈ Z)

The characteristic varieties of links of algebraic singularities are very special. Let
us call a translated subgroup of Cr a coset of a subgroup Cs. Such a “subgroup” is
said translated by an element of a finite order if this coset has finite order in Cr/Cs.
Using the fact that the link of algebraic singularities are iterated torus links one can
prove the following:

Proposition 4.6 (cf. [54]) The characteristic varieties of algebraic links are unions
of translated subgroups.

For example the link of singularity xr − yr = 0 has the Alexander polynomial
t1 · ... · tr = 1. The Alexander polynomial of (x2−y3)(x3−y2) = 0 is (t21t

3
2−1)(t21t

3
2−

1) = 0 (cf. [54]).

4.3 Links of isolated non normal crossings

Disjoint non intersecting spheres of dimension greater than one and having codi-
mension 2 in an ambient sphere never can form a link of an algebraic singularity.
There is nevertheless a local abelian analog of the local cyclic theory of the links of
algebraic singularities. It appears when one looks at isolated non normal crossings
(cf. [55], [21])
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Definition 4.7 (cf. [55]) Let D1, .., Dk be divisors of a complex manifold X and
P ∈ D1∩...∩Dk. These divisors have a normal crossing at P if there exist in a neigh-
borhood of P in X and a system of complex analytic local coordinates (z1, ..., zdimX)
in it such that Di is in this neighbourhood given by the equations zi = 0. D1, ..., Dk

have an isolated non normal crossing at P is there exist a ball Bϵ in X centered at
P having sufficiently small radius ϵ such that for any Q ≠ P in Bϵ the divisors Di

containing Q form at Q a divisor with normal crossings.

In particular each Di has at most isolated singularity at P . A more general case,
when the ambient space X is allowed to have a singularity at P is considered in [21].
The theory we shall describe is invariant under analytic changes of variables so we
can assume that X = Cn+1. The starting point is the following vanishing result:

Theorem 4.8 (cf. [55]) Let X =
⋃r

i=1 Di ⊂ Cn+1 be a union of r irreducible germs
of hypersurfaces with normal crossings outside of the origin. If n ≥ 2, then

π1((∂Bϵ − ∂Bϵ ∩X) = Zr and πk((∂Bϵ − ∂Bϵ ∩X) = 0 for 2 ≤ k < n.

In the case when r = 1 this result follows from Milnor’s fibration theorem and
connectivity of Milnor fibers (cf. [60]). In fact, the universal cyclic cover of the
complement to a link of isolated hypersurface singularity D is homotopy equivalent
to the Milnor fiber MD. In particular πn(∂Bϵ−D∩∂Bϵ) = Hn(MD,Z). For general
INNC the main invariant is πn(∂Bϵ−∪Di∩∂Bϵ). This, as usual, is the module over
Z[π1(∂Bϵ−∪Di∩∂Bϵ] = Z[t1, t

−1
1 , ..., tr, t−1

r ]. We shall call it the homotopy module of
INNC. In the case r = 1 this module structure is equivalent to the module structure
on an abelian group with an automorphism where the abelian group is the middle
homology of the Milnor fiber and the automorphism is the monodromy operator.
Notice that in the case of normal crossing (i.e. when the singularity is absent), the
universal abelian cover of ∂Bϵ−∪Di ∩ ∂Bϵ is contractible and all homotopy groups
are trivial.

Definition 4.9 (cf. [55]) k-th characteristic variety Vk(X) of an isolated non-
normal crossing X = ∪i=r

i=1Di is the subset in SpecC[π1(∂Bϵ − ∂Bϵ ∩ (
⋃

1≤i≤r Di))]
formed by the zeros of the k-th Fitting ideal of πn(∂Bϵ − ∪Di ∩ ∂Bϵ)

Let us consider an example of a non normal crossing. The simplest non trivial
case is when the components are given by linear equations i.e are given in Cn+1 by
the equation l1 · ... · lr = 0, where li are generic linear forms (i.e. a cone over a generic
arrangement of hyperplanes in Pn). Since the complement to a generic arrangement
of r hyperplanes in Pn has a homotopy type of n-skeleton of the product of r − 1-
copies of the circle S1 (in minimal cell decomposition in which one has

(
r−1

i

)
cells of

dimension i) one can calculate the module structure on the πn of such skeleton as
follows (cf. [55]). The universal cover of this skeleton is obtained by removing the
Zr−1 orbits of all open faces of a dimension greater than n in the unit cube in Rr−1.
Hence πn(∂Bϵ−D) = Hn( ˜Skn((S1)r−1),Z) ( ˜Skn((S1)r−1) is the universal cover of the
n-skeleton). The chain complex of the universal cover of (S1)r−1 can be identified
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with the Koszul complex of the group ring of Zr−1 = Zr/(1, ..., 1) (so that the
generators of Zr correspond to the standard generators of H1(∂Bϵ−D)). The system
of parameters of this Koszul complex is (t1− 1, .., tr − 1). Hence Hn( ˜∂Bϵ −D,Z) =
KerΛnR → Λn−1R where R = Z[t1, .., tr, t

−1
1 , ..., t−1

r ]/(t1 · ... · tr − 1). As a result,
one has the following presentation:

Λn+1(Z[t1, t
−1
1 , ..., tr, t

−1
r ]/(t1..., tr − 1)r)→ Λn(Z[t1, t

−1
1 , ..., tr, t

−1
r ]/(t1..., tr − 1)r)→

(40)
πn(Cn+1 −

⋃
Di)→ 0

In particular, the support of the πn is the subgroup t1 · ... · tr = 1.
The relation between the characteristic varieties, the unbranched covering spaces

and the local systems described in the case of links in S3 extends to this situation
as well. We have the following:

Proposition 4.10 (cf. [55]) (a) For each P ∈ SpecC[π1(∂Bϵ − ∂Bϵ ∩X)] let

f(P, X) = {max k |P ∈ Vk(X)}

Let Um1,...,mr be unbranched cover of ∂Bϵ − ∂Bϵ ∩ (
⋃

1≤i≤r Di) corresponding to the
homomorphism π1(∂Bϵ − ∂Bϵ ∩ (

⋃
1≤i≤r Di)) = Zr → ⊕1≤i≤rZ/miZ. Then

rkHp(Um1,...,mr ,C) = Λp(Zr) for p ≤ n− 1,

rkHn(Um1,...,mr,C) =
∑

(...,ωj,...),ω
mj
j =1

f((...,ωj, ...),
⋃

1≤i≤r

Di)

(b) If 1 ≠ χ ∈ Charπ1(∂Bϵ−∂Bϵ∩(
⋃

1≤i≤r Di) = SpecC[∂Bϵ−∂Bϵ∩(
⋃

1≤i≤r Di)]
is a character of the fundamental group then

Hi(∂Bϵ − ∂Bϵ ∩ (
⋃

1≤i≤r

Di),χ) = 0 1 ≤ i ≤ n− 1

Hn(∂Bϵ − ∂Bϵ ∩ (
⋃

1≤i≤r

Di),χ) = πn(∂Bϵ − ∂Bϵ ∩ (
⋃

1≤i≤r

Di))⊗Z C⊗C[H1(X,Z)] Cχ

Milnor theory [60] is applicable to INNC as to any hypersurface and one can
relate relate Milnor’s invariants to the characteristic varieties discussed here. We
have the following:

Proposition 4.11 (cf. [55]) The homology of the Milnor fiber FD of the INNC
singularity D is given by:

Hp(FD,Z) = Λp(Zr−1) for 1 ≤ p < n

The action of the monodromy of this homology is trivial. The multiplicity of ω ≠ 1
as a root of the characteristic polynomial ∆n(D, t) of the Milnor’s monodromy on
Hn(FD,C) is equal to:

mω = f((...,ω, ...), D) = max{i|(ω, ....,ω) ∈ Vi(D) ⊂ SpecC[π1(∂Bϵ − ∂Bϵ ∩D)]}
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In the case of INNC the unbranched covering admits a natural compactification
which provides model for the abelian branched covering of the sphere S2n+1 with
the link of INNC as the branching locus. The branching cover itself is a link of an
isolated complete intersection singularity.

If the local equations of the locally irreducible components D1, ..., Dr are f1, ..., fr,
then we can use as a model of abelian branched cover the link of singularity:

zm1

1 = f1(x1, ..., xn+1), ...., z
m1

1 = f1(x1, ..., xn+1) (41)

As a link of ICIS the link of singularity (41) is a (n − 1)-connected manifold
having the dimension equal to 2n+1. We shall express the homology of this link in
terms of the characteristic varieties of the homotopy modules associated to INNCs
formed by various components of D =

⋃
Di.

Proposition 4.12 Let Vm1,...,mr be the link of singularity (41) which is the branched
cover of ∂Bϵ branched over
∂Bϵ ∩ (

⋃
1≤i≤r Di) with the Galois group G = ⊕1≤i≤rZ/miZ. For each χ ∈ CharG

let Iχ = {i|1 ≤ i ≤ r,χ(Zmi
) ≠ 1} where Zmi

is the i-th summand of G. Any χ can
also be considered as a character of π1(∂Bϵ − ∂Bϵ ∩ (

⋃
i∈Iχ

Di)) in which case it will
be called reduced and denoted χred. Let Vχ be the branched cover of ∂Bϵ branched
over ∂Bϵ ∩ (

⋃
i∈Iχ

Di) and having Imχ = G/Kerχ as its Galois group. Then

πp(Vm1,...,mr) = 0 for 1 ≤ p ≤ n− 1,

rkHn(Vm1,...,mr,C) =
∑

χ∈Char

f(χred,
⋃

i∈Iχ

Di).

This proposition shows that there is a close relation between the homology of the
tower of abelian covers and the characteristic varieties (at least in local case). We
shall use it in the following section for the calculation of the homology of infinite
abalian covers in terms algebro-geometric data such as resolution of singularities
and the ideals of quasiadjunction.

5 Hodge decomposition of local Alexander invari-

ants.

5.1 Zeros of Fitting ideals and Hodge numbers in cyclic

case.

Our goal in this section is to describe the structure of the characteristic varieties in
the local case of the Alexander invariants of the germs of plane curves and for germs
of INNC in terms of resolutions of singularities. This will give an algebro-geometric
description of these invariants. The global counterparts of the local invairants from
this section will be considered in the section 6. All structures introduced in this
section are essentail for describing the global case.
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First let us consider the relationship between the Hodge structure of the co-
homology of Milnor fiber and the Alexander invairants of the link of an isolated
singularity. In the cyclic case, the calculation of the Alexander polynomial does not
require Mixed Hodge theory and is a special case of A’Campo’s formula for the zeta
function of the monodromy of a resolution ([5]). Indeed, if D has only one compo-
nent with isolated singularity, the order of πn(S2n+1−D ∩ S2n+1)⊗Q is equivalent
to the zeta function of the monodromy. Hence, if Ei are the components of the
exceptional set of a resolution π, π∗(D) has the multiplicity mi along a component
Ei of the exceptional locus and the euler characteristic of the set of points in Ei

non-singular in the union of
⋃

Ei and the proper preimage of D is χ(E◦
i ) then (cf.

[5]):
∆n((S2n+1 −D ∩ S2n+1)(−1)n

(1− t) = Π(1− tm(Ei))−χ(E◦
i ) (42)

However even in cyclic case calculation of the zeros of higher Fitting ideals requires
the mixed Hodge theory. We refer to [15] or [18] for the formalism of this structure.

In the rest of this section 5.1 we shall focus mainly on the case of curves i.e.
dimD = 1. The cohomology group H1 of the Milnor fiber (∗) of a plane curve
singularity supports a mixed Hodge structure with weights 0,1 and 2, with the
identification

N : W2/W1 →W0 (43)

given by the logarithm of an appropriate power of the monodromy(cf. [71]). Recall
that this means that one has canonically (∗∗) defined (weight) filtration H1 =
W2 ⊇ W1 ⊇ W0 ⊇ 0 such that each quotient Wn/Wn−1 = ⊕p+q=nHp,q. In fact
there is a strong relation between these groups Hp,q: they all come from increasing
Hodge filtration. Moreover, if T is the monodromy operator on H1(M,C) and T =
TsTu is the factorization into semisimple and unipotent part and if N = log(Tu) =
∑

i≥1(−1)i−1 (Tu−I)i

i then N induces the isomorphism in (43).
All Hodge groups are invariant under the action of the semisimple part Ts of the

monodromy. Let hp,q
ζ (cf. [71]) be the dimension of the eigenspace of this semisimple

part acting on the space Hp,q. The numbers hp,q
ζ determine the Jordan form of the

monodromy as follows. The size of the Jordan blocks of the monodromy does not
exceed 2 and the number of blocks corresponding to an eigenvalue ζ of size 1 × 1
(resp. 2× 2) is equal to h1,0

ζ + h0,1
ζ (resp. h0,0

ζ ). As a consequence, the generators of
the Fitting ideals have the form:

∆i =
∏

(ζ)

(t− ζ)aζ,i

where

∗ we shall work with the cohomology as is more common in Hodge theory though one has
the dual structures on homology. One of the differences is the presence of the negative weights
in MHS in homology. See [64] where the author works with MHS on homotopy groups (also
discussion below of the homotopy groups) having negative weights and where natural dual theory
with positive weights is not available

∗∗ i.e. just an algebraic class of the germ at the zero of fibration C2 → C given by (x, y) →
f(x, y)
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aζ,i =

⎧
⎪⎪⎨

⎪⎪⎩

h1,0
ζ + h0,1

ζ + 2h0,0
ζ − 2(i− 1) if 1 ≤ i ≤ h0,0

ζ

h1,0
ζ + h0,1

ζ − (i− 1− h0,0
ζ ) if h0,0

ζ < i ≤ h0,0
ζ + h1,0

ζ + h0,1
ζ

0 if i > h0,0
ζ + h1,0

ζ + h0,1
ζ

In particular, ∆i can be calculated algebraically in terms of a resolution of the
singularity since all Hodge numbers hp,q

ζ can be found in terms of a resolution (cf.
[71]). A calculation of the Hodge numbers hp,q

ζ is equivalent to the identifying
the following subsets in the set of zeros of the characteristic polynomial of the
monodromy operator:

Hp,q,k = {ζ |hp,q
ζ ≥ k} (44)

Arnold-Steenbrink spectrum [71] is also equivalent to this data. Our goal for the
rest of this section 5 will be to describe the partition of (the unitary part of) the
zero sets of Fitting ideal i.e. the characteristic varieties of plane curve singularities
(and also INNC) into sets (44). We call this partition the Hodge decomposition of
characteristic varieties.

In the abelian case the multivariable Alexander polynomial and hence V1(G) can
be found from a resolution as well (cf. [22]).

Theorem 5.1 Let fi = 0, i = 1, ...r be the equations of branches of a reducible
curve C. Let π : C̃2 → C2 be a resolution of singularities and Ej , j = 1, ..., N be the
exceptional components. Let mi,j = ordEj

π∗(fi) and let E◦
j be a Zariski open subset

in Ej consisting of points which are non singular on the reduced total preimage of
C. Then the Alexander polynomial of the link of singularity of C is:

Πj(1− t
m1,j

1 · ... · tmr,j
r )−χ(E◦

i )

For example for the Hopf link with r-components we obtain (1− t1 · ... · tr)r−2.

We shall use the description of the cohomology of branched coverings from the
last lecture to calculate higher Vi(G). The information about the characteristic vari-
eties is closely related to the information about the cohomology of branched abelian
covers (cf. Prop. 4.12). Those are the links of singularities of complete intersection
and hence have the mixed hodge structure. We shall calculated the eigenspaces of
the deck transformations acting on the Hodge spaces of the cohomology of branched
coverings in terms of the algebraic data of the singularity i.e. some associated ideals
generalizing the ideals of quasiadjunction defined earlier in this paper. This will
give us the calculation of the sets (44) and hence the characteristic varieties. The
MHS on the link can be described in terms of resolution of the singularity so we
shall need a description of the forms of resolution of singularities which we shall
describe in the next section. We shall start it by description of a global precursor:
adjoint hypersurfaces.
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5.2 Theory of adjoints

The classical theory of adjoints (which already was briefly mentioned in section 2.2.5
and which was used there to calculated one variable Alexander polynomial) gives a
presentation of the geometric genus of a resolution of singularities of a hypersurface
or a complete intersections in PN in terms of the degree of hypersurface (or the
multidegree in the case of a CI) and local data about the singularities. A starting
point maybe an observation that the genus of a plane curve C of degree d (i.e.
h1,0 = dimH0(ΩC)) is equal to (d−1)(d−2)

2 which also is equal to the dimension of
plane curves of degree d − 3. If C is not smooth but have δ nodes then the genus
of desingularization (d−1)(d−2)

2 − δ is the the dimension of space of plane curves of
degree d− 3 passing through the nodes. In the case when C has singularities more
complicated than nodes one can associate with each singular point P the ideal in
the local ring OP (adjoint ideal) such that the genus of desingularization is the
dimension of the space of curves of degree d− 3 passing through the singularities of
C and which local equations at P belong to the adjoint ideal in OP .

Explicitly, these ideals can be described as follows. Let X ⊂ Pn+1 be a hypersur-
face and let f∗ : X̃ → X be a resolution of singularities. Let A = f∗(Ωn

X̃
)(−d+n+2)

and A′ = π−1(A) where π : OPn+1 → OX is the restriction map. Then A′ is called
the sheaf of adjoint ideals and for example H0(A′(d− n− 2)) = hn,0(X̃).

The sheaf f∗(Ωn
X̃

) is a subsheaf of i∗(Ωn
X−SingX) where i : X − SingX → X is the

embedding. One has the residue map which fit into the exact sequence:

0→ Ωn+1
Pn+1 → Ωn+1

Pn+1(X)
Res→ i∗(Ω

n
X−SingX)→ 0 (45)

The residue map sends a form ω = f(z1,...,zn)dz1∧...∧dzn

F , defined in a chart with coor-
dinates z1, ..., zn and having the pole of order one along X (given by in this chart by

the equation F = 0) to (−1)j−1 fdz1∧...d̂zj∧dzn

Fzj
|X−SingX (the restriction is independent

of j, 1 ≤ j ≤ n). From this point of view the stalk of the sheaf A′ at P ∈ Pn+1 con-
sists of f ∈ OP such that Res(ω) extends to a holomorphic form on some resolution
X̃.

If the case when a subvariety X ⊂ Pn+r is a complete intersection of hypersur-
faces F1 = ... = Fr the stalk of the sheaf of adjoint ideals at a singular point can be
described using the fact that a holomorphic n-form can be obtained as a multiple of
the residue of (n+ r)-form having poles of order one along each hypersurface Fi = 0
and that

Res
dw1 ∧ .... ∧ dwn+r

F1 · .... · Fr
=

... ∧ d̂wi1... ∧ d̂wir ...
∂(F1,...,Fr)
∂(wi1

,...,wir)

|X (46)

where ∂(F1,...,Fr)
∂(wi1

,...,wir) is the Jacobian of partial derivatives of the system (F1, ..., Fr)

relative to variables (wi1, ..., wir) (it is easy to check that the restriction up to sign
is independent of collection of variables (wi1, ..., wir)).

This construction describes the differential forms on a resolution in terms of the
linear systems of hypersurfaces in Pn+r given by ideal sheaves on the latter. The
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cohomology and the Hodge structure on the link of a complete intersection singu-
larity can be described in terms of differential forms (cf [71]) and this description
can be used to calculate the cohomology of the link in terms of certain ideals in the
local ring of singular point. We shall review the construction of MHS on various co-
homology associated with singular points of complex spaces and in the next section
we shall discuss the connections with the ideals of quasiadjunction.

The cohomology of the link L of an isolated singularity x of a complex space X
(dimX = n) can be given a Mixed Hodge structure, for example using canonical
identification Hk(L) = H∗

{x}(X) with the local cohomology (∗) . The mixed Hodge

structure on the latter was described in [70]. The Hodge numbers: hkpq(L) =
dimGrp

FGrW
p+qH

k(L) have the following symmetry properties:

hkpq = h2n−k−1,n−p,n−q (47)

If E is the exceptional divisor for a resolution, then for k < n one has

hkpq(L) = hkpq(E) if p + q < k

hkpq(L) = hkpq(E)− h2n−k,n−p,n−q(E) if p + q = k (48)

hkpq(L) = 0 if p + q > k

The local cohomology H∗
E(X̃) ([70]) where X̃ is a resolution of X support the

canonical mixed Hodge structure. Let us consider it in more detail in the case
dimCX̃ = 2 which we shall need to describe the characteristic varieties in the case
of germs of plane curves. We have

H∗
E(X̃) = Hom(H4−∗(E),Q(−2)) (49)

where Q(−2) is Tate Hodge of type (2, 2). Since the Hodge and weight filtrations
on H1(E) have the form:

H1(E) = W1 ⊃W0 ⊃ 0, H1(E) = F 0 ⊃ F 1 ⊃ F 2 = 0

on H3
E(X̃) we have:

H3
E(X̃) = W4 ⊃W3 ⊃ W2 = 0, H3

E(X̃) = F 1 ⊃ F 2 ⊃ F 3 = 0

Moreover
F 1H1(L) = F 1H1(E) = F 2H3

E(X̃) (50)

In order to describe this mixed Hodge structure one can use the following com-
plex:

0→ A2
E(X̃)→ A3

E(X̃)→ 0 (51)

* Recall that if Y is a subset in a topological space X and F is a sheaf on X then Hi
Y

(X)
is the right derived functor of the functor ΓY (X,F) of sections of F supported on Y . It fits into
long exact sequence: ...→ Hi

Y
(X,F)→ Hi(X,F)→ Hi(X − Y,F)→ Hi+1

Y
(X,F)→ ... (cf. [30])
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where
A2

E(X̃) = Ω1
X̃(log E)/Ω1

X̃ , A3
E(X̃) = Ω2

X̃(log E)/Ω2
X̃

with filtrations given by

F 2Ap
E(X̃) = 0 for p < 3, F 2Ap

E(X̃) = Ap
E(X̃) for p ≥ 3

W3A
3
E(X̃) = W1Ω

2
X̃(log E)/Ω2

X̃

Since H3(E) = 0, the relations (48) and (49) yield that the complex (51) com-
pletely determines h1pq (and hence all Hodge numbers hkpq by (47)).

Putting all this together we obtain the following isomorphism:

H0(Ω2
X̃(log E))/H0(Ω2

X̃) = F 1H1(L) (52)

Our next goal will be to apply this to the link of complete intersection singularity
which is the abelian cover branched over the a link plane curve singularity i.e. to
the link (41) which in case of curves with r components is the following link in Cr+2:

zm1

1 = f1(x, y), ... zm1

1 = fr(x, y) (53)

We want to calculate the eigenspaces corresponding to the characters of the
Galois group acting on the Hodge spaces Hp,q,k of singularity (53) by interpreting
the left hand side of (52) in terms of ideals in the local ring of the singularity
f1 · · · fr = 0 in C2.

5.3 Ideal of quasiadjunction and log-quasiadjunction

We shall start with the following multivariable generalization of the ideals of quasi-
adjunction introduced in section 2.2.5.

Definition 5.2 (cf. [50] [52]) An ideal of quasiadjunction of type (j1, .., jr|m1, .., mr)
is the ideal in the local ring of the singularity of C (i.e. O ∈ C2) consisting of germs
φ such that the 2-form:

ωφ =
φ(x, y)zj1

1 · · · zjr
r dx ∧ dy

zm1−1
1 · · · zmr−1

r

,

extends to a holomorphic form on a resolution of the singularity of the abelian cover
of a ball B of type (m1, ...., mr), i.e. a resolution of (53) (we suppress dependence
of ωφ on j1, ..jr, m1, ...mr). In other words, φzj1

1 · · · zjr
r belongs to the adjoint ideal of

the singularity (53). In particular the condition on φ is independent of resolution.

Note that ωφ in definition (5.2) is the residue of the form
φz

j1
1

···zjr
r dx∧dy

(z
m1
1

−f1(x,y))···(zmr
r −fr(x,y))

(cf.

(46)) We always shall assume that 0 ≤ j1 < m1, .., 0 ≤ jr < mr. Also, notice that
forms ωφ in definition (5.2) are exactly the forms on the abelian cover (53) which
are the eigenforms corresponding to the character of the Galois group taking value
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exp(2πi(ji−mi+1)
mi

) on the automorphism of the surface (53) induced by multiplication

of the i-th coordinate by exp(2πi
mi

).
An ideal of log-quasiadjunction (resp. an ideal of weight one log-quasiadjunction)

of type (j1, .., jr|m1, .., mr) is the ideal in the same local ring consisting of germs φ
such that ωφ extends to a log-form (resp. weight one log-form) on a resolution of the
singularity of the same abelian cover. Recall (cf. [15]) that a holomorphic 2-form is
weight one log-form if it is a combination of forms having poles of order at most one
on each component of the exceptional divisor and not having poles of order one on
a pair of intersecting components. These ideals are also independent of a resolution
(cf. [54]).

One can show (cf. [52]) that an ideal of quasiadjunction A(j1, .., jr|m1, ..., mr) is
determined by the vector (i.e. depends only on the collection of ratios):

(
j1 + 1

m1
, ....,

jr + 1

mr
). (54)

This is also the case for the ideals of log-quasiadjunction and weight one log-
quasiadjunction. Indeed, these ideals can be described in terms of resolutions as
follows. For a given embedded resolution π : V → C2 of the germ f1 · · · fr = 0
with the exceptional curves E1, .., Ek, ..., Es let ak,i (resp. ck, resp. ek(φ)) be the
multiplicity of the pull back on V of fi (i = 1, .., r) (resp. dx ∧ dy, resp. φ) along
Ek. Then φ belongs to the ideal of quasiadjunction of type (j1, .., jr|m1, .., mr) if
and only if for any k

ak,1
j1 + 1

m1
+ .... + ak,r

jr + 1

mr
> ak,1 + ... + ak,r − ek(φ)− ck − 1 (55)

(cf. [52]). Similar calculation shows that a germ φ belongs to the ideal of log-
quasiadjunction corresponding to (j1, .., jr|m1, .., mr) if and only if the inequality

ak,1
j1 + 1

m1
+ .... + ak,r

jr + 1

mr
≥ ak,1 + ... + ak,r − ek(φ)− ck − 1 (56)

is satisfied for any k. In addition, a germ φ belongs to the ideal of weight one log-
quasiadjunction if and only if this germ is a linear combination of germs φ satisfying
inequality (56) for any collection of k’s such that corresponding components do not
intersect and satisfying the inequality (55) for k outside of this collection. We shall
denote the ideal of quasiadjunction (resp. log-quasiadjunction, resp. weight one log-
quasiadjunction) corresponding to (j1, .., jr|m1, .., mr) as A(j1, .., jr|m1, .., mr) (resp.
A′′(j1, .., jr|m1, .., mr), resp. A′(j1, .., jr|m1, .., mr)). Note the inclusions:

A(j1, .., jr|m1, .., mr) ⊆ A′(j1, .., jr|m1, .., mr) ⊆ A′′(j1, .., jr|m1, .., mr)

Both (55) and (56) follow from the following calculation (cf. [52] section 2 for
complete details). One can use the normalization of the fiber product Ṽm1,...,mr =
V ×C2 Vm1,..,mr as a resolution of singularity (53) in the category of manifolds with
quotient singularities (cf. [57]). We have:

Ṽm1,..,mr

p̃→ V
π̃ ↓ π ↓

Vm1,..,mr

p→ C2

(57)

40



The preimage of the exceptional divisor of V → C2 in Ṽm1,...,mr forms a divisor with
normal crossings (cf. [71]), though the preimage of each component is reducible in
general. In this case the irreducible components above each exceptional curve do
not intersect. If the Galois group G of p̃ is abelian (as we always assume here)
and, in particular, is the quotient of H1(B − C ∩ B,Z), then the Galois group of
p̃−1(Ei) → Ei is G/(γi) where for an exceptional curve Ek, γk is the image in the
Galois group of the homology class of the boundary of a small disk transversal to Ek

in V . The components of p̃−1(Ei) correspond to the elements of G/(γi, ...γl..) where
l runs through indices of all exceptional curves intersecting Ei, while p̃i restricted
on each component has (γi, ...γl..)/(γi) as the Galois group. The points p̃−1(Ei∩Ej)
correspond to the elements of G/(γi, γj) and the points of p̃−1(Ei ∩ Ej) belonging
to a fixed component correspond to cosets in (γi, ...γl..)/(γi, γj). The order of the
vanishing of ωφ on Ṽm1,...,mr along Ek is equal to:

Σi=r
i=1(ji −mi + 1)

m1 · · · m̂i · · · mr · ak,i

gk,1 · · · gk,rsk
+

m1 · · · mr · ordEk
(π∗(φ))

gk,1 · · · gk,r · sk
+ (58)

+
ck · m1 · · · mr

gk,1 · · · gk,r · sk
+

m1 · · · mr

gk,1 · · · gk,r · sk
− 1

where gk,i = g.c.d.(mi, ak,i) and sk = g.c.d.(..., mi

gk,i
, ...).

A consequence of (58) is that ωφ has an order of pole equal to one (resp. zero)
along the component Ek of the above resolution if and only if for such φ one has
equality in (56) (resp. (55) is satisfied).

Proposition 5.3 (cf. [54]) 1. Let A′′ be an ideal of log-quasiadjunction. There is
a unique polytope P(A′′) such that a vector ( j1+1

m1
, ..., jr+1

mr
) ∈ P(A′′) if and only if

the ideal A′′(j1, .., jr|m1, .., mr) contains A′′ .
2. The set of vectors (54) for which A(j1, .., jr|m1, .., mr) ≠

A′′(j1, .., jr|m1, .., mr) is a dense subset in the boundary of the polytope having as its
closure a union of faces of such a polytope. The closure of the set of vectors (54)
for which A′(j1, .., jr|m1, .., mr) ≠ A′′(j1, .., jr|m1, .., mr) is also a union of certain
faces of such a polytope.

3. The ideal A(j1, .., jr|m1, ..., mr) (resp. A′(j1, .., jr|m1, ..., mr) and
A′′(j1, .., jr|m1, ..., mr)) is independent of the array (j1, .., jr|m1, .., mr) as long as
the vector (54) varies within the interior of the same face of quasiadjunction.

We shall call the above faces the faces of quasiadjunction (resp. weight one faces of
quasiadjunction). AΣ will denote A(j1, ..., jr|m1, ..., mr) with corresponding vector
(54) belonging to the interior of a face of quasiadjunction Σ (similarly for A′

Σ and
A′′

Σ).

(∗) i.e. a subset in Rr given by a set of linear inequalities Ls ≥ ks. We say that an affine hy-
perplane in Rr supports a codimension one face of a polytope if the intersection of this hyperplane
with the boundary of the polytope has dimension r − 1. A face of a polytope is the intersection
of a supporting face of the polytope with the boundary. A codimension one face of a polytope in
Rr is a polytope of dimension r − 1. By induction one obtains faces of arbitrary codimension for
original polytope (for r = 3 those are called edges and vertices). The boundary of the polytope is
the union of its faces.

41



In the case r = 1 and when f(x, y) is weighted homogeneous one can use the
description of the adjoint ideals given by M.Merle and B.Tessier (cf. [61] and section
2.2.5). The polytopes of quasiadjunction are in R and hence are just constants.
They are the constants of quasiadjunction introduced in [42]. It was shown in
[58] that they are the elements of Arnold-Steenbrink spectrum which belong to the
interval (0,1).

The polytopes of quasiadjunctions are subsets of a unit cube U with the coor-
dinates corresponding to the components of the link. We shall view it also as the
fundamental domain for the Galois group H1(S3 − L,Z) of the universal abelian
cover H1(S3 − L,R) of the group H1(S3 − L,R/Z) of the unitary characters of
H1(S3 − L,Z) (i.e. the maximal compact subgroup of Char(H1(S3 − L,Z)) =
H1(S3 − L,C∗)). exp : U → Char(H1(S3 − L,Z)) will denote the restriction of
H1(S3 − L,R)→ H1(S3 − L,R/Z) on U .

For any sub-link L̃ of L, i.e. a link formed by components of L, we have surjection
π1(S3−L)→ π1(S3− L̃) induced by inclusion. Hence CharH1(S3− L̃,Z) is a sub-
torus of CharH1(S3 − L,Z)) (in coordinates in the latter torus corresponding to
the components of L it is given by equations of the form tα = 1 where subscripts
correspond to components of L absent in L̃). Moreover, since the homology of

the universal abelian cover H1( ˜S3 − L) surjects onto H1(
˜

S3 − L̃), it follows that
Vi(S3− L̃) belongs to a component of Vi(S3−L) (cf. [52]). We shall call a character
of π1(S3−L) (or a connected component of Vi(S3−L)) essential if it does not belong
to a subtorus CharH1(S3 − L̃) for any sublink L̃ of L.

Let Lm1,..,mr be the link of singularity (53) or equivalently the cover of S3

branched over the link L and having a quotient Hm1,..,mr = Z/m1Z⊕ ....⊕ Z/m1Z

of H1(S3 − L,Z) as its Galois group. We shall view CharHm1,..,mr as a subgroup
of CharH1(S3 − L,Z). The group Hm1,..,mr acting on H1(Lm1,..,mr) preserves both
Hodge and weight filtrations.

Theorem 5.4 (cf. [54]) An essential character χ ∈ Char(H1(S3 − L,Z)) is a
character of the representation of Hm1,..,mr acting on F 1(H1(Lm1,..,mr)) if and only
if it factors through the Galois group Hm1,..,mr and belongs to the image of a face of
quasiadjunction under the exponential map.

The multiplicity of χ in this representation of the Galois group is equal to
dimA′′

Σ/AΣ where A′′
Σ (resp. AΣ) is the ideal of log-quasiadjunction (resp. ideal

of quasiadjunction) corresponding to a vector (54) belonging to the face of quasiad-
junction Σ.

A character χ is a character of the representation of the Galois group of the cover
on W0(H1(Lm1,..,mr)) if and only if it factors through the Galois group Hm1,..,mr and
it belongs to the image under the exponential map of a weight one face of quasiad-
junction.

5.4 Multiplier ideals and log-canonical thresholds.

The ideals and polytopes of quasiadjunction are closely related to recently studies
multiplier ideals (cf. [65], [38]) and log-canonical thresholds.
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For a Q-divisor D on a non singular manifold X its multiplier ideal J (D) (cf.
([65]) can be defined as follows. Let f : Y → X be an embedded resolution of D and
f ∗(D) = −E. Then J (D) = f∗(OY (KY −f ∗(KX)−⌊E⌋)) where ⌊E⌋ is round-down
of a Q-divisor. In this terminology one can define the ideals of quasiadjunction as
follows. For an array (γ1, .., γr), (γi ∈ Q) let Dγ1,..,γr be given by equation fγ11 · · ·fγr

r .
Then J (Dγ1,..,γr) = A(j1, .., jr|m1, ..., mr) where γi = 1 − ji+1

mi
for i = 1, .., r. This

follows immediately from (55).
To describe the relation with the log-canonical thresholds, recall ([35]) that a

pair (X, D) where X is normal and D is a R-divisor such that KX +D is R-Cartier
is called log-canonical at x ∈ X if for any birational morphism f : Y → X, with Y
normal, in the decomposition

KY = f ∗(KX + D) +
∑

E

a(E, X, D)E (59)

for each irreducible E having center at x one has a(E, X, D) ≥ −1. This coefficient
is called discrepancy of divisor D on X along E.

Proposition 5.5 (cf. [54]) The local ring OO of a singularity f1 · · · fr = 0 at the
origin O of C2 considered as the ideal in itself is an ideal of log-quasiadjunction.
Let P be the corresponding polytope of log-quasiadjunction. Let Di be the divisor in
C2 with the local equation fi = 0 near the origin.
Then for {(γ1, ..., γr)} ∈ Rr the divisor γ1D1 + ... + γrDr is log-canonical at (0, 0) ∈
C2 if and only if (1− γ1, .., 1− γr) belongs to the polytope P.

To see why this is the case, let us consider the polytope given by inequalities
(55) in which one puts ek(A′′) = 0, i.e.

ak,1x1 + .... + ak,rxr ≥ ak,1 + ... + akr − ck − 1 (60)

Let (j1, .., jr|m1, .., mr) be such that the corresponding vector (54) belongs to the
boundary of this polytope. Then 1 ∈ A′′(j1, .., jr|m1, .., mr) and hence the ideal
A′′(j1, .., jr|m1, .., mr) is the local ring of the origin (i.e is not proper).

If π : V → C2 is an embedded resolution then the discrepancy of fγ11 · · · fγr
r

along Ek is:
ck − (ak,1γ1 + ... + ak,rγr)

i.e. the discrepancy along each Ek is not less than −1 if and only if (1−γ1, ..., 1−γr)
satisfies (60).

As an example to this proposition one can consider the ordinary cusp x2 + y3

the log-canonical threshold is 5
6 and the constant of quasiadjunction is 1

6 (cf. section
2.2.5).

The polytopes of quasiadjunction are “pieces” of the zeros of the (multivariable)
Alexander polynomail and in this sense are analogs of the spectrum.

Problem 5.6 Find a generalization of the semicontinuity of spectrum of a singu-
larity

For some results in this direction cf. [54].
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5.5 Hodge decomposition for INNCs.

The calculation from the last section can be partially extended to INNC. Namely we
extend the calculation which involve the forms of top degree and hence will obtain
at least a part of the components of characteristic varieties.

We shall start with the definition:

Definition 5.7 (cf. [54]) Let fi = 0 be the equation of divisor Di and let π :
C̃n+1 → Cn+1 be a resolution of the singularities of

⋃
Di (i.e. the proper preim-

age of the latter is a normal crossings divisor). Let Vm1,...,mr be the singularity
(41) having Vm1,...,mr as its link. Let Ṽ be a normalization of C̃n+1 ×Cn+1 V⇕∞,..,⇕∇

(cf. (41)) The ideal of quasiadjunction of type (j1, ..., jr|m1, ..., mr) is the ideal
A(j1, ..., jr|m1, ...., mr) of germs φ ∈ O′,C\+∞ such that the (n + 1)-form:

ωφ =
φzj1

1 · ... · zjr
r dx1 ∧ ... ∧ dxn+1

zm1−1
1 · ... · zmr−1

r

(61)

on the non singular locus of Vm1,...,mr after the pull back on Ṽ extends over the
exceptional set.

The l-th ideal of log-quasiadjunction Al(logE)(j1, ..., jr|m1, ...., mr) is the ideal
of φ ∈ O0,Cn+1 such that the the pull back of the corresponding form ωφ on Ṽ is
log-form on (Ṽ , E) having weight at most l.

We have the following:

Proposition 5.8 (cf. [54], [55]) There exist a collection of subsets Pκ, (κ ∈ K) in
the unit cube

U = {(x1, ...., xr)|0 ≤ xi ≤ 1}
in Rr and a collection of affine hyperplanes li(x1, ..., xr) = αi such that each Pκ is
the boundary of the polytope consisting of solutions to the system of inequalities:

li(x1, ..., xr) ≥ αi

and such that

(
j1 + 1

m1
, ...,

jr + 1

mr
) ∈ U (62)

belongs to Pκ if and only if

dimA(logE)(j1, ..., jr|m1, ...., mr)/A(j1, ..., jr|m1, ...., mr) ≥ 1 (63)

Moreover

dimAl(logE)(j1, ..., jr|m1, ...., mr)/Al−1(j1, ..., jr|m1, ...., mr) ≥ k (64)

if only if (54) belongs to a collection of certain faces Pk,l
κ,ι(ι ∈ Ik,l) of polytopes Pκ.

Now the exponents of the polytopes of quasiadjunction land in the characteristic
varieties. More precisely we have:
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Theorem 5.9 (cf. [55]) A character of π1(∂Bϵ − ∂Bϵ ∩ (
⋃

1≤i≤r Di) acting on
Wl(F nHn(Vm1,....,mr)) via the action of the Galois group has the eigenspace of di-
mension at least k if and only if it has the form:

(exp2π
√
−1a1, ..., exp2π

√
−1ar)

where (a1, ...., ar) belongs to one of the faces Pk,l
κ,ι of a polytope Pκ of quasiadjunction

of
⋃

Di. In particular, the Zariski closures of exponents of polytopes of quasiadjunc-
tion are components of characteristic varieties. These components are the translated
subgroups by points of finite order

We conjecture that all components are the translated subgroups by points of
finite order.

Conjecture 5.10 Characteristic variety is a union of translated subtori of
SpecC[π1(∂Bϵ − ∂Bϵ ∩X)] with each translations given by a point of finite order.

An interesting problem is to calculate them in terms of resolution.

6 Homotopy groups of the complements to hyper-

surfaces in projective space and linear systems

determined by singularities

In this section we want to discuss the characteristic varieties associated with hy-
persurfaces which are divisors with isolated non normal crossings in a projective
space. An interesting case occurs already when all hypersurfaces have degree one
i.e. the case of arrangements of hyperplanes. The advantage of the case of INNC is
that one does not have the problems associated with complexity of the fundamental
group since the fundamental groups for such arrangements are abelian (unless we
are dealing with an arrangement of lines). The theory of such arrangement is still
highly non trivial and is far from being well understood. Note that a more general
case of divisors with normal crossings in general projective manifolds (rather then
in Pn+1) is considered in [56]. The main results and conjectures of this section show
how the local characteristic varieties plus certain linear systems associated with the
points of non normal crossings determine the global characteristic varieties. This
generalizes the results on the Alexander polynomial discussed earlier.

6.1 Homotopy groups of the complements to INNC

Let us consider the a divisor D in projective space Pn+1 which is a divisor with
isolated non normal crossings. This situation includes as its special cases:

a) Arbitrary reduced curves in P2

b) Hypersurfaces in Pn+1 with isolated singularities and hypersurfaces in Cn+1

with isolated singularities and transversal to the hyperplanes at infinity.
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c) Arrangements of hyperplanes in Pn+1 such that each intersection of hyper-
planes having codimension k ≠ n + 1 belongs to exactly k hyperplanes of the ar-
rangement.

The starting point is the the following vanishing of the homotopy groups gener-
alizing already discussed result from [48]:

Theorem 6.1 (cf. [56]) Let X = Pn+1 and D be a divisor having finitely many
non-normal crossings. Assume that one of the components has degree 1. Then
πi(Pn+1 −D) = 0 for 2 ≤ i ≤ n − 1. If all intersections are the normal crossings,
then πn(Pn+1−D) = 0 and hence Pn+1−D is homotopy equivalent to the wedge of
the n + 1-skeleton of the torus (S1)k and several copies of Sn+1.

One also has a similar vanishing for the homology of local systems.

Theorem 6.2 (cf. [56]) Let χ ∈ Charπ1(Pn+1−D) be a character of the fundamen-
tal group different from the identity and let Cχ be C considered as C[π1(Pn+1−D)]
module via the character χ. Then

Hi(P
n+1 −D,χ) = 0 (i ≤ n− 1)

Hn(P
n+1 −D,χ) = πn(Pn+1 −D)⊗C[π1(Pn+1−D)] Cχ

The main problem for INNC hence is to understand the first non trivial homotopy
group πn(Pn+1 −D). Similarly to the local case the starting point is the following:

Definition 6.3 (cf. [56]) The k-th characteristic variety Vk(πn(Pn+1 −D)) of the
homotopy group πn(Pn+1−D) is the zero set of the k-th Fitting ideal of πn(Pn+1−D),
i.e. the zero set of minors of order (n− k + 1)× (n− k + 1) of Φ in a presentation

Φ : C[π1(P
n+1 −D)]m → C[π1(P

n+1 −D)]l → πn(X)→ 0

of π1(Pn+1 −D) module πn(Pn+1 − D) via generators and relations. Alternatively
(cf. theorem 6.2) outside of χ = 1, Vk(πn(Pn+1 − D)) is the set of characters
χ ∈ Char[π1(Pn+1 −D)] such that dimHn(Pn+1 −D,χ) ≥ k.

6.2 Jumping loci on quasiprojective varieties

A remarkable fact is that the characteristic varieties of the complements have a very
simple structure (unlike in the similar situations outside of algebraic geometry). We
did see this already in the case of links of curve singularities and in the case of
charactersstic variety V1 in general local case. The local systems on a non singular
projective variety correspond to holomorphic bundles which are topologically trivial.
The jumping loci for the cohomology of such bundles are unions of translates of
abelian subvarieties of the Picard variety. These results, having long history, are
due to Catanese, Beauville, Green-Lazarsfeld, Simpson and Deligne. We shall use
the following quasi-projective version dealing with the cohomology of local systems
which will allow us eventually to describe the characteristic varieties.
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Theorem 6.4 ([6]) Let X̂ be a projective manifold such that H1(X̂,C) = 0. Let
D̂ be a divisor with normal crossings. Then there exists a finite number of unitary
characters ρj ∈ Charπ1(X̂−D̂) and holomorphic maps fj : X̂−D̂ → Tj into complex
tori Tj such that the set Σk(X̂ − D̂) = {ρ ∈ Charπ1(X̂ − D̂)|dimHk(X̂ − D̂, ρ) ≥ 1}
coincides with

⋃
ρjf ∗

i H1(Tj ,C∗). In particular, Σk is a union of translated by unitary
characters subgroups of Charπ1(X̂ − D̂).

Hence we also obtain:

Corollary 6.5 The characteristic variety Vk(πn(Pn+1−D)) is a union of translated
subgroups Sj of the group Charπ1(Pn+1 −D) by unitary characters ρj:

Vk(πn(Pn+1 −D)) =
⋃
ρjSj

In the case k = 1 the components of characteristic variety having a positive
dimension correspond to the maps onto hyperbolic curves. This has many applica-
tions for example to calculations of characteristic varieties (cf. [52]), estimating the
order of the group of automorphisms of the complements (cf. [7]), classification of
arrangements of lines (cf.[53]) among others but we won’t discuss them here.

6.3 The Hodge numbers of abelian covers of projective spaces

and linear systems.

Let, as before, D = ∪i=0,..rDi be a divisor in Pn+1. We shall assume, to simplify
the exposition, that one of components, say D0 has degree equal to one and that
there are D has non non normal crossings on D0. Let π1(Pn+1−D)→ ⊕Z/miZ be
a surjective homomorphism and let Xm (m = (..., mi, ...)) be a normalization of a
compactification of unbranched cover of Pn+1−D corresponding to this homomor-
phism. Let f : Xm → Pn+1 be the corresponding projection.

Our goal is to calculate the Hodge number hn,0(Xm). Starting from D, we shall
define global polytopes of quasiadjucntion so that with each face δ of the polytope
is associated the ideal sheaf Jδ. The above Hodge number is equal to the number of
lattice points is δ counted with the weight given by the dimension of linear system
of hypersurface of degree given by δ and with local conditions given by the ideal
sheaf Jδ.

Let is consider the unit cube U = {(x1, ..., xr) ∈ Rr|0 ≤ xi ≤ 1} coordinate of
which correspond to irreducible components D1, ..., Dr of the divisor D. We view
Rr as the universal cover of the group (S1)r of unitary characters of π1(Pn+1 −D)
and U as the fundamental domain for the action of the covering group on the cover.
With each point P in Pn+1 where D has a non-normal crossing the definition 5.8
associates a polytope Pκ in the unit cube in Rs with coordinates corresponding
to the components of D. Since one has the canonical projection π : Rr → Rs,
forgetting the coordinates corresponding to Di’s not containing P , each Pκ defines
the polytope π−1(Pκ) in U which we shall denote by the same letter. This defines a
finite collection of polytopes Pκ,P ⊂ U .

47



Definition 6.6 Consider the equivalence relation on points in U calling two points
equivalent if the collections of polytopes Pκ,P containing these two points are identi-
cal. The equivalence class is called the global polytope of quasiadjucntion.

A global face of quasiadjunction is a face of a global polytope of quasiadjunction.

Let Sδ be the set of non normal crossings P of D for which there exist the polytopes
Pκ,P contaning δ.

The ideal sheaf corresponding to δ is a sheaf Jδ ⊂ OPn+1 such that OPn+1/Jdelta is
supported at Sδ and such that the stalk at P is the ideal which is the intersection of
local ideals of quasiadjunction corresponding to local polytopes containing δ.

Clearly such an equivalence class is a polytope i.e. consists of points satisfying
a system of linear inequalities. Also the collections Sδ of non normal crossings are
defined entierly by the local data of D. The Hodge number hn,0(Xm) depends on
additional piece of information.

Theorem 6.7 (cf. [52], [56]) Let D as above and let di be the degree of the irre-
ducible component Di. For each χ ∈ Char ⊕ Z/miZ ⊂ Charπ1(Pn+1 −D) let δ(χ)
be the global face of quasiadjunction containing 1

2π
√
−1

log(χ) ∈ U . Let l be such that
the hyperplane d1x1 + ... + drxr = l (l ∈ Z) contains δ. Then

hn,0(Xm) =
∑

χ∈Char⊕Z/miZ

dimH1(Pn+1,Jdelta(l − n− 1)

A proof in cyclic case and in the case of curves and generalizing Zariski’s approach
([81]) is given in [49] and [52] and the case of INNC is similar. Alternatively, one
can also use the approach in [24].

Example 6.8 For an irreducible curve of degree d with nodes and the ordinary
cusps as the only singularities the global polytope of quasiadjunction coincide with the
local one of the cusp. The only face of quasiadjunction is x = 1

6 . The contributing
hyperplane is given by dx = d

6 and its level is d
6 . The sheaf of quasiadjunction

corresponding to this face of quasiadjunction is the ideal sheaf having stalks different
from the local ring only at the points of P2 where the curve has cusps and the stalks
at those points are the maximal ideals of the corresponding local rings.

For characters not on the global faces of quasiadjunction one still can define
the ideal sheaves looking at the polytopes containing the lifts of the characters

1
2π

√
−1

log(χ) ∈ U into universal cover of the torus of unitary character and also the
integer l such that d1x1 + ...+drxr = l contains the lift. However the corresopnding
group H1(Pn+1,Jdelta(l−n− 1) will be vanishing. For plane curves with nodes and
cusps one obtains the following classical result (for the most part already discussed
earlier).

Corollary 6.9 (Zariski’s theorem) Let C be a plane curve of degree d having nodes
and cusps as the only singularities. Let J be a subsheaf of the sheaf of regular
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functions whose sections belong to the maximal ideals at the points in P2 which are
cusps of C. If k > 5d

6 then

H1(P2,J (k − 3)) = 0

If 6|d then H1(P2,J (5d
6 −3)) = h1,0(Xd) is equal to the irregularity of a a resolution

of singularities of a d-fold cyclic cover of P2 branched over C.

6.4 Mixed Hodge structure on homotopy groups

The theorem 6.2 suggests an additional structure on the characteristic varieties com-
ing from the mixed Hodge structure on the cohomology of local systems. This is
an analog of discussed earlier in local case the Hodge decomposition of character-
stic varities. The MHS on the cohomology of local systems can be understood by
interpreting the cohomology of local systems having finite order as the eigenspaces
of the Galois group acting on the abelian covers as follows.

Theorem 6.10 Let G be a finite group and g : π1(X) → G be a surjection. Let
χ ∈ Charπ1(X) which is the pull back of a character of G. Assume that πi(X) = 0
for 2 ≤ i ≤ n− 1. Finally let XG be the unbranched cover of X corresponding to g.
Then the eigenspace Hn(XG)χ is isomorphic to the homology of Hn(Cχ) of the local
system Cχ corresponding to χ. In particualar, the cohomology classes in Hn(Cχ)
acquire the Hodge type.

If X is quasiprojective and non singular, so is XG and hence Hn(XG) admits the
mixed Hodge structure with the weights n, ...., 2n.

Definition 6.11 (cf. [56]) Let Pn+1 − D be a complement to an INNC in Pn+1.
For a local system χ pf finite order let hp,q,n)χ be the dimension of the space of
cohomology classes in Hn(Cχ) having the Hodge type (p, q). The following subset of
Vk(πn(Pn+1 −D)):

Pp,q,n
k = {χ|hp,q,n

χ ≥ k}
is called the component of the characteristic variety of type (p, q, n)

One has Pp,q,n
k ≠ ∅ only if n ≤ p + q ≤ 2n and

⋃
p,q,n P l = V1(π1(Pn+1 −D)).

6.5 A relation between the Hodge numbers of branched and

unbranched abelian covers

We want to use the theorem 6.7 to detect some components of characteristic varieties
of the homotopy groups. Here is the relation between branched and unbranched
covers which we shall need since the theorem 6.7 works in compact case.

Theorem 6.12 (cf. [56]) Let χ ∈ Char(π1(Pn+1 − D)) be a character of a finite
quotient G of π1(Pn+1−D). Let ŪG be a G-equivariant non-singular compactification
of UG and let Hp,q(ŪG)χ be the χ-eigenspace of G acting on Hp,q(ŪG). Then

hn,0,n(Cχ) = hn,0(UG)χ = hn,0(ŪG)χ
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6.6 Main theorem and Open Problems

Combining this together we obtain the following, extending results on Alexander
polynomials and the case of reducible curves in [52]:

Theorem 6.13 (cf. [56]) Let D ⊂ Pn+1 be a union of hypersurfaces D0, D1, ..., Dr

of degrees 1, d1, ..., dr respectively, which is a divisor with isolated non-normal cross-
ings. Let F be a face of global polytope of quasi-adjunction, i.e. a face of an
intersection of polytopes of quasi-adjunction corresponding to a collection S of non-
normal crossings of D. Let d1x1 + ... + drxr = l be a hyperplane containing the
face of quasiadjunction F . If H1(AF ⊗ O(l − 3)) = k, then the Zariski closure of
exp(F) ⊂ CharH1(Pn+1 −D) belongs to a component of Vk(πn(Pn+1 −D)).

There is a generalization to INNC divisors on arbitrary projective simply-connected
varieties. I refer to [56] for conjectures. Here is a short list of the open problems
even in the case of divisors in Pn+1.

Problem 6.14 Are there components of characteristic variety Vk(π1(Pn+1 − D))
which are not Zariski closures of Pn,0,n?

Problem 6.15 Find methods for detecting the sets Pp,q,n with (p, q) ≠ (n, 0)

A difficulty here is that one cannot work with arbitrary compactification since
the Hodge numbers hp,q are not birational invariants. It would be good to have
techniques which will allow to work directly with the complement and avoiding to
some extent the compactification.

Problem 6.16 Generalize the main theorem to projective algebraic varieties and
beyond the cases when O(Di) = Lmi.

See discussion of this in [56]

Problem 6.17 Find additional interesting examples beyond the one described in
[56].

Problem 6.18 Solve realization problem for characteristic varieties i.e. describe
how many components and what are their dimensions depending on the numerical
data of the divisor D on X.
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