Local Topology of Reducible Divisors

Alexandru Dimca and Anatoly Libgober

Abstract

We show that the universal abelian cover of the complement to a germ of a reducible divisor on a complex space Y with isolated singularity is ($\operatorname{dim} Y-2$)-connected provided that the divisor has normal crossings outside of the singularity of Y. We apply this result to obtain a vanishing property for the cohomology of local systems of rank one and also study vanishing in the case of local systems of higher rank.

1. Introduction

The topology of holomorphic functions near an isolated singular point is a classical subject (cf. [23], [4]). Among the main results are the existence of Milnor fibration and the connectivity of the Milnor fiber yielding a very simple picture for the latter: it has the homotopy type of a wedge of spheres. Starting with the case of a germ of holomorphic function on \mathbb{C}^{N} considered by Milnor ([23]), these results were eventually extended to the germs of holomorphic functions on analytic spaces (cf. [12], [19]).

In [22], it was shown that if the divisor of a holomorphic function on \mathbb{C}^{N} is reducible then the results on the connectivity of Milnor fibers (cf. [23], [17]) can be refined. This refinement is based on the observation that the Milnor fiber is homotopy equivalent to the infinite cyclic cover of the total space of the Milnor fibration. So the classical connectivity results by Milnor and Kato-Matsumoto can be restated in terms of the connectivity of this cyclic cover.

In the case when the divisor of a holomorphic function is reducible, it is the associated universal abelian cover which has interesting connectivity properties generalizing the connectivity properties in the cyclic cover case, see Theorem 3.2 below. The present paper studies the case of reducible divisors on arbitrary isolated singularities.

More precisely the situation we consider is the following. Let $(Y, 0) \subset\left(\mathbb{C}^{N}, 0\right)$ be the intersection of a ball of a sufficiently small radius about the origin 0 with a $(n+1)$-dimensional irreducible complex analytic space with an isolated singularity
at 0 . Let $\left(D_{j}, 0\right) \subset(Y, 0)$ for $j=1, \ldots, r$ be r irreducible Cartier divisors on $(Y, 0)$. We set $X=\cup_{i=1, r} D_{i}, M=Y \backslash X$ and regard M as the complement of the hypersurface arrangement $\mathcal{D}=\left(D_{j}\right)_{j=1, r}$. Since $(Y, 0)$ is irreducible, the complement M is connected and so we can unambiguously talk about the fundamental group $\pi_{1}(M)$ without mentioning a base point.

In this paper we investigate the topology of this complement M. In Section 2 we generalize a case of the Lê-Saito result in [18] asserting that if $(Y, 0)$ is a smooth germ and X is an isolated non-normal crossing divisor (see the definition below), then the fundamental group $\pi_{1}(M)$ is abelian. Our proof is based on an idea used in [24] in the global case and is much shorter than the proof in [18].

In Section 3 we consider the case when the hypersurface arrangement \mathcal{D} is an arrangement based on a hyperplane arrangement \mathcal{A} in the sense of Damon [3]. We show that the (co)homology of M is determined up-to degree $(n-1)$ by the hyperplane arrangement \mathcal{A}. The key fact here is the functoriality of the Gysin sequence and the splitting of the Gysin sequence associated to a triple $\left(\mathcal{A}, \mathcal{A}^{\prime}, \mathcal{A}^{\prime \prime}\right)$ of hyperplane arrangements into short exact sequences. Note that the proof of Theorem 3.1 can be done only in this paper more general setting, i.e., the deletion and restriction argument cannot be performed in the setting of [22] when $(Y, 0)$ is a smooth germ.
Combining the results above and following the approach in [22], we show that the universal abelian cover \tilde{M} of M is homotopically a bouquet of spheres of dimension n which is the refinement of [23] and [12] we mentioned earlier.

In the last two sections we prove vanishing results for the (co)homology of the complement M with coefficients in a local system \mathcal{L} on M. The case when the rank of \mathcal{L} is equal one is treated in Section 4 and in this context we give a description for the dimension of the non zero homology groups $H_{*}(M, \mathcal{L})$. The general case when $\operatorname{rank} \mathcal{L} \geq 1$ is treated in Section 5 where we allow a more general setting for the ambient space $(Y, 0)$ and for the divisor $(X, 0)$. The vanishing result in this case follows the general philosophy in [7], but the use of perverse sheaves as in [2] is unavoidable. Note that in our case the space M may be singular so one cannot use the technique of integrable connections to get vanishing results. A new point in our proof is the need to use the interplay between constructible complexes of sheaves on real and complex spaces. Indeed, real spaces occur in the picture in the form of links of singularities.

2. Fundamental group of the complements to INNC

Let $(Y, 0) \subset\left(\mathbb{C}^{N}, 0\right)$ be as above an $(n+1)$-dimensional irreducible complex analytic space germ with an isolated singularity at the origin. Let $\left(D_{j}, 0\right) \subset(Y, 0)$ for $j=1, \ldots, r$ be r irreducible Cartier divisors on $(Y, 0)$, i.e., each D_{j} is given (with its reduced structure) as the zero set of a holomorphic function germ f_{j} : $(Y, 0) \rightarrow(\mathbb{C}, 0)$. When the local ring $\mathcal{O}_{Y, 0}$ is factorial, then any hypersurface germ
in $(Y, 0)$ is Cartier. This is the case for instance when $(Y, 0)$ is smooth or an isolated complete intersection singularity (ICIS for short) with $\operatorname{dim} Y \geq 4$, see [11]. See also Example 2.1. Here and in the sequel we identify germs with their (good) representatives.

In particular the local homotopy groups of Y and $M=Y \backslash X$ are well defined as $\pi_{j}\left(L_{Y}\right)$ and $\pi_{j}\left(L_{Y} \backslash L_{X}\right)$, where the links L_{Y} and L_{X} are as defined below. We assume in this section that the following condition holds.
(C1) The divisor $X=\cup_{i=1}^{i=r} D_{i}$ has only normal crossing singularities on Y except possibly at the origin. We say in this case that X is an isolated non normal crossing divisor (for short INNC) on $(Y, 0)$.
In particular each germ $\left(D_{j}, 0\right)$ has an isolated singularity at the origin as well. Since the $(r+1)$-tuple $\left(Y, D_{1}, \ldots, D_{r}\right)$ has a conical structure (cf. [9]) we have an isomorphism:

$$
\begin{equation*}
\pi_{1}\left(L_{Y} \backslash L_{X}\right)=\pi_{1}\left(M \cap \partial B_{\epsilon}\right) \rightarrow \pi_{1}(M) \tag{1}
\end{equation*}
$$

where $L_{Y}\left(\right.$ resp. $\left.L_{X}\right)$ denotes the link of Y (resp. of X), i.e., the intersection of Y (resp. of X) with the boundary ∂B_{ϵ} of a small ball B_{ϵ} about 0 . In particular we get an epimorphism

$$
\pi_{1}(M)=\pi_{1}\left(L_{Y} \backslash L_{X}\right) \rightarrow \pi_{1}\left(L_{Y}\right)
$$

induced by the inclusion $L_{Y} \backslash L_{X} \rightarrow L_{Y}$.
Theorem 2.1. For $n \geq 2$, the kernel of the surjection $\pi_{1}(M) \rightarrow \pi_{1}\left(L_{Y}\right)$ is contained in the center of the group $\pi_{1}(M)$. In particular, if L_{Y} is simply connected, then the fundamental group $\pi_{1}(M)$ is abelian.

Proof. First notice that if $\operatorname{dim} Y>3$ and if H is a generic linear subspace passing through 0 such that the codimension of H in \mathbb{C}^{N} is $\operatorname{dim} Y-3$, then, by Lefschetz hyperplane section theorem (cf. [9], p. 26 and p. 155), we have an isomorphism

$$
\begin{equation*}
\pi_{1}(M \cap H) \rightarrow \pi_{1}(M) \tag{2}
\end{equation*}
$$

Hence it is enough to consider the case $\operatorname{dim} Y=3$ only (though the arguments below work for any dimension ≥ 3).

Next notice that $\kappa=\operatorname{Ker}\left(\pi_{1}\left(L_{Y} \backslash L_{X}\right) \rightarrow \pi_{1}\left(L_{Y}\right)\right)$ is the normal subgroup spanned by the set of elements in the fundamental group $\pi=\pi_{1}\left(L_{Y} \backslash L_{X}\right)$ represented by the loops δ_{i} each of which is the boundary of a fiber over a non singular point of a small closed tubular neighborhood $T\left(D_{i}\right)$ of the submanifold $D_{i} \cap L_{Y}$ in the manifold L_{Y}. Indeed a loop representing an element γ in the kernel κ is the image of the boundary of a 2-disk under a map $\phi: D^{2} \rightarrow L_{Y}$ which is isotopic to an embedding (since $\operatorname{dim} L_{Y} \geq 5$) and which we may assume to be transversal to all the submanifolds $D_{i} \cap L_{Y}$. Now δ_{i} are the ϕ-images of loops in D^{2} each of which is composed of a path α_{i} going from the point in D^{2} corresponding to the base point $p \in L_{Y}$ to the vicinity of a point $y \in D^{2}$ corresponding to a point in $\phi\left(D^{2}\right) \cap D_{i}$, a small loop about y and back along α_{i}^{-1}. So it is enough to show that
all these loops δ_{i} (note that there may be several of them for a given i) belong to the center of $\pi_{1}\left(L_{Y} \backslash L_{X}\right)$.

Let $T\left(D_{i}\right)$ be a tubular neighborhood of $D_{i} \cap L_{Y}$ in L_{Y} as above. We claim that for any $i(i=1, \ldots, r)$ there is a surjection:

$$
\begin{equation*}
\pi_{1}\left(T\left(D_{i}\right) \backslash L_{X}\right) \rightarrow \pi_{1}\left(L_{Y} \backslash L_{X}\right) \tag{3}
\end{equation*}
$$

Notice that assuming the surjectivity in (3) we can conclude the proof as follows. Since the divisors D_{i} 's have normal intersections in L_{Y}, the space $T\left(D_{i}\right) \backslash L_{X}$ is homotopy equivalent to the total space of a locally trivial circle fibration over $D_{i} \backslash \cup_{j \neq i} D_{j}$. The fiber δ_{i}^{\prime} of this fibration, which is a loop based at a point p^{\prime}, is in the center of $\pi_{1}\left(T\left(D_{i}\right) \backslash L_{X}, p^{\prime}\right)$.
Indeed, if $\alpha: S^{1} \rightarrow T\left(D_{i}\right) \backslash L_{X}$ is any loop, we set $\beta=\pi \cdot \alpha$ with $\pi: T\left(D_{i}\right) \backslash L_{X} \rightarrow$ $D_{i} \backslash \cup_{j \neq i} D_{j}$ the the corresponding projection. Then the commutativity $\alpha \delta^{\prime}=\delta^{\prime} \alpha$ follows from the triviality of the pull-back of the normal bundle $\pi: T\left(D_{i}\right) \backslash L_{X} \rightarrow$ $D_{i} \backslash \cup_{j \neq i} D_{j}$ under β. This triviality in turn follows from the triviality of any complex line bundle over a circle S^{1}.
Therefore the surjectivity in (3) yields that the class of δ^{\prime} commutes with any element in $\pi_{1}\left(L_{Y} \backslash L_{X}, p^{\prime}\right)$ and hence with any element in $\pi_{1}\left(L_{Y} \backslash L_{X}, p\right)$.

To show the surjectivity (3), let us consider a generic holomorphic function g on Y sufficiently close to f_{i} so that $L_{Y} \cap\{g=0\} \subset T\left(D_{i}\right)$. We have the decomposition

$$
\begin{array}{cll}
\pi_{1}\left(L_{Y} \cap\{g=0\} \backslash L_{X}\right) & & \tag{4}\\
\downarrow & \searrow & \\
\pi_{1}\left(T\left(D_{i}\right) \backslash L_{X}\right) & \rightarrow & \pi_{1}\left(L_{Y} \backslash L_{X}\right)
\end{array}
$$

corresponding to the factorization of the embeddings. This yields that the horizontal map is surjective provided the map:

$$
\begin{equation*}
\pi_{1}\left(L_{Y} \cap(g=0) \backslash L_{X}\right) \rightarrow \pi_{1}\left(L_{Y} \backslash L_{X}\right) \tag{5}
\end{equation*}
$$

is surjective. But this follows from [14].
Note that this result in the case when $Y=\mathbb{C}^{n+1}$ is a consequence of a theorem of Lê Dung Trang and K.Saito (cf. [18]).

Example 2.1.

(i) If $(Y, 0)$ is an ICIS with $\operatorname{dim}(Y, 0) \geq 3$, then it follows from [12] that the link L_{Y} is simply-connected.
(ii) If $V \subset \mathbb{P}^{m}$ is a locally complete intersection such that $n=\operatorname{dim} V>\operatorname{codim} V$, then the morphism $\pi_{2}(V) \rightarrow \pi_{2}\left(\mathbb{P}^{m}\right)=\mathbb{Z}$ induced by the inclusion $V \rightarrow \mathbb{P}^{m}$ is an epimorphism by the generalized Barth Theorem, see [9], p. 27. It follows that the associated affine cone $(Y, 0)=(C V, 0)$ has a simply-connected link.

If we assume that V is smooth and that $n=\operatorname{dim} V>\operatorname{codim} V+1$, then the divisor class group $C \ell\left(\mathcal{O}_{Y, 0}\right)$ is trivial, i.e., any divisor on this germ $(Y, 0)$ is Cartier. This follows from the exact sequence in [15], Exercise II.6.3 comparing the divisor class groups in the local and the global settings, the usual isomorphism $C \ell(V)=$
$H^{1}\left(V, \mathcal{O}_{V}^{*}\right)$, see [15], II.6.12.1 and II.6.16 and the GAGA results allowing to use the exponential sequence, see [15], Appendix B, to relate topology to $H^{1}\left(V, \mathcal{O}_{V}^{*}\right)$.

If $E=\cup_{j=1, r} E_{j}$ is a normal crossing divisor on the smooth variety V, then the associated cone $X=\cup_{j=1, r} C E_{j}$ is an INNC divisor on the cone $(Y, 0)$.
The epimorphism $\pi_{1}(M) \rightarrow \pi_{1}(V \backslash E)$ can then be used to show that this last fundamental group is abelian.

3. Homology of the complements to reducible divisors

Assume in this section that the germ $(Y, 0)$ is an ICIS with $\operatorname{dim} Y=n+1$ and let $\mathcal{A}=\left\{H_{i}\right\}_{i=1, \ldots, r}$ be a central hyperplane arrangement in \mathbb{C}^{m}. Suppose given an analytic map germ $f:(Y, 0) \rightarrow\left(\mathbb{C}^{m}, 0\right)$ such that the following condition holds.
(C2) For any edge $L \in L(\mathcal{A})$ with codim $L=c$, the (scheme-theoretic) pull-back $D_{L}=f^{-1}(L)$ is an ICIS in $(Y, 0)$ of codimension exactly c for $c \leq n$ and $D_{L}=\{0\}$ for $c \geq n+1$.

This condition (C2) is equivalent to asking that $f:(Y, 0) \rightarrow\left(\mathbb{C}^{m}, 0\right)$ is transverse to \mathcal{A} off 0 in the sense of Damon, see [3], Definition 1.2. In his language, $X=\cup_{i=1, r} D_{i}$ is a nonlinear arrangement of hypersurfaces based on the central arrangement \mathcal{A}, with $D_{i}=f^{-1}\left(H_{i}\right)$. Note that for $n \geq 2$ all the germs D_{j} are irreducible by [12], but on the other hand the condition ($\mathbf{C 1}$) may well fail in this setting.

Consider the complements $M=Y \backslash X$ and $N=\mathbb{C}^{m} \backslash \cup_{i=1, r} H_{i}$, and note that there is an induced mapping $f: M \rightarrow N$. Our result is the following

Theorem 3.1. With this notation,

$$
f_{*}: H_{j}(M) \rightarrow H_{j}(N)
$$

is an isomorphism for $j<n$ and an epimorphism for $j=n$. Similarly

$$
f^{*}: H^{j}(N) \rightarrow H^{j}(M)
$$

is an isomorphism for $j<n$ and a monomorphism for $j=n$. In particular, the algebra $H^{*}(M)$ is spanned by $H^{1}(M)$ up-to degree $(n-1)$.

Proof. For $n=1$ everything is clear, so we can assume in the sequel $n>1$.
The proof is by induction on r. For $r=1$ the result follows since M can be identified to the total space of the Milnor fibration, whose Milnor fiber is a bouquet of n-dimensional spheres by work of Hamm, see [12].

Assume now that $r>1$ and apply the deletion and restriction trick, see more on this in [25], p. 4. Namely, let $\mathcal{A}^{\prime}=\left\{H_{i}\right\}_{i=2, \ldots, r}$ and $\mathcal{A}^{\prime \prime}=\left\{H_{1} \cap H_{i}\right\}_{i=2, \ldots, r}$. Then both \mathcal{A}^{\prime} and $\mathcal{A}^{\prime \prime}$ are central arrangements with at most $(r-1)$ hyperplanes.

Since $L\left(\mathcal{A}^{\prime}\right) \subset L(\mathcal{A})$, it is clear that $f:(Y, 0) \rightarrow\left(\mathbb{C}^{m}, 0\right)$ satisfies the condition $\mathbf{C 2}$ with respect to \mathcal{A}^{\prime}. Moreover, $L\left(\mathcal{A}^{\prime \prime}\right) \subset L(\mathcal{A})$ (with a 1 -shift in codimensions) and $f:\left(D_{1}, 0\right) \rightarrow\left(\mathbb{C}^{m-1}, 0\right)$ satisfies the condition $\mathbf{C} 2$ with respect to $\mathcal{A}^{\prime \prime}$.

Let $M^{\prime}, M^{\prime \prime}, N^{\prime}, N^{\prime \prime}$ be the corresponding complements. Since $M^{\prime \prime}$ (resp. $N^{\prime \prime}$) is a smooth hypersurface in $M^{\prime}\left(\right.$ resp. $\left.N^{\prime}\right)$ we have the following ladder of Gysin sequences.

It is a standard fact in hyperplane arrangement theory that the bottom-right morphism $H_{j}\left(N^{\prime}\right) \rightarrow H_{j-2}\left(N^{\prime \prime}\right)$ is zero. Usually this result is stated for cohomology, see [25], p.191, but since both homology and cohomology of hyperplane arrangement complements are torsion free, the vanishing holds for homology as well.

An easy diagram chasing, using the induction hypothesis, shows that for $j \leq n$ the top-right morphism $H_{j}\left(M^{\prime}\right) \rightarrow H_{j-2}\left(M^{\prime \prime}\right)$ is zero as well. This implies the claim, again by an easy diagram chasing and using the induction hypothesis.

The proof for the cohomological result is completely dual.
Using Theorems 2.1 and 3.1 and Example 2.1,(i) we get the following result.
Corollary 3.1. Assume that $n \geq 2$ and that the divisor X satisfies the condition C1. Then

$$
\pi_{1}(M)=H_{1}(M)=H_{1}(N)
$$

is a free abelian group of rank $r=|\mathcal{A}|$.
Remark 3.1. Note that M is a Stein manifold, and hence $H_{j}(M)=0$ for $j>n+1$ by [13]. It follows that there are only two Betti numbers $b_{j}(M)$ to compute, namely for $j=n, n+1$. Indeed, for $j<n$ the Betti number $b_{j}(M)=b_{j}(N)$ is known by the results in [25], Theorem 5.93. Moreover by the additivity of Euler characteristics, see [8], it follows that $\chi(M)=\chi(Y)-\chi(X)=0$. This gives a relation between the two top unknown Betti numbers of M.

Similarly to [22], the above results yield the following.
Theorem 3.2. Let $(Y, 0)$ be a an isolated complete intersection singularity of dimension $n+1 \geq 3$. Let $X=\cup_{i=1, r} D_{i}$ be a union of Cartier divisors of Y which have normal crossing outside of the origin. Then the universal abelian cover \tilde{M} of $M=Y \backslash X$ has the homotopy type of a bouquet of spheres of dimension n.

Proof. The proof is similar to the proof of Thm. 2.2 in [22]. Firstly, let us consider the exact homotopy sequence corresponding to the map $f: M \rightarrow \mathbb{C}^{* r}$, obtained by using the equations $f_{i}=0$ for the divisors D_{i}. The isomorphism $\pi_{1}(M) \rightarrow \pi_{1}\left(\mathbb{C}^{* r}\right)$ which follows from Theorems 2.1 and 3.1 and the known fact $\pi_{j}\left(\mathbb{C}^{* r}\right)=0$ for $j>1$ yield that $\pi_{2}\left(\mathbb{C}^{* r}, M\right)=0$ and $\pi_{j}\left(\mathbb{C}^{* r}, M\right)=\pi_{j-1}(M)$ for $j>2$ (here we assume that f is replaced by an embedding, which is of course possible up-to homotopy type). Moreover we can show exactly as in [22] that the action of $\pi_{1}(M)$
on $\pi_{j}\left(\mathbb{C}^{* r}, M\right)$ is trivial. Hence we can apply the relative Hurewich theorem to the pair $\left(\mathbb{C}^{* r}, M\right)$ and note that we have a vanishing of the relative homology of this pair as a consequence of the previous theorem. Looking now at $f: M \rightarrow \mathbb{C}^{* r}$ as a homotopy fibration with fiber \tilde{M}, we get the vanishing of the homotopy groups of the universal abelian cover \tilde{M} of M up to dimension $n-1$. On the other hand, the existence of the Milnor fibration of $g=f_{1} \ldots f_{r}:(Y, 0) \rightarrow(\mathbb{C}, 0)$ (theorem of Hamm in [12]) yields that M admits a cyclic cover which has the homotopy type of a CW complex of dimension n (i.e., the Milnor fiber F of the hypersurface X in Y). Hence the universal abelian cover \tilde{M}, which is the universal abelian cover of this Milnor fiber F has the homotopy type of an n-complex. Therefore the universal abelian cover \tilde{M} is homotopy equivalent to the wedge of spheres S^{n}.

4. Homology of local systems (rank one case)

Let $(Y, 0)$ be a germ of an isolated complete intersection singularity and let $X=$ $\bigcup_{i=1, r} D_{i}$ be a divisor which has normal crossings outside of the origin, i.e., we place ourselves again in the setting of Theorem 3.2. The above notation is still used here.

Let $\rho: \pi_{1}(M) \rightarrow \mathbb{C}^{*}$ be a character of the fundamental group or equivalently a local system \mathcal{L} of rank one on M. The space M, being a Stein space of dimension $(n+1)$, has the homotopy type of an $(n+1)$ complex and hence $H_{j}(M, \mathcal{L})=$ $H_{j}(M, \rho)=0$ for $j>n+1$.

The main result of this section is the following:
Theorem 4.1. Let $\rho: \pi_{1}(M) \rightarrow \mathbb{C}^{*}$ be a non trivial character and let \mathcal{L} be the associated rank one local system on M. Then:
(i) $H_{j}(M, \mathcal{L})=0$ for $j \neq n, n+1$;
(ii) $\operatorname{dim} H_{n}(M, \mathcal{L})$ is the largest integer k such that ρ belongs to the zero set V_{k} of the k th Fitting ideal of the $\mathbb{C}\left[\pi_{1}(M)\right]$ - module $\pi_{n}(M) \otimes_{\mathbb{Z}} \mathbb{C}$.
(iii) The largest integer k such that the trivial character of $\pi_{1}(M)$ belongs to V_{k} is equal to

$$
\operatorname{dim} \operatorname{Ker}\left(\Lambda^{n+1} H^{1}(M) \rightarrow H^{n+1}(M)\right)+\operatorname{dim} H_{n}(M)-\binom{r}{n}
$$

Proof. Recall the spectral sequence for the cohomology of local systems (cf. [1]) Thm. 8.4. Let $C_{*}^{\rho}(\tilde{M})$ be the chain complex on which $H_{1}(M, \mathbf{Z})$ acts from the right via $g(x)=\rho(g) x g\left(g \in H_{1}(M, \mathbb{Z}), x \in C_{*}(\tilde{M}, \mathbb{C})\right)$ where $x \rightarrow x g$ is the action via deck transformations. Let $H_{q}^{\rho}(\tilde{M})$ be the homology of this complex. We have a spectral sequence:

$$
E_{p, q}^{2}=H_{p}\left(H_{1}(M, \mathbb{Z}), H_{q}^{\rho}(\tilde{M})\right) \Rightarrow H_{p+q}(M, \rho)
$$

Recall that M has the homotopy type of an $(n+1)$-complex and \tilde{M} has the homotopy type of a bouquet of spheres of dimension n, see 3.2 .

The group $H_{q}^{\rho}(\tilde{M})$ carries the canonical structure of $H_{1}(M, \mathbb{Z})$-module coming from the corresponding module structure on chains. We have the isomorphism: $H_{0}^{\rho}(\tilde{M})=\mathbb{C}_{\rho}$ where \mathbb{C}_{ρ} is the one-dimensional representation of $H_{1}(M, \mathbb{Z})$ given by ρ. Indeed, if x is a generator of $C_{0}^{\rho}(\tilde{M})$ as $H_{1}(M, \mathbb{Z})$-module then $x-x \cdot g=0$ in $H_{0}^{\rho}(\tilde{M})$. On the other hand $x-x \cdot g=x-\rho(g) g^{-1} x$. Hence $g x=\rho(g) x$ in $H_{0}^{\rho}(\tilde{M})$.

Since for $\rho \neq 1$ one has $H_{p}\left(H_{1}(M, \mathbb{Z}), \mathbb{C}_{\rho}\right)=0$, it follows from the vanishing theorem in the last section that the term E_{2} has only one horizontal row: $q=n$. This yields the claim (i). We have

$$
H_{0}\left(H_{1}(M, \mathbb{Z}), H_{n}^{\rho}(\tilde{M})\right)=H_{n}^{\rho}(\tilde{M})_{\text {Inv }}=H_{n}(\tilde{M}) \otimes_{H_{1}(M, \mathbb{Z})} \mathbb{C}_{\rho}
$$

On the other hand, taking tensor product with \mathbb{C}_{ρ} in the resolution $\Phi: \Lambda^{s} \rightarrow$ $\Lambda^{t} \rightarrow H_{n}(\tilde{M}) \rightarrow 0$ we obtain the resolution of $H_{n}(\tilde{M}) \otimes_{H_{1}(M, Z)} \mathbb{C}_{\rho}$ in which the matrix of $\Phi_{\rho}: \Lambda^{s} \otimes \mathbb{C}_{\rho} \rightarrow \Lambda^{t} \otimes \mathbb{C}_{\rho}$ is obtained from the matrix of Φ by replacing its entries by values of the entries at ρ. Hence if ρ belongs to the set of zeros of the k th Fitting ideal (and k is maximal with this property), then the corank of Φ_{ρ} is k. This yields the second claim.

Let us consider the exact sequence:

$$
\begin{align*}
H_{n+1}(M) & \rightarrow H_{n+1}\left(H_{1}(M, \mathbb{Z})\right) \rightarrow H_{n}(\tilde{M}) \otimes_{H_{1}(M, \mathbb{Z})} \mathbb{C} \tag{6}\\
& \rightarrow H_{n}(M) \rightarrow H_{n}\left(H_{1}(M, \mathbb{Z})\right) \rightarrow 0
\end{align*}
$$

corresponding to the spectral sequence:

$$
\begin{equation*}
H_{p}\left(H_{1}(M, \mathbb{Z}), H_{q}(\tilde{M})\right) \Rightarrow H_{p+q}(M) \tag{7}
\end{equation*}
$$

We have

$$
\begin{align*}
& \operatorname{dim} \operatorname{Coker}\left(H_{n+1}(M) \rightarrow H_{n+1}\left(H_{1}(M, \mathbb{Z})\right)\right) \\
& \left.\quad=\operatorname{dim} \operatorname{Ker}_{n+1}\left(H_{1}(M, \mathbb{Z})\right)^{*} \rightarrow H_{n+1}(M)^{*}\right) \tag{8}
\end{align*}
$$

The latter kernel (using Kronecker pairing identification $H_{i}^{*}=H^{i}$ over \mathbb{C}) is isomorphic to dim $\operatorname{Ker} H^{n+1}\left(H_{1}(M)\right) \rightarrow H^{n+1}(M)$. Since $H_{1}(M, \mathbb{Z})=\mathbb{Z}^{r}$ we have $\Lambda^{i}\left(H_{1}(M)\right)=H^{i}\left(H_{1}(M)\right)$ with the isomorphism provided by the cup product. Hence the dimension in (8) is equal to

$$
\operatorname{dim} \operatorname{Ker}\left(\Lambda^{n+1}\left(H_{1}(M)\right) \rightarrow H^{n+1}(M)\right)
$$

Therefore, using the sequence (6) and the equality $\operatorname{dim} H_{n}\left(H_{1}(M)\right)=\binom{r}{n}$, we obtain

$$
\begin{aligned}
& \operatorname{dim} H_{n}(\tilde{M}) \otimes_{H_{1}(M, \mathbb{Z})} \mathbb{C} \\
& \quad=\operatorname{dim} \operatorname{Ker}\left(\Lambda^{n+1}\left(H_{1}(M)\right) \rightarrow H^{n+1}(M)\right)+\operatorname{dim} H_{n}(M)-\binom{r}{n}
\end{aligned}
$$

This yields the last claim in Theorem 4.1.
Notice that the claim 4.1 (iii) is a generalization of a result in [20] and that the space of local systems with non vanishing cohomology in the cases when $Y=\mathbb{C}^{2}$ and $Y=\mathbb{C}^{n+1}$ was studied in [21] and [22] respectively.

Remark 4.1. The morphism $\Lambda^{n+1} H^{1}(M) \rightarrow H^{n+1}(M)$ in the above Theorem is surjective in the following two cases.
(i) $n=1$ and $(Y, 0)=\left(\mathbb{C}^{2}, 0\right)$, see [4], Corollary 2.20 ;
(ii) $(Y, 0)=\left(\mathbb{C}^{n+1}, 0\right)$ and X a central hyperplane arrangement, see [25], Corollary 5.88.

The following result is a generalization of Example (6.1.8) in [5], where Y was assumed to be a smooth germ and the proof uses properties of the vanishing cycle functor and a generalization of Prop. 4.6 from [22] where the case of X smooth was treated.

Corollary 4.1. Let F be the Milnor fiber of the reduced germ $g:(Y, 0) \rightarrow(\mathbb{C}, 0)$ which defines the divisor X in Y. With the above assumptions, the monodromy action $h^{j}: H^{j}(F, \mathbb{C}) \rightarrow H^{j}(F, \mathbb{C})$ is trivial for $j \leq n-1$.

Proof. Let ρ_{a} be the representation sending each elementary loop to the same complex number $a \in \mathbb{C}^{*}$. Then it is well-known, see for instance [5], Corollary 6.4.9, that

$$
\operatorname{dim} H^{q}\left(M, \rho_{a}\right)=\operatorname{dim} \operatorname{Ker}\left(h^{q}-a I d\right)+\operatorname{dim} \operatorname{Ker}\left(h^{q-1}-a I d\right)
$$

The unipotence follows by applying this equality to $a \neq 1$.
To obtain triviality of the monodromy action, notice that due to the Milnor's fibration theorem, the Milnor fiber F is homotopy equivalent to the infinite cyclic cover of M. Hence, it is a quotient of the universal abelian cover \tilde{M} by the action of the kernel of $\pi: \pi_{1}(M) \rightarrow \mathbf{Z}$ where π sends each elementary loop to 1 . Let us consider the corresponding spectral sequence:

$$
\begin{equation*}
H^{p}\left(\operatorname{Ker} \pi, H^{q}(\tilde{M}, \mathbb{C})\right) \Rightarrow H^{p+q}(F, \mathbb{C}) \tag{9}
\end{equation*}
$$

for this action of the group $\operatorname{Ker} \pi=\mathbb{Z}^{r-1}$ on the universal abelian cover \tilde{M}. Notice that this is a spectral sequence of $\mathbb{C}\left[t, t^{-1}\right]$ modules where the action on $H^{p}\left(\operatorname{Ker} \pi, H^{q}(\tilde{M})\right)$ is the standard action of the generator of $\pi_{1} / \operatorname{Ker} \pi$ and the action of t on cohomology of the Milnor fiber is the monodromy action. Since, by Theorem $3.2, H^{q}(\tilde{M})=0$ for $1 \leq q<n$ we have $n-1$ zero-rows in the term E_{2} and hence the isomorphism $H^{j}(F, \mathbb{C})=H^{j}\left(\operatorname{Ker} \pi, H^{0}(\tilde{M})\right)$ for $1 \leq j \leq n-1$. Since the map of the classifying spaces $\left(S^{1}\right)^{r} \rightarrow S^{1}$ corresponding to the homomorphism π has trivial monodromy, the action of $\pi_{1} / \operatorname{Ker} \pi$ on $H^{j}(\operatorname{Ker} \pi, \mathbb{C})$ is trivial for any j in the range $0 \leq j \leq n-1$ and the claim follows.

Remark 4.2. One can obtain the triviality of the monodromy action also using mixed Hodge theory, at least for $j<n-1$. See for details [6], Theorem 0.2. Note that the above proof shows that $\operatorname{dim} H^{j}(F)=\binom{r-1}{j}$ for $j \leq n-1$ (cf. [22]).

5. Homology of local systems (higher rank case)

In this section we work with weaker assumptions on the germs $(Y, 0)$ and $\left(D_{j}, 0\right)$ as above. Indeed, we simply need that M has only locally complete intersection singularities (which is weaker than asking $(Y, 0)$ to be an isolated singularity) and that there is a \mathbb{Q}-Cartier divisor, say D_{1}, among the divisors D_{j} such that the INNC condition for X holds only along D_{1}. In particular, the singularities of the divisors $D_{j} \backslash D_{1}$ for $j>1$ can be arbitrary.

To start, note that if $D_{1} \backslash\{0\}$ is contained in the smooth part of the space $Y \backslash\{0\}$, then one has an elementary loop δ_{1} which goes once about the irreducible divisor D_{1} (in a transversal at a smooth point). It follows that a rank m local system \mathcal{L} on $Y \backslash X$ which corresponds to a representation

$$
\rho: \pi_{1}(Y \backslash X) \rightarrow G L_{m}(\mathbb{C})
$$

gives rise to a monodromy operators $T_{1}=\rho\left(\delta_{1}\right)$. Of course, both δ_{1} and T_{1} are well-defined only up-to conjugacy. The following result should be compared to the vanishing part of Theorem 0.2 in [6].

Theorem 5.1. Let \mathcal{L} be a local system on M such that
(i) M is a locally complete intersection and D_{1} is an irreducible \mathbb{Q}-Cartier divisor, i.e., there is an integer m such that $m D_{1}$ is the zero set of a holomorphic germ;
(ii) $D_{1} \backslash\{0\}$ is contained in the smooth part of the space $Y \backslash\{0\}$ and X has only normal crossings along $D_{1} \backslash\{0\}$;
(iii) the corresponding monodromy operator T_{1} has not 1 as an eigenvalue.

Then $H^{k}(M, \mathcal{L})=0$ for $k<n$ and for $k>n+1$.
Proof. For this proof we assume that the (good) representatives for our germs Y, D_{j}, \ldots exist as closed analytic subspaces in an open ball B of radius 2ϵ centered at the origin. This implies in particular that Y is a Stein space, as well as $Y \backslash X$, which is the complement of the zero set of a holomorphic function on Y. Such a Stein space has the homotopy type of a CW complex of dimension at most $(n+1)$ by [13], and this already gives $H^{k}(Y \backslash X, \mathcal{L})=0$ for $k>n+1$.

These representatives are good in the sense that all the germs Y, D_{j}, \ldots have a conic structure inside the ball B such that the corresponding retractions are the same for all these germs. We represent the links $L_{Y}, L_{X}, L_{D_{j}}, \ldots$ as the intersections of these representatives inside B with a sphere S of radius ϵ. In such a way we have an inclusion $i_{\epsilon}: L_{Y} \rightarrow Y$ and a retraction $r_{\epsilon}: Y^{*} \rightarrow L_{Y}$, with $Y^{*}=Y \backslash\{0\}$, which induces inclusions and retractions for the other germs.

The main tool for the proof below is the theory of constructible (resp. perverse) sheaves. For all necessary background material on this subject we refer to [16] and [5].

Let $i: Y \backslash X \rightarrow Y \backslash D_{1}$ be the inclusion and set $\mathcal{F}^{*}=R i_{*} \mathcal{L} \in D_{c}^{b}\left(Y \backslash D_{1}\right)$, $\mathcal{F}_{1}^{*}=\mathcal{F}^{*} \mid\left(L_{Y} \backslash L_{D_{1}}\right)$. The constructible sheaf complex \mathcal{F}^{*} has constant cohomology sheaves along the fibers of the retraction r_{ϵ} (since the topology is constant along such a fiber). It follows, as in Lemma 2.7.3 in [16], that

$$
H^{k}(Y \backslash X, \mathcal{L})=\mathbb{H}^{k}\left(Y \backslash D_{1}, \mathcal{F}^{*}\right)=\mathbb{H}^{k}\left(L_{Y} \backslash L_{D_{1}}, \mathcal{F}_{1}^{*}\right)
$$

Let $j_{1}: L_{Y} \backslash L_{D_{1}} \rightarrow L_{Y}$ be the inclusion and note that

$$
R j_{1 *} \mathcal{F}_{1}^{*}=R j_{1!} \mathcal{F}_{1}^{*}
$$

exactly as in [7] and [2], the key points being the assumptions (ii) and (iii) in the above statement. Since the link L_{Y} is compact, it plays the role of the compact algebraic variety in [7] and [2], and we get

$$
\mathbb{H}^{k}\left(L_{Y} \backslash L_{D_{1}}, \mathcal{F}_{1}^{*}\right)=\mathbb{H}_{c}^{k}\left(L_{Y} \backslash L_{D_{1}}, \mathcal{F}_{1}^{*}\right)
$$

for any integer k.
The new difficulty we encounter here is that $L_{Y} \backslash L_{D_{1}}$ is not a Stein space (not even properly homotopically equivalent to a Stein space as the retraction $r_{\epsilon}: Y \backslash$ $D_{1} \rightarrow L_{Y} \backslash L_{D_{1}}$ is not proper!), hence the vanishing for the last hypercohomology group is not obvious.

We proceed as follows. We apply first Poincaré-Verdier Duality on the real semialgebraic set $L_{Y} \backslash L_{D_{1}}$ and get

$$
\mathbb{H}_{c}^{k}\left(L_{Y} \backslash L_{D_{1}}, \mathcal{F}_{1}^{*}\right)^{\vee}=\mathbb{H}^{-k}\left(L_{Y} \backslash L_{D_{1}}, D_{\mathbb{R}} \mathcal{F}_{1}^{*}\right)
$$

Here $D_{\mathbb{R}} \mathcal{F}_{1}^{*}$ is the dual sheaf of \mathcal{F}_{1}^{*} in this real setting. Note that we can also consider the (complex) dual sheaf $D \mathcal{F}^{*} \in D_{c}^{b}\left(Y \backslash D_{1}\right)$. It follows that

$$
D \mathcal{F}^{*} \mid\left(L_{Y} \backslash L_{D_{1}}\right)=D_{\mathbb{R}} \mathcal{F}_{1}^{*}[1]
$$

since the inclusion $L_{Y} \backslash L_{D_{1}} \rightarrow Y \backslash D_{1}$ is normally nonsingular in the sense of [10] (this is what corresponds to a non-characteristic embedding in the sense of [16], Definition 5.4.12 in the case of singular spaces).

This yields the following isomorphisms

$$
\begin{aligned}
\mathbb{H}^{-k}\left(L_{Y} \backslash L_{D_{1}}, D_{\mathbb{R}} \mathcal{F}_{1}^{*}\right) & =\mathbb{H}^{-k}\left(L_{Y} \backslash L_{D_{1}}, D \mathcal{F}^{*}[-1] \mid\left(L_{Y} \backslash L_{D_{1}}\right)\right) \\
& =\mathbb{H}^{-k-1}\left(L_{Y} \backslash L_{D_{1}}, D \mathcal{F}^{*} \mid\left(L_{Y} \backslash L_{D_{1}}\right)\right)
\end{aligned}
$$

Here we are again in the presence of a constructible sheaf complex, namely $D \mathcal{F}^{*}$, whose cohomology sheaves are constant along the fibers of the retraction r_{ϵ}. This implies that

$$
\begin{aligned}
\mathbb{H}^{-k-1}\left(L_{Y} \backslash L_{D_{1}}, D \mathcal{F}^{*} \mid\left(L_{Y} \backslash L_{D_{1}}\right)\right) & =\mathbb{H}^{-k-1}\left(Y \backslash D_{1}, D \mathcal{F}^{*}\right) \\
& =\mathbb{H}_{c}^{k+1}\left(Y \backslash D_{1}, \mathcal{F}^{*}\right)
\end{aligned}
$$

the last isomorphism coming from Poincaré-Verdier Duality on the algebraic variety $Y \backslash D_{1}$.

Now it is time to note that the shifted local system $\mathcal{L}[n+1]$ is a perverse sheaf on the locally complete intersection variety M and hence $\mathcal{F}^{*}[n+1]$ is a perverse
sheaf on the variety $Y \backslash D_{1}$ since the morphism i is Stein and quasi-finite. It follows that

$$
\mathbb{H}_{c}^{k+1}\left(Y \backslash D_{1}, \mathcal{F}^{*}\right)=\mathbb{H}_{c}^{k-n}\left(Y \backslash D_{1}, \mathcal{F}^{*}[n+1]\right)=0
$$

for any $k<n$ by Artin's Vanishing Theorem in the Stein setting, see [16] Proposition 10.3.3 (iv) and Theorem 10.3 .8 (ii).

References

[1] H. Cartan, S. Eilenberg, Homological Algebra. Princeton University Press, Princeton, NJ, 1956.
[2] D. Cohen, A. Dimca and P. Orlik, Nonresonance conditions for arrangements, Ann. Institut Fourier 53(2003), 1883-1896.
[3] J. Damon, Critical points of affine multiforms on the complements of arrangements, Singularity Theory, ed. J. W. Bruce and D. Mond, London Math. Soc. Lect. Notes 263 (1999), CUP, 25-53.
[4] A. Dimca, Singularities and Topology of Hypersurfaces, Universitext, Springer Verlag, 1992.
[5] A. Dimca, Sheaves in Topology, Universitext, Springer Verlag, 2004.
[6] A. Dimca, M. Saito, Some consequences of perversity of vanishing cycles, Ann.Inst. Fourier, Grenoble 54(2004), 1769-1792.
[7] H. Esnault, E. Viehweg, Logarithmic de Rham complexes and vanishing theorems, Invent. Math. 86 (1986), 161-194.
[8] W. Fulton, Introduction to Toric Varieties, Annals of Math, Studies 131, Princeton University Press, 1993.
[9] M. Goresky, R. MacPherson, Stratified Morse Theory. Springer Verlag.
[10] M. Goresky, R. MacPherson, Intersection homology II, Invent. Math. 71 (1983), 77-129.
[11] A. Grothendieck, Cohomologie locale des faisceaux cohérents et Théorèmes de Lefschetz locaux et globaux, SGA2, North-Holland, 1968.
[12] H. Hamm, Lokale topologische Eigenschaften komplexer Räume, Math. Ann. 191 (1971), 235-252.
[13] H. Hamm, Zum Homotopietyp Steinscher Räume, J. Reine Angew. Math. 338 (1983), 121-135.
[14] H. Hamm, Lê Dung Trang, Local generalization of Lefschetz-Zariski theorem, J. Reine Angew. Math. 389 (1988), 157-189.
[15] R. Hartshorne, Algebraic Geometry, GTM 52, Springer 1977.
[16] M. Kashiwara, P. Schapira, Sheaves on Manifolds, Grundlehren Math. Wiss., vol. 292, Springer-Verlag, Berlin, 1994.
[17] M. Kato, Y. Matsumoto, On the connectivity of the Milnor fiber of a holomorphic function at a critical point. Manifolds - Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973), pp. 131-136. Univ. Tokyo Press, Tokyo, 1975.
[18] Lê Dung Trang, K. Saito, The local π_{1} of the complement to a hypersurface with normal crossings in codimension 1 is abelian. Ark. Mat. 22 (1984), no. 1, 1-24.
[19] Lê, D.T., Complex analytic functions with isolated singularities, J. Algebraic Geometry 1 (1992), 83-100.
[20] A. Libgober, On the homology of finite abelian coverings. Topology Appl. 43 (1992), no. 2, 157-166.
[21] A. Libgober, Hodge decomposition of Alexander invariants. Manuscripta Math. 107 (2002), no. 2, 251-269.
[22] A. Libgober, Isolated non normal crossings, in Real and Complex Singularities, eds. M. Ruas and T. Gaffney, Contemporary Mathematics, 354, 2004, 145-160.
[23] J. Milnor, Singular points of complex hypersurfaces, Annals of Mathematical Studies, 61, Princeton University Press, Princeton, 1968.
[24] M. Nori, Zariski conjecture and related problems, Ann. Sci. Ecole Norm. Sup. (4), 16, (1983), 305-344.
[25] P. Orlik, H. Terao, Arrangements of Hyperplanes, Grundlehren Math. Wiss., vol. 300, Springer-Verlag, Berlin, 1992.

Alexandru Dimca
Laboratoire J. A. Dieudonné
UMR CNRS 6621
Université de Nice Sophia-Antipolis
Parc Valrose
F-06108 Nice Cedex 2, France
Anatoly Libgober
Department of Mathematics
University of Illinois at Chicago
Chicago, IL 60607, USA

